
MULTIPLE INTERSECTIONS OF FINITE-ELEMENT SURFACE MESHES

William M. Lira 1, Luiz C. G. Coelho2, Luiz F. Martha3
1Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil - william@tecgraf.puc-rio.br

2Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil - lula@tecgraf.puc-rio.br
3Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil - lfm@tecgraf.puc-rio.br

ABSTRACT

This paper extends a previously proposed algorithm for the intersection of finite-element surface meshes. The new version of the
algorithm treats special cases of multiple intersections that were not dealt with in the original version. This paper also describes a
class library, in the context of Object Oriented Programming, for the generic handling of several types of surface geometry. This
library is incorporated to a geometric modeler, allowing its use for modeling complex models.

Keywords: finite-element surface meshes, multiple intersections, parametric surfaces

1. INTRODUCTION

Geometric modeling [1] and finite-element analysis [2] are
important topics in the process of simulating Engineering
problems, especially when the analytic solution is unknown
or difficult to obtain (see, for example, Figure 1).

In geometric modeling, a way to build complex models
consists in combining several simple surface patches
constructed individually. This requires intersecting surface
patches and trimming off exceeding patches resulting from
surface intersection. When this modeling technique is
adopted, the intersection problem between two surface
patches becomes a very important issue and must be treated
in an efficient and robust manner.

In realistic Engineering modeling, few cases of surface
intersection can be analytically solved. The practical
solution is to treat surface intersection by means of
numerical techniques.

Numerical techniques belong to two basic types: marching
and subdivision methods. The marching methods, also
called continuation methods, compute intersection curves
in three dimensions by marching in the direction of its
tangent vector or higher derivatives to obtain points along
the curve [3-5]. The subdivision (or decomposition) method
computes trimming curves in two-dimensional parametric
space by recursively refining the solution at each step [6].

Figure 1. An example of complex geometric
modeling.

In the context of finite-element modeling, not only surface
intersection is important, but also mesh generation on the
intercepted surfaces must be considered. One additional
requirement is that finite-element meshes be compatible
among the several surface patches. This means that a mesh
generated on a surface patch has to conform to the mesh
generated on adjacent patches.

Figure 2 shows an example of a compatible finite-element
mesh that was generated using the methodology adopted in
this work (note that only local modification were made to
the original cylinders’ meshes).

Several solutions for the surface-intersection problem work
relatively well in many practical cases, but few consider the
problem of compatible meshes. An exception is the work
by Lo [7], which presents a simple algorithm for triangular-
mesh intersection that automatically redefines the triangles,
adapting them to the intersection curves detected. However,
this solution works directly with the intercepting meshes
and does not use any sort of surface parametric
representation. This means that intersection points may not
be located on the original surfaces, which is a serious
drawback, especially in the case of multiple intersections.

Figure 2. Compatible finite-element surface
meshes.

The present paper extends a previously proposed algorithm
[8] for the intersection of finite-element surface meshes that
integrates the problem of parametric-surface intersection
with mesh compatibility at intersection curves. The
algorithm generates surface elements resulting from
intersections with improved geometric quality, suitable for
finite-element analysis. This new version of the algorithm
treats special cases of multiple intersections that were not
dealt with in the original version, due to geometrical and
topological problems.

This algorithm is actually a scheme for parametric-surface
intersection in which existing surface meshes are used as a
support for the definition of accurate intersection curves.
The geometric representations of the intersection curves

consist of B-splines defined by interpolation points that
result from the intersection of the existing meshes and that
are numerically relaxed to the surfaces. In this sense,
intersection curves are defined in a discrete fashion, as
opposed to representing them analytically. This discrete
scheme avoids certain problems experienced by most
modelers, such as inconsistencies between parametric
representations of a point in the intersection of two or more
surface patches.

The searches required for computing the intersection curves
and for re-meshing the surfaces are supported by an
auxiliary topological data structure whose main feature is
that topological entities are stored in spatial-indexing trees,
instead of linked lists. These spatial-indexing structures
play a major role in the overall efficiency of the algorithm.
The auxiliary data structure is defined in the parametric
space of each intersecting surface and is also used to locally
re-mesh the intersecting surface meshes.

