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ABSTRACT 

This paper extends a previously proposed algorithm for the intersection of finite-element surface meshes. The new version of the 
algorithm treats special cases of multiple intersections that were not dealt with in the original version. This paper also describes a 
class library, in the context of Object Oriented Programming, for the generic handling of several types of surface geometry. This 
library is incorporated to a geometric modeler, allowing its use for modeling complex models. 
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1. INTRODUCTION 

Geometric modeling [1] and finite-element analysis [2] are 
important topics in the process of simulating Engineering 
problems, especially when the analytic solution is unknown 
or difficult to obtain (see, for example, Figure 1). 

In geometric modeling, a way to build complex models 
consists in combining several simple surface patches 
constructed individually. This requires intersecting surface 
patches and trimming off exceeding patches resulting from 
surface intersection. When this modeling technique is 
adopted, the intersection problem between two surface 
patches becomes a very important issue and must be treated 
in an efficient and robust manner. 

In realistic Engineering modeling, few cases of surface 
intersection can be analytically solved. The practical 
solution is to treat surface intersection by means of 
numerical techniques. 

Numerical techniques belong to two basic types: marching 
and subdivision methods. The marching methods, also 
called continuation methods, compute intersection curves 
in three dimensions by marching in the direction of its 
tangent vector or higher derivatives to obtain points along 
the curve [3-5]. The subdivision (or decomposition) method 
computes trimming curves in two-dimensional parametric 
space by recursively refining the solution at each step [6]. 

 

 

 

Figure 1.  An example of complex geometric 
modeling. 



In the context of finite-element modeling, not only surface 
intersection is important, but also mesh generation on the 
intercepted surfaces must be considered. One additional 
requirement is that finite-element meshes be compatible 
among the several surface patches. This means that a mesh 
generated on a surface patch has to conform to the mesh 
generated on adjacent patches. 

Figure 2 shows an example of a compatible finite-element 
mesh that was generated using the methodology adopted in 
this work (note that only local modification were made to 
the original cylinders’ meshes). 

Several solutions for the surface-intersection problem work 
relatively well in many practical cases, but few consider the 
problem of compatible meshes. An exception is the work 
by Lo [7], which presents a simple algorithm for triangular-
mesh intersection that automatically redefines the triangles, 
adapting them to the intersection curves detected. However, 
this solution works directly with the intercepting meshes 
and does not use any sort of surface parametric 
representation. This means that intersection points may not 
be located on the original surfaces, which is a serious 
drawback, especially in the case of multiple intersections. 

 

 

Figure 2.  Compatible finite-element surface 
meshes. 

 
The present paper extends a previously proposed algorithm 
[8] for the intersection of finite-element surface meshes that 
integrates the problem of parametric-surface intersection 
with mesh compatibility at intersection curves. The 
algorithm generates surface elements resulting from 
intersections with improved geometric quality, suitable for 
finite-element analysis. This new version of the algorithm 
treats special cases of multiple intersections that were not 
dealt with in the original version, due to geometrical and 
topological problems. 

This algorithm is actually a scheme for parametric-surface 
intersection in which existing surface meshes are used as a 
support for the definition of accurate intersection curves. 
The geometric representations of the intersection curves 

consist of B-splines defined by interpolation points that 
result from the intersection of the existing meshes and that 
are numerically relaxed to the surfaces. In this sense, 
intersection curves are defined in a discrete fashion, as 
opposed to representing them analytically. This discrete 
scheme avoids certain problems experienced by most 
modelers, such as inconsistencies between parametric 
representations of a point in the intersection of two or more 
surface patches. 

The searches required for computing the intersection curves 
and for re-meshing the surfaces are supported by an 
auxiliary topological data structure whose main feature is 
that topological entities are stored in spatial-indexing trees, 
instead of linked lists. These spatial-indexing structures 
play a major role in the overall efficiency of the algorithm. 
The auxiliary data structure is defined in the parametric 
space of each intersecting surface and is also used to locally 
re-mesh the intersecting surface meshes. 

However, the original version of this algorithm did not treat 
some special cases of surface intersection that may arise in 
multiple intersections. These cases, despite being 
seemingly simple, are very useful in practical finite-
element surface modeling. For example, the original 
version of the algorithm did not handle situations in which 
intersection curves defined at a previous step of the 
modeling are intercepted by other surfaces. 

