
Computer GraphicsComputer Graphics
for Engineeringfor Engineering

Numerical simulation
in technical sciences

Color / OpenGLColor / OpenGL

Luiz Fernando Martha

André Pereira

Graz, Austria

June 2014

Color / OpenGLColor / OpenGL

To RememberTo Remember

Computer Graphics

Data Image

Visualization

Data

Processing

Data Image

Computer

Vision

Imaging

Processing- Geometric Modeling

- Mesh Generation

- Computational Geometry

- Visualization Techniques (Post-processing)

C++

Development Environment

ColorColor

COLOR
How can one perceive and how to quantify the color?

How can one perceive and how to quantify the color?

COLOR

Lìght: radiation in a particular range of wavelengths.

Light of a single

wavelength is called

monochormatic.

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

R o y G. B i v

Light at a single frequency

Bright and distinct in appearance

Reproduction only,

not a real spectral color!

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

R o y G. B i v

Light at a single frequency

Bright and distinct in appearance

Reproduction only,

not a real spectral color!

Most colors seen are a mix light of

several wavelengths .

Curves describe spectral

composition of stimulus

Everything is Relative!

Perception -vs- Measurement

You do not “see” the spectrum of light

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

Perception -vs- Measurement

You do not “see” the spectrum of light

Everything is Relative!

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

The eye does not see intensity values…

Perception

Perception

The eye does not see intensity values…

Eyes as Sensors

Eye records color by 3 measurements

We can “fool” it with combination of 3 signals

So display devices (monitors, printers, etc.) can generate

perceivable colors as mix of 3 primaries

Response to stimulus Φ1 is (L1, M1, S1)

Response to stimulus Φ2 is (L2, M2, S2)

Then response to Φ1+ Φ2 is (L1+L2, M1+M2, S1+S2)

Response to n Φ1 is (n L1, n M1, n S1)

System that obeys superposition and scaling is called a linear system

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

Additive Mixing
Given three primaries we agree on p1, p2, p3

Match generic input light with Φ = α p1 + β p2 + γ p3

Negative not realizable, but can add primary to test light.

Color now described by α, β, γ

Example: computer monitor [R,G,B]

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

Color Matching Functions

Input wavelengths are CIE 1931 monochromatic primaries

Source: Agrawala , 2014 – Lecture Notes on Computer Graphics at UCBerkley

Color Representation

OpenGLOpenGL

OpenGL

OpenGL

• Programming API (API) for hardware accelerated 2D/3D graphics

• Platform independent

• Generic

• Flexible

• Low level...

DrawingDrawing

• All drawing accomplished using 10 primitives

• Same basic principle

// Draw 4 points
glBegin(GL_POINTS)
glVertex2i(‐‐‐‐50,‐‐‐‐50)
glVertex2i(50,‐‐‐‐50)
glVertex2i(50,50)
glVertex2i(‐‐‐‐50,50)
glEnd()

GL_POINTS

GL_LINES

GL_LINE_STRIP GL_LINE_LOOP

GL_TRIANGLES
GL_TRIANGLE_FAN

GL_TRIANGLE_STRIP

GL_QUADS GL_POLYGON

GL_QUAD_STRIP

Primitive properties

• Points and lines

– Outside glBegin()/glEnd()

– line width, glLineWidth(2.0)

– Point size

• Color

– Given on a vertex level

– Inside glBegin()/glEnd()

– Given in RGB, where 1.0 max intensity

and 0.0 is minimum intensity

– Color is interpolated between vertices

// Set white color
glColor3f(1.0, 1.0, 1.0);
// Set the line width
glLineWidth(2.0);
glBegin(GL_LINES);
glVertex2i(-1000,0);
glVertex2i(1000,0);
glVertex2i(0,-1000);
glVertex2i(0, 1000);
glEnd();– Color is interpolated between vertices glEnd();
// Set point size
glPointSize(5);
glBegin(GL_POINTS);
glVertex2i(-50, -50);
glVertex2i(50, -50);
glVertex2i(50, 50);
glVertex2i(-50, 50);
glEnd();

glBegin(GL_QUADS);
glColor3f(1.0, 0.0, 0.0); // Red color
glVertex2i(-50, -50);
glColor3f(0.0, 1.0, 0.0); // Green color
glVertex2i(50, -50);
glColor3f(0.0, 0.0, 1.0); // Blue color
glVertex2i(50, 50);
glColor3f(1.0, 1.0, 0.0); // Yellow color
glVertex2i(-50, 50);glVertex2i(-50, 50);
glEnd();