However, the original version of this algorithm did not treat
some special cases of surface intersection that may arise in
multiple intersections. These cases, despite being
seemingly simple, are very useful in practical finite-
element surface modeling. For example, the original
version of the algorithm did not handle situations in which
intersection curves defined at a previous step of the
modeling are intercepted by other surfaces.

Therefore, the purpose of this work is to present an
extended version of this surface-mesh intersection
algorithm, treating special cases that were not considered in
its original version. In this new version, the methodology of
the original algorithm and its central ideas have not been
modified.

This work also presents a class organization, in the context
of Object-Oriented Programming (OOP), of the data
structure used in the surface-intersection algorithm. The
main goal of this implementation is the generic handling of
several types of surface geometry. In addition, this allows
the use of the proposed algorithm by any geometric
modeler. The requirements for the generic use of this
library are that surfaces have two-dimensional parametric
representations and that an initial finite-element mesh be
defined on each surface.

This methodology could be implemented using currently
available solid-modeling libraries, such as ACIS [9],
Parasolids [10], Open CASCADE [11] and
Pro/ENGINEER API Toolkit [12]. These libraries provide
topological and geometric representations as well as
Application Program Interface (API) functions, which are
necessary for this type of modeling. However, they are
expensive, include a large number of classes, and have long
APIs.

Seeking to tackle these issues, the authors of the present
paper have been involved for the last decade in the
development of a modeling tool, called MG [8,13], which
may also provide an appropriate environment for the
implementation of the target methodology. One key aspect
in this methodology is the integration of geometric
modeling and automatic/adaptive finite-element mesh
generation. This integration provides a consistent

conversion between the geometric model and the finite-
element representation, and allows a fast prototyping of
new concepts using relatively small pieces of software.

Section 2 summarizes the original algorithm for surface-
mesh intersection. Section 3 describes the modifications in
the algorithm for treating multiple intersections. In Section
4, the OOP class library is detailed. Section 5 provides
application examples created by the MG modeler. Finally,
Section 6 shows the conclusions of this work.

2. ORIGINAL ALGORITHM FOR SURFACE-
MESH INTERSECTION

The surface-intersection algorithm proposed by Coelho [8]
to perform the intersection between two parametric surface
patches with meshes, A and B, computes the intersection
curves and the new compatible meshes in three basic steps:

I. Determination of the intersection points:
a. Compute and store the intersections of edges in A

against faces in B;
b. Compute and store the intersections of edges in B

against faces in A.
II. Determination of the trimming curves:

a. Link intersection points into polygonal lines
representing the trimming curves;

b. Interpolate parametric curves through polygonal
line points;

c. Compute new points with proper spacing on these
curves;

d. Move these new points onto each surface.
III. Topology reconstruction:

a. Determine the trimming regions by removing
vertices and edges near the trimming curves;

b. Insert new edges over the trimming curves using
the new points defined in Step II;

c. Triangulate the trimming regions on both surfaces;
d. Smoothen both meshes using original parametric

descriptions.

A detailed description of the original version of the
algorithm summarized in this section and of the
methodology used by it can be seen in the original work by
Coelho [8].

2.1 Determination of Intersection Points
To avoid testing all edges against all faces in Step I, the
topological entities are stored in spatial-indexing trees. As
edges and faces are curved in 3D space, it is necessary to
use numerical procedures to determine the intersection
points. At the end of Step I, edges in one mesh are paired
with the faces they intersect on the other mesh, and vice-
versa. For each edge/face pair, the parametric coordinates
of intersection points are also stored. In the edges, this
information is stored in a field called intersection, which is
used to determine the trimming curves and to rebuild the
topology. This field is the key to link both surfaces’ data
structure.

2.2 Determination of the Trimming Curves
In Step II, the trimming curves in parametric space are
computed by linking and interpolating the intersection
points obtained in Step I. The intersection curves are first
obtained as polygonal lines, connecting the intersection
points to produce polylines. To convert the polylines into
continuous intersection curves, a piecewise cubic
interpolation is performed.