Therefore, the purpose of this work is to present an 
extended version of this surface-mesh intersection 
algorithm, treating special cases that were not considered in 
its original version. In this new version, the methodology of 
the original algorithm and its central ideas have not been 
modified. 

This work also presents a class organization, in the context 
of Object-Oriented Programming (OOP), of the data 
structure used in the surface-intersection algorithm. The 
main goal of this implementation is the generic handling of 
several types of surface geometry. In addition, this allows 
the use of the proposed algorithm by any geometric 
modeler. The requirements for the generic use of this 
library are that surfaces have two-dimensional parametric 
representations and that an initial finite-element mesh be 
defined on each surface. 

This methodology could be implemented using currently 
available solid-modeling libraries, such as ACIS [9], 
Parasolids [10], Open CASCADE [11] and 
Pro/ENGINEER API Toolkit [12]. These libraries provide 
topological and geometric representations as well as 
Application Program Interface (API) functions, which are 
necessary for this type of modeling. However, they are 
expensive, include a large number of classes, and have long 
APIs. 

Seeking to tackle these issues, the authors of the present 
paper have been involved for the last decade in the 
development of a modeling tool, called MG [8,13], which 
may also provide an appropriate environment for the 
implementation of the target methodology. One key aspect 
in this methodology is the integration of geometric 
modeling and automatic/adaptive finite-element mesh 
generation. This integration provides a consistent 



conversion between the geometric model and the finite-
element representation, and allows a fast prototyping of 
new concepts using relatively small pieces of software. 

Section 2 summarizes the original algorithm for surface-
mesh intersection. Section 3 describes the modifications in 
the algorithm for treating multiple intersections. In Section 
4, the OOP class library is detailed. Section 5 provides 
application examples created by the MG modeler. Finally, 
Section 6 shows the conclusions of this work. 

 

2. ORIGINAL ALGORITHM FOR SURFACE-
MESH INTERSECTION 

The surface-intersection algorithm proposed by Coelho [8] 
to perform the intersection between two parametric surface 
patches with meshes, A and B, computes the intersection 
curves and the new compatible meshes in three basic steps: 

I. Determination of the intersection points: 
a. Compute and store the intersections of edges in A 

against faces in B; 
b. Compute and store the intersections of edges in B 

against faces in A. 
II. Determination of the trimming curves: 

a. Link intersection points into polygonal lines 
representing the trimming curves; 

b. Interpolate parametric curves through polygonal 
line points; 

c. Compute new points with proper spacing on these 
curves; 

d. Move these new points onto each surface. 
III. Topology reconstruction: 

a. Determine the trimming regions by removing 
vertices and edges near the trimming curves; 

b. Insert new edges over the trimming curves using 
the new points defined in Step II; 

c. Triangulate the trimming regions on both surfaces; 
d. Smoothen both meshes using original parametric 

descriptions. 

A detailed description of the original version of the 
algorithm summarized in this section and of the 
methodology used by it can be seen in the original work by 
Coelho [8]. 

2.1 Determination of Intersection Points  
To avoid testing all edges against all faces in Step I, the 
topological entities are stored in spatial-indexing trees. As 
edges and faces are curved in 3D space, it is necessary to 
use numerical procedures to determine the intersection 
points. At the end of Step I, edges in one mesh are paired 
with the faces they intersect on the other mesh, and vice-
versa. For each edge/face pair, the parametric coordinates 
of intersection points are also stored. In the edges, this 
information is stored in a field called intersection, which is 
used to determine the trimming curves and to rebuild the 
topology. This field is the key to link both surfaces’ data 
structure. 

2.2 Determination of the Trimming Curves 
In Step II, the trimming curves in parametric space are 
computed by linking and interpolating the intersection 
points obtained in Step I. The intersection curves are first 
obtained as polygonal lines, connecting the intersection 
points to produce polylines. To convert the polylines into 
continuous intersection curves, a piecewise cubic 
interpolation is performed. 