Geometric transformations

• Transformations are important in computer graphics

– Translation

– Rotation

– Scaling

• OpenGL

– Transformation matrices implemented in hardware

– Model matrix - glMatrixMode(GL_MODELVIEW)

– Project matrix - glMatrixMode(GL_PROJECTION)

Initialising matricesInitialising matrices

// Initialise model view matrix to identity
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()

Translation

• Translating coordinate systems

• glTranslatef(x, y, z)

• Current matrix in multiplied by a

translation matrix

glTranslatef(40.0,40.0,0.0);
glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);
glVertex2i(‐‐‐‐20, ‐‐‐‐20);
glVertex2i(20,‐‐‐‐20);
glVertex2i(20,20);
glVertex2i(‐‐‐‐20,20);
glEnd();

Rotation

• Rotates coordinate system

• glRotatef(angle, axis_x, axis_y, axis_z)

• Right-hand rule

• Positive Z-axis out of the screen

Rotation

• Rotates coordinate system

• glRotatef(angle, axis_x, axis_y, axis_z)

• Right-hand rule

• Positive Z-axis out of the screen

glTranslatef(40.0,40.0,0.0);
glRotatef(30.0,0.0,0.0,1.0);
glBegin(GL_QUADS);

‐‐‐‐ ‐‐‐‐

glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);
glVertex2i(‐‐‐‐20,‐‐‐‐20);
glVertex2i(20,‐‐‐‐20);
glVertex2i(20,20);
glVertex2i(‐‐‐‐20,20);
glEnd();

Scaling

• Scales current coordinate system

• glScalef(scale_x, scale_y, scale_z)

glTranslatef(40.0,40.0,0.0);
glRotatef(30.0,0.0,0.0,1.0);
glScalef(2.0,2.0,0.0);
glBegin(GL_QUADS);

‐‐‐‐ ‐‐‐‐

glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);
glVertex2i(‐‐‐‐20,‐‐‐‐20);
glVertex2i(20,‐‐‐‐20);
glVertex2i(20,20);
glVertex2i(‐‐‐‐20,20);
glEnd();

Problem with current method

• Matrices constantly needs initialising

• Difficult implement hierarchical tranformations

• Many matrix multiplications

OpenGL Matrix stack

• Stack of matrices

• Top is the current matrix

• If a matrix is added it is assigned the values of the top level matrix.• If a matrix is added it is assigned the values of the top level matrix.

– glPushMatrix()

• Matrices can be discarded using glPopMatrix()

• Reduce the matrix multiplications

• Speeds up the code

• Implemented in hardware

glPushMatrix()/glPopMatrix()

Drawing in the screen buffer

• Must be cleared for every frame

• glClear(GL_COLOR_BUFFER_BIT)

• Background color

– glClearColor(red, green, blue)

• Double buffering

– Reduces flickering

– All drawing in back buffer

– Switch between front and back buffer after drawing

Projection and screen view

• The projection matrix maps model coordinates to screen coordinates

• glMatrixMode(GL_PROJECTION)

• 2D = Orthographic projection

– gluOrtho2D(left, right, top, bottom)

Initializing project matrix

// Initiate project matrix
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
// Create a 2D projection matrix
gluOrtho2D(0, width, 0, height)
// Initialize the modelview matrix to identity
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()

Viewport

• Defines where in a window the drawing is

to be done

– glViewport(x,y,width,height)

• Enables multiple views in a single window

• Must be updated when window is resized

