Ty

Graz University of Technology

[|
=;m % R '{
numsim

Numerical simulation
in technical sciences

&

PUG

Universidade
Federal
Fluminense

Color / OpenGL

Luiz Fernando Martha
André Pereira

Graz, Austria
June 2014

To Remember

Computer Graphics

Data
Processing

Visualization

>

<€

Computer
Vision

Imaging
Processing

- Geometric Modeling

- Mesh Generation

- Computational Geometry

- Visualization Techniques (Post-processing)

Development Environment

C++ penGL.

verlex array

| 10
uniform state ;0 ;0 element array
10 11,24,
— (3.2.4}
{a,2,7L
=0 ¢0 (73,50,
70

I v
\.—) vertex shader
hd

. w
triangle assembly
W

od
Microsoft*

&
Visual Studio 2008

Professional & Standard
) SourccOutine - Mcosoh Vsl Stk idmssrion) i m
A 1 & e = !
5 . 3 :_

b
rasterization
w

Broect Buld Debug Dgis Jeok Window Help
2 : » vebug

w
\—) fragment shader
b

Microsatt Cloud Computing Tosds

5.7 Mov 2008 10358 0800 - Lewm how
Winows Azure and Lve Framewark Teals

i

HModeingPoweToys
| e T
f 3 Comet <+ oo +| 5]+ 3 (] 8+ 5 9 | F)| Wogking on. e/ edBAd}e S - BB
| SEs =
| & bt Cagefalban testing and blending
i Souont. Nem by Docummertst Vil St 20611 W
preming ot S
g s S Non by Do St 20
(B el el Lo
a R 2
sy

framebuffer

Color

COLOR

How can one perceive and how to quantify the color?

COLOR

How can one perceive and how to quantify the color?

Light: radiation in a particular range of wavelengths.

traviolet shortwave
gamima X-rays 1ays infrared radar Y AM
[+ i
- o
10" 10" 102 ~10° 10° '~ 10° 1 10 10
~ . Wavelength (meters)
Visible Light o~
—— L] L]
Light of a single
wavelength is called
e monochormatic.
400 500 600 700

Wavelength (nanometers)

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Light at a single frequency

Gra nge Yellow Green Blue Indige Violet

\\R oy G. BIV//

Bright and distinct in appearance

Reproduction only,
not a real spectral color!

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Light at a single frequency

Orange Yellow Green Blue Indige Violet
\ /
\‘R oy G Bi v/
Bright and distinct in appearance

Reproduction only,
not a real spectral color!

| slightly cloudy, sun behind a cloud i
Most colors seen are a mix light of
several wavelengths . |

Curves describe spectral
CompOSition @(A) Of StimU|us aa _\\ S|I9lecloudy sun visible

cloudy, gray sky

T~ cloudless sky
cloudless sky, brlght T Ry, N

05} —

cloudless sky, sunset

cloudlgss sky, just before sunset i i I

0
400 450 500 550 600 650

700

Perception -vs- Measurement

You do not “see” the spectrum of light

Everything is Relative!

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Perception -vs- Measurement

You do not “see” the spectrum of light

Everything is Relative!

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Perception

The eye does not see intensity values...

This striking visual illusion suggests that what we
see depends more on what we expect than on any
"reality”. Desplte appearances, the shadowed
"light” square (B), and the four "dark™ squares
completely outside the shadow (such as A), are
the identical shade of gray. Not convinced?

Hold the mouse button down
to see a "paint swatch”,
and compare [t to the
various squaras on
the board.

21005, EH. Adelzan

Perception

The eye does not see intensity values...

This striking visual illusion suggests that what we
see depends more on what we expect than on any
"reality”. Desplte appearances, the shadowed
"light” square (B), and the four "dark™ squares
completely outside the shadow (such as A), are
the identical shade of gray. Not convinced?

Hold the mouse button down
to see a "paint swatch”,
and compare [t to the
various squaras on
the board.

21005, EH. Adelzan

Eyes as Sensors

Eye records color by 3 measurements
We can “fool” it with combination of 3 signals

So display devices (monitors, printers, etc.) can generate
perceivable colors as mix of 3 primaries

Response to stimulus @1 is (L1, M1, S1)

Response to stimulus @2 is (L2, M2, S2)

Then response to ®1+ P2 is (L1+L2, M1+M2, S1+S2)

Response ton ®1is (n L1, n M1, n S1)

System that obeys superposition and scaling is called a linear system

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Additive Mixing

Given three primaries we agree on p1, p2, p3

Match generic input light with ® = a p1 + B p2 + y p3
Negative not realizable, but can add primary to test light.
Color now described by a, B, vy

Example: computer monitor [R,G,B]

(A)

Primary (B)
Q Surround field

Primary
lights

Bipartite ;

white

screen

Subject
Test light Surround Test light

field

4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and
adjusts the intensities of the three primary lights to match the appearance of the test

light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to
the observer. After Judd and Wyszecki, 1975.