After interpolation, the intersection curves are sampled to
obtain uniformly spaced points, with spacing proportional
to the size of the edges in the initial mesh. The sample
points define the vertices on the intersection curves in the
combined mesh. Although the interpolation points lie on
both surfaces, the new sample points may not, and they
must be translated back onto the surfaces by means of a
procedure similar to the one used in Step I. The
convergence is much faster in this case, due to the
proximity of the starting positions. As a by-product, the
parameter values for the sample points are also obtained.

2.3 Topology Reconstruction
In Step III-a, the trimming regions are identified. These
regions are the faces of the topological data structure
generated by the elimination of some edges. Step III-b
consists of inserting edges that represent the trimming
curves. In Step III-c, the trimming regions generated in
Step III-b are triangulated using geometric approaches that
guarantee mesh consistency.

To improve the shape quality of the faces generated by the
intersection step, a smoothing technique is applied in Step
III-d, where the parametric coordinates of each vertex are
modified by an average between the adjacent coordinates.
Boundary and trimming vertices are never moved during
smoothing.

2.4 The Intersection Data Structure
A variant of the DCEL data structure [14], extended to link
two surface finite-element meshes, is used to store surface
patches. This data structure was also extended in the
original version of the algorithm to handle topologies of
curved elements, storing topological entities (vertices,
edges and faces) in trees, instead of linked list or vectors.
The use of trees allows for fast solutions to the searches
necessary for the initial mesh assembly and for mesh
reconstruction. The modified DCEL data structure is shown
in Figure 3.

Vertices and edges are stored in B-trees [15], while faces
are stored in R*-trees [16]. The vertices are inserted in a B-
tree that searches points by their parametric coordinates.

The edges, which are considered straight in parametric
space, connect pairs of vertices. Edges are oriented from
the vertex with the smallest index to the vertex with the
greatest index, and are stored in a B-tree that has these
indices as search keys, as in the vertex B-tree.

The faces are inserted into an R*-tree that uses their 3D
bounding boxes as keys [17].

E0 E3

E1E2

V1

V0

F1F0

Edge
V0 V1
E0 E1
F0 F1

trimming
surface

Intersection
face
uf uf t

Surface
Vertices
Edges

Infinity Face

Face
edge

Intersection
edge
ue ue

Vertex
u v
edge

E0 E3

E1E2

V1

V0

F1F0

Edge
V0 V1
E0 E1
F0 F1

trimming
surface

Intersection
face
uf uf t

Surface
Vertices
Edges

Infinity Face

Face
edge

Intersection
edge
ue ue

Vertex
u v
edge

Figure 3. Modified DCEL data structure.

As previously mentioned, the edges and faces contain
intersection fields used to determine the trimming curves.
These fields are also the key to the topological
reconstruction of two DCELs resulting from intersection.
The geometric information of each intersection point is
stored in pairs (uf,vf) and (ue,ve) in the intersection field.

3. MULTIPLE INTERSECTION

The original version of the current algorithm treats several
cases of intersection between two surface patches.
However, in the modeling of realistic Engineering
problems, intersections of more than two patches must also
be treated. The solution to this problem still uses the pair-
wise surface intersection approach of the original
algorithm. New information is added to the modeling
process to consistently treat previous intersections. Figure 4
illustrates the approach adopted for multiple intersections.
The intersection of three surfaces (A, B, and C) is
considered (Figure 4-a). In the first step (Figure 4-b), the
modeler intercepts surfaces A and B. In the next step
(Figure 4-c), surface C intercepts surface A, which in this
case is modified by the previous intersection. Finally,
surface C intercepts the modified surface B (Figure 4-d).

This section describes the accomplished modifications in
the computational implementation of the algorithm, with
the purpose of treating multiple intersections.

A special case dealt with in this work, and shown in Figure
5, refers to situations where an edge e1 of surface Sa
intercepts exactly an edge e2 of surface Sb. As mentioned
in the previous section, in Step I of the original algorithm
the intersection field of edge e1 was filled only with one
face of Sb (in this case, face Sb1 or Sb2), and vice-versa. In
Step II, this field is used to link two topological data
structures. This linking is used in the computation of
intersection curves, traversing the intercepted faces in Sa
and spreading the intersections by adjacent faces and
intercepted edges, identified by the intersection fields.
Since each intersection field stored only an edge or face at

a time, a situation could occur in which it was not possible
to determine the intersection curves in Step II – that is,
some edges or faces of the data structure could not be
traversed by the algorithm. In this case, there was no
guarantee that the intersection algorithm would reach the
desired result.