After interpolation, the intersection curves are sampled to 
obtain uniformly spaced points, with spacing proportional 
to the size of the edges in the initial mesh. The sample 
points define the vertices on the intersection curves in the 
combined mesh. Although the interpolation points lie on 
both surfaces, the new sample points may not, and they 
must be translated back onto the surfaces by means of a 
procedure similar to the one used in Step I. The 
convergence is much faster in this case, due to the 
proximity of the starting positions. As a by-product, the 
parameter values for the sample points are also obtained. 

2.3 Topology Reconstruction  
In Step III-a, the trimming regions are identified. These 
regions are the faces of the topological data structure 
generated by the elimination of some edges. Step III-b 
consists of inserting edges that represent the trimming 
curves. In Step III-c, the trimming regions generated in 
Step III-b are triangulated using geometric approaches that 
guarantee mesh consistency. 

To improve the shape quality of the faces generated by the 
intersection step, a smoothing technique is applied in Step 
III-d, where the parametric coordinates of each vertex are 
modified by an average between the adjacent coordinates. 
Boundary and trimming vertices are never moved during 
smoothing. 

2.4 The Intersection Data Structure 
A variant of the DCEL data structure [14], extended to link 
two surface finite-element meshes, is used to store surface 
patches. This data structure was also extended in the 
original version of the algorithm to handle topologies of 
curved elements, storing topological entities (vertices, 
edges and faces) in trees, instead of linked list or vectors. 
The use of trees allows for fast solutions to the searches 
necessary for the initial mesh assembly and for mesh 
reconstruction. The modified DCEL data structure is shown 
in Figure 3. 

Vertices and edges are stored in B-trees [15], while faces 
are stored in R*-trees [16]. The vertices are inserted in a B-
tree that searches points by their parametric coordinates. 

The edges, which are considered straight in parametric 
space, connect pairs of vertices. Edges are oriented from 
the vertex with the smallest index to the vertex with the 
greatest index, and are stored in a B-tree that has these 
indices as search keys, as in the vertex B-tree. 

The faces are inserted into an R*-tree that uses their 3D 
bounding boxes as keys [17]. 
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Figure 3.  Modified DCEL data structure. 

As previously mentioned, the edges and faces contain 
intersection fields used to determine the trimming curves. 
These fields are also the key to the topological 
reconstruction of two DCELs resulting from intersection. 
The geometric information of each intersection point is 
stored in pairs (uf,vf) and (ue,ve) in the intersection field. 

 

3. MULTIPLE INTERSECTION 

The original version of the current algorithm treats several 
cases of intersection between two surface patches. 
However, in the modeling of realistic Engineering 
problems, intersections of more than two patches must also 
be treated. The solution to this problem still uses the pair-
wise surface intersection approach of the original 
algorithm. New information is added to the modeling 
process to consistently treat previous intersections. Figure 4 
illustrates the approach adopted for multiple intersections. 
The intersection of three surfaces (A, B, and C) is 
considered (Figure 4-a). In the first step (Figure 4-b), the 
modeler intercepts surfaces A and B. In the next step 
(Figure 4-c), surface C intercepts surface A, which in this 
case is modified by the previous intersection. Finally, 
surface C intercepts the modified surface B (Figure 4-d). 

This section describes the accomplished modifications in 
the computational implementation of the algorithm, with 
the purpose of treating multiple intersections. 

A special case dealt with in this work, and shown in Figure 
5, refers to situations where an edge e1 of surface Sa 
intercepts exactly an edge e2 of surface Sb. As mentioned 
in the previous section, in Step I of the original algorithm 
the intersection field of edge e1 was filled only with one 
face of Sb (in this case, face Sb1 or Sb2), and vice-versa. In 
Step II, this field is used to link two topological data 
structures. This linking is used in the computation of 
intersection curves, traversing the intercepted faces in Sa 
and spreading the intersections by adjacent faces and 
intercepted edges, identified by the intersection fields. 
Since each intersection field stored only an edge or face at 

a time, a situation could occur in which it was not possible 
to determine the intersection curves in Step II – that is, 
some edges or faces of the data structure could not be 
traversed by the algorithm. In this case, there was no 
guarantee that the intersection algorithm would reach the 
desired result. 

 

Surface C 

Surface A 

Surface B 

(a)

(b)

(c)

(d)

 

Figure 4.  Pair-wise approach adopted for multiple 
intersections. 
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Figure 5.  Special case: edge/edge intersection. 