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Color Matching Functions

Input wavelengths are CIE 1931 monochromatic primaries

RGB color-matching function (SMJ based)
12 T T T T I

Tristimulus values

700.000 nm at 83.01x
546,100 nm at 1.48x%
— 435,800 nm at 1.00x

0.4 ! ! ! 1 1 ! !
350 400 450 500 550 600 650 700 750

Wavelength {nm)

Source: Agrawala , 2014 — Lecture Notes on Computer Graphics at UCBerkley

Color Representation

The Framebuffer Uses Additive Colors (RGB)

Red, Green, and Blue are provided. The
rest are combinations of those three.

Cyan = Green + Blue

Magenta = Red + Blue

Yellow = Red + Green

White = Red + Green + Blue # Bits/color # Intensities per color

8 28 = 256
10 210 =1024
12 212 = 4096

Bits/pixel Total colors:
24 224 =16.7M
30 230=-1B
36 2% =69 B

The Framebuffer:
Floating Point Color Storage

* 16- or 32-bit floating point for each color component

Why so much?

Many modern algorithms do arithmetic on the
framebuffer color components, or treat the
framebuffer color components as data. They need
the extra precision during the arithmetic.

However, the display system cannot display all of
those possible colors.

Displaying Color on a Plasma Monitor Displaying Color on a
Computer Graphics LCD Monitor

front plate glass

* Gas cell — : 2=
dispiz — ~ * Grid of electrodes
* Phosphor = 'l
mfface
; K discharge
._.7' . Z -..

¢ Color filters

= hosphar
¢ Grid of electrodes e

rear plate glass
& 2002 HowStuffWorks |

Source: http://electronics.howstuffworks.com

Display Resolution

* Pixel resolutions (1280x1024, 1600x1200, 1920x1152 are common on the deskiop)
+ Screen size (13", 16", 19", 21" are common)

¢ Human acuity: 1 arc-minute is achieved by viewing a 19" monitor
with 1280x1024 resolution from a distance of ~40 inches

Rasterization

* Turn screen space vertex coordinates into pixels that make up lines
and polygons

* A great place for custom electronics Allased

* Anti-aliasing is often built-in

\

Anti-Aliased

yr

Anti-aliasing is Implemented by Oversampling within Each Pixel

No AA 4x 16X

Anti-aliasing is Implemented by Oversampling within Each Pixel

el
' I

OpenGL

OpenGL

OpenGL

» Programming API (API) for hardware accelerated 2D/3D graphics

* Platform independent
» Generic

 Flexible

* Low level...

Drawing

* All drawing accomplished using 10 primitives
« Same basic principle

// Draw 4 points

glBegin(GL_POINTS)

glVertex2i(-50,-50)

glVertex2i(50,-50)

glVertex2i(50,50)

glVertex2i(-50,50)

glEnd()

v0

GL_POINTS

vi

v2

v4

v3

GL_LINES
v6

v3
vd
v0
v2 v
v4
GL_LINE_STRIP
v1

v2

v0 v3

v6 v5 v4

vO0

v6

GL_LINE_LOOP

vi

v5

v4

GL_TRIANGLES

v3 v4

v1

N

vO0 v2 v5

GL_TRIANGLE_STRIP

v2
vO v3

vi
v4

GL_TRIANGLE_FAN

v2

v1
v3

v4

v0

GL_QUADS

vi v2

v
v3

v5

v6

v4

|

GL_QUAD_STRIP

vi v3

v5

vT

v0

v2

v4

v6

v0

GL_POLYGON
vh v4
vi w2

v3

Primitive properties
* Points and lines
— Outside gIBegin()/glEnd()

— line width, glLineWidth(2.0)

— Point size

 Color

— Given on a vertex level
— Inside gIBegin()/glEnd()

— Given in RGB, where 1.0 max intensity

and 0.0 is minimum intensity

— Color is interpolated between vertices

B2 7D Graphics with OpenGL

A=k

// Set white color
glColor31(1.0, 1.0, 1.0);
// Set the line width
glLineWidth(2.0);
glBegin(GL_LINES);
glVertex2i(-1000,0);
glVertex2i(1000,0);
glVertex2i(0,-1000);
glVertex2i(0, 1000);
glEnd();