Surface C

Surface A

Surface B

(a)

(b)

(c)

(d)

Figure 4. Pair-wise approach adopted for multiple
intersections.

Sa1 Sa2

Sb1

Sb2

Va

Vc

Vb

Vd

e1

e2

Sa

Sb

Sa1 Sa2

Sb1

Sb2

Va

Vc

Vb

Vd

e1

e2

Sa

Sb

Figure 5. Special case: edge/edge intersection.

The solution to this problem is achieved by modifying the
intersection field associated to edge entities of the
topological data structure. This field no longer stores only a
face intercepted by it. In this new implementation, this field
stores a list with all faces intercepted by the edge, thus
preventing some faces from not being traversed in Step II
of the algorithm. Figure 6 illustrates a typical example in
which an edge/edge intersection occurs and presents the
resulting mesh consistently treated by the new version of
the algorithm.

Figure 6. Example of mesh with
edge/edge intersection.

A similar problem happens when an edge of a surface
intercepts exactly a vertex on the other surface. The
solution adopted for this problem is the same considered in
the case of edge/edge intersection.

Another special case considered by the new version of the
surface-intersection algorithm refers to situations in which
the obtained intersection curve crosses other previously
defined intersection curves. This case is complex because,
in the generation of trimming regions, edges and vertices
on previously defined intersection curves could be
removed, which is not desirable.

The modification in the original algorithm to solve this
problem consists in verifying, between Steps II and III,
whether the intersection curve crosses previous intersection
edges or vertices. When this occurs, the existing edges,
rather then being removed, are just split. Figure 7 illustrates
this special case.

In the modeling approach used in this work, the creation of
complex geometric models requires the combination of
several simple surface patches constructed one by one. In
this case, the meshes obtained from the intersection
between two surface patches could be inconsistent with a
mesh on a third surface patch adjacent to the intercepted
meshes, as can be seen in Figure 8.

To avoid this situation, the new version of the surface-
intersection algorithm allows the automatic reconstruction
of meshes on adjacent surface patches (see Figure 9). This
is made using the same topological data structure presented
above, with some adaptations. Steps I and II of the
algorithm are not used, because it is not necessary to
compute the intersection points and trimming curves. These
steps are replaced by a procedure that inserts in the data
structure the trimming curve points generated by the
intersection of the two surfaces and that touch adjacent
surfaces. In Figure 8, there is only one intersection point,
Pi, that touches the adjacent surface, C. Two cases can
occur: either the inserted point corresponds to a vertex
already defined or the inserted point is on an edge. In the
first case, the edges that frame into this vertex are removed,
except for the constrained or boundary edges. In the second
case, as in Figure 8, an edge is split.

New intersection curve

Previous
intersection curve

Figure 7. Example where a new intersection curve
crosses a previously defined intersection curve.

Step III of the algorithm was adapted to perform the
triangulation of the new regions obtained. Only Steps III-c
and III-d are used because, in this case, there is no
trimming curve and the region to be meshed is already
identified.

Surface B

Surface A Surface C

Pi

Surface B

Surface A Surface C

Pi

Surface B

Surface A Surface C

Pi

Surface B

Surface A Surface C

Pi
Figure 8. Rebuilding the mesh of an adjacent

surface: the problem.

Surface B

Surface A Surface C

Surface B

Surface A Surface C

Surface B

Surface A Surface C

Surface B

Surface A Surface C

Figure 9. Rebuilding the mesh of an adjacent
surface: the solution.

4. OOP CLASS LIBRARY

The surface-intersection algorithm described in previous
sections was implemented as an OOP class library using
the programming language C++. Treating the algorithm as
a library allows its easy use by a great amount of geometric
modelers. There are two requirements to incorporate this
class library into a modeler: parametric representation of
surfaces and the definition of finite-element meshes on
surfaces.