 

The solution to this problem is achieved by modifying the 
intersection field associated to edge entities of the 
topological data structure. This field no longer stores only a 
face intercepted by it. In this new implementation, this field 
stores a list with all faces intercepted by the edge, thus 
preventing some faces from not being traversed in Step II 
of the algorithm. Figure 6 illustrates a typical example in 
which an edge/edge intersection occurs and presents the 
resulting mesh consistently treated by the new version of 
the algorithm. 

 

 

 

 

 

 

Figure 6.  Example of mesh with  
edge/edge intersection. 

 

A similar problem happens when an edge of a surface 
intercepts exactly a vertex on the other surface. The 
solution adopted for this problem is the same considered in 
the case of edge/edge intersection. 

Another special case considered by the new version of the 
surface-intersection algorithm refers to situations in which 
the obtained intersection curve crosses other previously 
defined intersection curves. This case is complex because, 
in the generation of trimming regions, edges and vertices 
on previously defined intersection curves could be 
removed, which is not desirable. 

The modification in the original algorithm to solve this 
problem consists in verifying, between Steps II and III, 
whether the intersection curve crosses previous intersection 
edges or vertices. When this occurs, the existing edges, 
rather then being removed, are just split. Figure 7 illustrates 
this special case. 

In the modeling approach used in this work, the creation of 
complex geometric models requires the combination of 
several simple surface patches constructed one by one. In 
this case, the meshes obtained from the intersection 
between two surface patches could be inconsistent with a 
mesh on a third surface patch adjacent to the intercepted 
meshes, as can be seen in Figure 8. 

To avoid this situation, the new version of the surface-
intersection algorithm allows the automatic reconstruction 
of meshes on adjacent surface patches (see Figure 9). This 
is made using the same topological data structure presented 
above, with some adaptations. Steps I and II of the 
algorithm are not used, because it is not necessary to 
compute the intersection points and trimming curves. These 
steps are replaced by a procedure that inserts in the data 
structure the trimming curve points generated by the 
intersection of the two surfaces and that touch adjacent 
surfaces. In Figure 8, there is only one intersection point, 
Pi, that touches the adjacent surface, C. Two cases can 
occur: either the inserted point corresponds to a vertex 
already defined or the inserted point is on an edge. In the 
first case, the edges that frame into this vertex are removed, 
except for the constrained or boundary edges. In the second 
case, as in Figure 8, an edge is split. 
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Previous  
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Figure 7.  Example where a new intersection curve 
crosses a previously defined intersection curve. 

 



Step III of the algorithm was adapted to perform the 
triangulation of the new regions obtained. Only Steps III-c 
and III-d are used because, in this case, there is no 
trimming curve and the region to be meshed is already 
identified. 
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surface: the problem. 
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Figure 9.  Rebuilding the mesh of an adjacent 
surface: the solution. 

 

4. OOP CLASS LIBRARY 

The surface-intersection algorithm described in previous 
sections was implemented as an OOP class library using 
the programming language C++. Treating the algorithm as 
a library allows its easy use by a great amount of geometric 
modelers. There are two requirements to incorporate this 
class library into a modeler: parametric representation of 
surfaces and the definition of finite-element meshes on 
surfaces. 

The class structure adopted is relatively simple. Its classes 
are shown in Figure 10, which also illustrates the 
communication flux between the class objects. There are 
classes whose objects represent each of the topological 
entities of the data structure. The dcelVertex, dcelEdge and 

dcelFace classes describe, respectively, vertices, edges and 
faces in the data structure. 
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Figure 10.  Communication flux between the 
classes of the library. 

 

Methods of the dcel class perform the overall control of the 
algorithm. The dcelTrimming class is responsible for 
constructing trimming curves (Step II), while the 
dcelTriangulate class is responsible for rebuilding the 
finite-element mesh (Step III). 

The dcelClient class is very important in this organization, 
because it is in charge of the communication between the 
library and the modeler. It describes the generic methods 
that should be overloaded by the modeler. This is the only 
task that the modeler programmer should perform to 
incorporate the class library into the modeler. The generic 
methods are described as follows: 

•  getParametricMesh: this method gets an input 
surface mesh that is converted into the topological 
data structure used by the algorithm. It is called in 
the beginning of the surface-intersection process. 