// Set point size
glPointSize(5);
glBegin(GL_POINTS);
glVertex2i(-50, -50);
glVertex2i(50, -50);
glVertex2i(50, 50);
glVertex2i(-50, 50);
glEnd();

glBegin(GL_QUADS);

glColor3f(1.0, 0.0, 0.0); // Red color
glVertex2i(-50, -50);

glColor3f(0.0, 1.0, 0.0); // Green color
glVertex2i(50, -50);

glColor3f(0.0, 0.0, 1.0); // Blue color
glVertex2i(50, 50);

glColor3f(1.0, 1.0, 0.0); // Yellow color
glVertex2i(-50, 50);

glEnd();

&2 7D Graphics with OpenGL

CEX

Geometric transformations @0 Graphicswin cpeneL. [o B
 Transformations are important in computer graphics
— Translation

— Rotation

— Scaling

* OpenGL .
— Transformation matrices implemented in hardware

— Model matrix - giMatrixMode(GL_MODELVIEW)
— Project matrix - gIMatrixMode(GL_PROJECTION)

Initialising matrices

// Initialise model view matrix to identity
glMatrixMode(GL_MODELVIEW)
glLoadldentity()

glTranslatef(40.0,40.0,0.0);
glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);

Translation glVertex2i(-20, -20);
- Translating coordinate systems glVertex2i(20,-20);
* glTranslatef(x, y, z) glVertex2i(20,20);
« Current matrix in multiplied by a glVertex2i(-20,20);

translation matrix glEnd();

Rotation

 Rotates coordinate system

« glRotatef(angle, axis_x, axis_y, axis_z)
* Right-hand rule

* Positive Z-axis out of the screen

20 raphics witr opencL. o [EX)

Rotation

 Rotates coordinate system

« glRotatef(angle, axis_x, axis_y, axis_z)
* Right-hand rule

* Positive Z-axis out of the screen

glTranslatef(40.0,40.0,0.0);
glRotatef(30.0,0.0,0.0,1.0);
glBegin(GL_QUADS);

glColor3f(1.0,1.0,1.0); ‘
glVertex2i(-20,-20);
glVertex2i(20,-20);
glVertex2i(20,20);

glVertex2i(-20,20);
glEnd();

Scaling
 Scales current coordinate system
* glScalef(scale_x, scale_y, scale z)

glTranslatef(40.0,40.0,0.0); 2D Graphics with Opendl EIBX
glRotatef(30.0,0.0,0.0,1.0);
glScalef(2.0,2.0,0.0);
glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);
glVertex2i(-20,-20);
glVertex2i(20,-20);
glVertex2i(20,20);
glVertex2i(-20,20);
glEnd();

Problem with current method

» Matrices constantly needs initialising

« Difficult implement hierarchical tranformations
* Many matrix multiplications

OpenGL Matrix stack

« Stack of matrices

* Top is the current matrix

« If a matrix is added it is assigned the values of the top level matrix.
— glPushMatrix()

» Matrices can be discarded using glPopMatrix()

» Reduce the matrix multiplications

» Speeds up the code

» Implemented in hardware

glPushMatrix()/glPopMatrix()

glPushMatrix() <
glTranslatef(40.0, 40.0, 0.0)

glRotatef(30.0, 0.0, 0.0, 1.0)

glBegin(GL_QUADS)

glColor3f(1.0, 1.0, 1.0)

glVertex2i(-20, -20)

glVertex2i(20, -20)

glVertex2i(20, 20)

glVertex2i(-20, 20) >
glEnd ()

glPopMatrix()

glPushMatrix() <€
glTranslatef(-40.0, -40.0, 0.0)
glRotatef(-30.0, 0.0, 0.0, 0)

glBegin(GL_QUADS) &2 2D Graphics with OpenGL E|g]
glColor3f(1.0, 1.0, 1.0)

glVertex2i(-20, -20)

glVertex2i(20, -20)

glVertex2i(20, 20)

glVertex2i(-20, 20) >
glEnd ()

glPopMatrix()

Drawing in the screen buffer
* Must be cleared for every frame
* glClear(GL_COLOR_BUFFER_BIT)
» Background color
— glClearColor(red, green, blue)
 Double buffering
— Reduces flickering
— All drawing in back buffer
— Switch between front and back buffer after drawing

Projection and screen view
 The projection matrix maps model coordinates to screen coordinates
» gIMatrixMode(GL_PROJECTION)
2D = Orthographic projection
— gluOrtho2D(left, right, top, bottom)

Initializing project matrix

/I Initiate project matrix
glMatrixMode(GL_PROJECTION)
glLoadldentity()

// Create a 2D projection matrix
gluOrtho2D(0, width, 0, height)

// Initialize the modelview matrix to identity
glMatrixMode(GL_MODELVIEW)
glLoadldentity()

Viewport

* Defines where in a window the drawing is
to be done

— glViewport(x,y,width,height)

» Enables multiple views in a single window

» Must be updated when window is resized