The class structure adopted is relatively simple. Its classes
are shown in Figure 10, which also illustrates the
communication flux between the class objects. There are
classes whose objects represent each of the topological
entities of the data structure. The dcelVertex, dcelEdge and

dcelFace classes describe, respectively, vertices, edges and
faces in the data structure.

dcel

dcelTrimming

dcelTriangulate

dcelVertex

dcelEdge

dcelFace

dcelClientdcel

dcelTrimming

dcelTriangulate

dcelVertex

dcelEdge

dcelFace

dcelClient

Figure 10. Communication flux between the
classes of the library.

Methods of the dcel class perform the overall control of the
algorithm. The dcelTrimming class is responsible for
constructing trimming curves (Step II), while the
dcelTriangulate class is responsible for rebuilding the
finite-element mesh (Step III).

The dcelClient class is very important in this organization,
because it is in charge of the communication between the
library and the modeler. It describes the generic methods
that should be overloaded by the modeler. This is the only
task that the modeler programmer should perform to
incorporate the class library into the modeler. The generic
methods are described as follows:

• getParametricMesh: this method gets an input
surface mesh that is converted into the topological
data structure used by the algorithm. It is called in
the beginning of the surface-intersection process.

• getConstraint: this method gets surface-mesh
constraints; for example, edges on intersection curves
obtained in a previous step. It is called in the
beginning of the surface-intersection process.

• evalSurface: given a parametric coordinate, this
method computes the respective 3D coordinates and
their partial derivatives. It is called during the whole
surface-intersection process.

• closestSurfacePoint: given a surface 3D point, this
method determines the correspondent parametric
coordinates. It is called during the whole surface-
intersection process.

• getTrimmingCurve: given a set of interpolation
points defined by the algorithm along a trimming
curve, this method gets a reference of a parametric
representation of this curve defined by the modeler.

• getCurveSub: given a (trimming) curve and a
characteristic size, this method computes equally-
spaced points along the curve. This characteristic size
is defined by an average value of the sizes of
intercepted edges in the input meshes.

• newPatchMeshes: for each input surface, this method
passes the modeler a set of patch meshes resulting
from the intersection algorithm.

5. APPLICATION EXAMPLES

To validate the ideas presented and to verify the robustness
and efficiency of the extended algorithm described in this
paper, the class library was incorporated to the MG
modeler [8,13], increasing its ability of modeling complex
Engineering problems. To illustrate its new capabilities,
this section presents some modeling examples.

The first example is the modeling of two cylinders, one
intercepting the other. Figure 11 shows the original surface
meshes, while Figure 12 presents the meshes resulting from
surface intersection. In Figure 13, some surface patches
resulting from the intersection were removed, showing
MG’s ability to generate models from the composition of
several modeling components.

Figures 14 to 16 illustrate the intersection of a torus model
with a cylinder model. Figure 16 shows the complex
intersection curve obtained by the algorithm.

Figure 11. Original surface meshes of two
cylinders that intercept each other.

Figure 12. Meshes resulting from the surface
intersection of two cylinders.

Figure 13. Final mesh of two-cylinder model after
removing some patches.

Figure 14. Torus and cylinder meshes before

surface intersection.

Figure 15. Mesh after intersection of torus and

cylinder models.

Figure 16. Curve resulting from torus and

cylinder intersection.

The final example was created to demonstrate the ability of
the present intersection algorithm to treat singular points
resulting from the intersection of two surfaces. Figure 17
shows the original meshes of two identical cylinder surface
patches with a relative rotation about a vertical axis. Figure
18 depicts the final mesh after intersection and Figure 19
illustrates the surface-patch boundaries and the intersection
curves.

Figure 17. Two-cylinder model: surfaces before
intersection.

Figure 18. Two-cylinder model: mesh resulting
from surface intersection.

Figure 19. Two-cylinder model: surface-patch
boundaries and intersection curves.

6. CONCLUSION

This work has described procedures to compute multiple
intersections of finite-element surface meshes. These
procedures are based on an extended version of a
previously proposed surface-mesh intersection algorithm
[8], treating special cases that had not been considered in

its original version, specially the intersections of more than
two surfaces.

This work has also presented a class organization, in the
context of OOP, of the data structure used in the surface-
intersection algorithm, allowing its incorporation by any
geometric modeler. This class organization also allows the
generic handling of several types of surface geometry.