•  getConstraint: this method gets surface-mesh 
constraints; for example, edges on intersection curves 
obtained in a previous step. It is called in the 
beginning of the surface-intersection process. 

•  evalSurface: given a parametric coordinate, this 
method computes the respective 3D coordinates and 
their partial derivatives. It is called during the whole 
surface-intersection process. 

•  closestSurfacePoint: given a surface 3D point, this 
method determines the correspondent parametric 
coordinates. It is called during the whole surface-
intersection process. 

•  getTrimmingCurve: given a set of interpolation 
points defined by the algorithm along a trimming 
curve, this method gets a reference of a parametric 
representation of this curve defined by the modeler. 

•  getCurveSub: given a (trimming) curve and a 
characteristic size, this method computes equally-
spaced points along the curve. This characteristic size 
is defined by an average value of the sizes of 
intercepted edges in the input meshes. 

•  newPatchMeshes: for each input surface, this method 
passes the modeler a set of patch meshes resulting 
from the intersection algorithm. 



5. APPLICATION EXAMPLES 

To validate the ideas presented and to verify the robustness 
and efficiency of the extended algorithm described in this 
paper, the class library was incorporated to the MG 
modeler [8,13], increasing its ability of modeling complex 
Engineering problems. To illustrate its new capabilities, 
this section presents some modeling examples. 

The first example is the modeling of two cylinders, one 
intercepting the other. Figure 11 shows the original surface 
meshes, while Figure 12 presents the meshes resulting from 
surface intersection. In Figure 13, some surface patches 
resulting from the intersection were removed, showing 
MG’s ability to generate models from the composition of 
several modeling components. 

Figures 14 to 16 illustrate the intersection of a torus model 
with a cylinder model. Figure 16 shows the complex 
intersection curve obtained by the algorithm. 

 

 

Figure 11.  Original surface meshes of two 
cylinders that intercept each other. 

 

 

Figure 12.  Meshes resulting from the surface 
intersection of two cylinders. 

 

 
 

Figure 13.  Final mesh of two-cylinder model after 
removing some patches. 

 

 
Figure 14.  Torus and cylinder meshes before 

surface intersection. 

 
Figure 15.  Mesh after intersection of torus and 

cylinder models. 



 
Figure 16.  Curve resulting from torus and 

cylinder intersection. 

 

The final example was created to demonstrate the ability of 
the present intersection algorithm to treat singular points 
resulting from the intersection of two surfaces. Figure 17 
shows the original meshes of two identical cylinder surface 
patches with a relative rotation about a vertical axis. Figure 
18 depicts the final mesh after intersection and Figure 19 
illustrates the surface-patch boundaries and the intersection 
curves. 

 

 

Figure 17.  Two-cylinder model: surfaces before 
intersection. 

 

 

Figure 18.  Two-cylinder model: mesh resulting 
from surface intersection. 

 

 

Figure 19.  Two-cylinder model: surface-patch 
boundaries and intersection curves. 

 

6. CONCLUSION 

This work has described procedures to compute multiple 
intersections of finite-element surface meshes. These 
procedures are based on an extended version of a 
previously proposed surface-mesh intersection algorithm 
[8], treating special cases that had not been considered in 



its original version, specially the intersections of more than 
two surfaces. 

This work has also presented a class organization, in the 
context of OOP, of the data structure used in the surface-
intersection algorithm, allowing its incorporation by any 
geometric modeler. This class organization also allows the 
generic handling of several types of surface geometry. 

The integration of the presented class organization with any 
modeler is relatively simple. For such, it is only necessary 
to re-write generic methods defined in the class 
organization. To verify the validity of the proposal here 
presented, the class organization was incorporated to the 
MG modeler, increasing its capabilities of modeling 
surfaces with multiple intersections. Some examples using 
MG were shown to illustrate these capabilities. 
The new elements generated by the intersections are very 
well shaped after the smoothing process of the original 
algorithm. An idea to further reduce the number of sliver 
facets that can still remain at the boundaries of the patches 
is to move the vertices along the curves, respecting only 
corners points. However, this has not been implemented 
yet. 
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