The integration of the presented class organization with any
modeler is relatively simple. For such, it is only necessary
to re-write generic methods defined in the class
organization. To verify the validity of the proposal here
presented, the class organization was incorporated to the
MG modeler, increasing its capabilities of modeling
surfaces with multiple intersections. Some examples using
MG were shown to illustrate these capabilities.
The new elements generated by the intersections are very
well shaped after the smoothing process of the original
algorithm. An idea to further reduce the number of sliver
facets that can still remain at the boundaries of the patches
is to move the vertices along the curves, respecting only
corners points. However, this has not been implemented
yet.

ACKNOWLEDGEMENTS

The first author acknowledges a doctoral fellowship
provided by CNPq. The third author acknowledges
financial support by CNPq (Project 300.483/90-2). The
authors acknowledge the financial support provided by
agency Finep/CTPetro, process numbers 65999045400,
650003600 and 2101033200. The authors are grateful to
Carolina Alfaro for the manuscript copydesk. The present
work has been developed in Tecgraf/PUC-Rio (Computer
Graphics Technology Group).

REFERENCES

[1] C.M. Hoffmann, “Geometric & Solid Modeling: An
Introduction”, Morgan Kaufmann Publishers, 1989.

[2] O.C. Zienkiewicz and R.L. Taylor, “The Finite

Element Method”, Fifth ed., Vols. 1 and 2,
Butterworth-Heinemann, 2000.

[3] R.E. Barnhill, G. Farin, M. Jordan, and B.R. Piper,

“Surface/surface Intersection”, Computer Aided
Geometric Design, Vol 4 pp 3-16 (1987).

[4] R. Barnhill and S. Kersey, “A Marching Method for

Parametric Surface/surface Intersection”, Computer
Aided Geometric Design, Vol 7 pp.257-280 (1990).

[5] Tz.E. Stoyanov, “Marching Along Surface/surface

Intersection Curves with an Adaptive Step Length”,
Computer Aided Geometric Design, Vol 9 pp.485-
489 (1992).

[6] E. Hougthon, E. Emnett, R. Factor, and L.

Sabharwal, “Implementation of a Divide-and-
Conquer-Method for the Intersection of Parametric
Meshes”, Computer Aided Geometric Design, Vol 2
pp.173-184 (1985).

[7] S. H. Lo, “Automatic Mesh Generation over

Intersecting Surfaces”, International Journal for
Numerical Methods in Engineering, Vol 38 pp.943-
954 (1995).

[8] L.C.G. Coelho, M. Gattass and L.H. Figueiredo,

“Intersecting and Trimming Parametric Meshes on
Finite-Element Shells”, International Journal for
Numerical Methods in Engineering, Vol 47 pp.777-
800 (2000).

[9] ACIS 3D Geometric Modeler,

http://www.spatial.com/products/3D/modeling/
ACIS.html.

[10] Parasolid - Powering the Digital Enterprise,

http://www.plmsolutions-eds.com/products/
parasolid/.

[11] Open CASCADE,

http://www.opencascade.com/.

[12] Pro/ENGINEER API Toolkit,

http://www.ptc.com/products/proe/
app_toolkit.htm.

[13] W.W.M. Lira, P.R. Cavalcanti, L.C.G. Coelho, and

L.F. Martha, “A Modeling Methodology for Finite
Element Mesh Generation of Multi-Region Models
with Parametric Surfaces”, Computer &
Graphics,Vol. 26(6), in press (2002).

[14] F.P. Preparata and M.I. Shamos, “Computational

Geometry – An Introduction”, Springer Verlag, New
York, 2000.

[15] D. Comer, “The Ubiquitous B-tree”, ACM

Computing Surveys, Vol 11 pp.121-131 (1979).

[16] N. Beckmann, H.P. Kriegel, R. Schneider, and B.

Seeger, “The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles”,
Proceedings of the ACM SIGMOD Conference on
Management of Data, pp.322-332 (1995).

[17] M.R. Mediano, M. Gattass, and M.A. Casanova,

“HPS-tree: An access method for storing long maps
with geometrix and topologic multi-resolution”,
SIBGRAPI’1996 – IX Brazilian Symposium on
Computer Graphics and Image Processing, pp.219-
226 (1996).

