
MESH GENERATION ON HIGH-CURVATURE SURFACES
BASED ON A BACKGROUND QUADTREE STRUCTURE

Antonio C. O. Miranda1, Luiz F. Martha2
1Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil - amiranda@tecgraf.puc-rio.br

2Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil - lfm@tecgraf.puc-rio.br

ABSTRACT

This paper extends a previously proposed algorithm for generating unstructured meshes in three-dimensional and in two-
dimensional domains to generate surface meshes. A surface mesh is generated in parametric space and mapped to Cartesian
space. Finite elements may be stretched on parametric space, but they present a good-quality shape on the 3D surface. The
algorithm uses a metric map defined by Tristano et al. to obtain correct distances and stretches. A background quadtree structure
is used to store local surface metrics and to develop local guidelines for node location in an advancing-front meshing strategy.

Keywords: mesh generation, high-curvature surfaces, background quadtree, advancing-front technique

1. INTRODUCTION

This paper describes an algorithm for generating finite-
element triangular meshes on surfaces of arbitrary shape
and with high curvatures. It is an extension of a previously
proposed algorithm for generating unstructured meshes in
three-dimensional [1] and two-dimensional [2,3] domains.
The mesh is generated in the surface’s parametric space
and mapped to 3D space. Finite elements may be stretched
on parametric space, but they present a good-quality shape
on the 3D surface. The algorithm uses a metric map
defined by Tristano et al. [4] to obtain correct distances and
stretches. A background quadtree structure is used to store
local surface metrics and to develop local guidelines for the
size of elements generated by means of an advancing-front
technique.

The proposed algorithm presents similar characteristics to
its ancestors, which are summarized as follows. First, the
algorithm produces well-shaped elements, avoiding
elements with poor aspect ratio. While it does not guarantee
bounds on aspect ratios of elements, care is taken at each
step to produce good-quality meshes. Second, the mesh
conforms to an existing discretization on the surface’s
boundary. This is important in the generation of finite-
element meshes because usually the mesh generated on a
surface patch has to conform to the mesh generated on
adjacent patches. Third, the algorithm presents a smooth

transition between regions with elements of highly varying
sizes. This a desirable feature because a finite-element
analysis requires high element density in regions with high
gradients of analysis response, while a low density may be
used in other regions. It is not uncommon in this type of
analysis to have a difference of two or three orders of
magnitude in element size.

An additional requirement arises for surface mesh
generation, especially when the surface presents high
curvatures. In such locations, the algorithm must locally
refine the mesh. Due to this fact, the smooth-transition
characteristic described above is even more important in
surface mesh generation.

Tristano and collaborators [4] proposed a similar algorithm
for surface mesh generation that basically involves three
steps: discretizing the boundary, computing a background
mesh [5], and applying an advancing-front technique. This
background mesh is generated by means of a Delaunay
procedure. The main difference between the referred
algorithm and the one presented in this paper is that here no
auxiliary triangulation is generated. Instead, the current
algorithm uses a quadtree structure to hold the metric
information.

It should be noted that the original work of Tristano et al.
also creates a quadtree in parametric 2D space for inserting
internal points in the background mesh. In the present
work, as in its ancestors [1,2,3], the quadtree is used to

develop local guidelines for node location in an advancing-
front meshing procedure. Here, the use of the quadtree was
extended to store local surface metrics, avoiding the
creation of a background triangulation. The background
quadtree may potentially be adjusted to insert points to take
into account local scalar field gradients, such as in adaptive
analysis or in boundary layers problems, although this has
not been done yet.

The present algorithm, as its ancestors, incorporates well-
known meshing procedures [6-12] and introduces some
original steps. It includes an advancing-front technique
along with a background quadtree structure, taking special
care to generate elements with the best possible shape. To
enhance the quality of the mesh’s element shape, an a
posteriori local mesh improvement procedure is used.

One important characteristic of the algorithm presented
here is the generation of internal nodes simultaneously with
the elements. Some authors, e.g. Rassineux [12], use a
quadtree/octree procedure to generate internal nodes prior
to element generation. The current algorithm also employs
a quadtree, but only as a node-spacing function during the
advancing-front strategy. This approach tends to provide
better control over the quality of the generated mesh and to
decrease the amount of heuristic cleaning-up procedures.

2. MEASUREMENT ON SURFACE

This section describes the metric map [4] and the
measurement of distances and angles on a surface space.
Cuilière [13] originally devised the adopted surface metric.
The metric of a tangent plane at every point P of a 3D
surface is defined as:

[] 







=

GF
FE

M p
 (1)

where

22

21

11

ττ
ττ
ττ

��

��

��

⋅=
⋅=
⋅=

G
F
E

 (2)

and

),(
),(

2

1

vu
vu

v

u

στ
στ
��

��

=
= (3)

in which),(vuuσ� and),(vuvσ� are the gradient vectors at
the point P on the surface.

The distance between two points, A and B, along the 3D
surface can be computed using their parametric
coordinates. This distance, starting from A, is:

)())((2)(2
ABAABABAABAMA vvGvvuuFuuEAB −+−−+−= (4)

For a well-behaved surface, the distance can be computed
as the average of the distances measured from A and from
B:

2
MBMA ABAB

AB
+

= (5)

For mesh generation on surfaces, some metrics are
necessary to correctly compute angles and distances that
might be stretched in parametric space. Figure 1 shows
these measurements in parametric space.

The mid point mAB is computed as

2
22 DD

AB
BAm
��

� += (6)

where DA2

�

 and DB2
�

 are the parametric coordinates of A e

B, respectively. The vector DN2
�

, normal to AB (in 3D
space), is computed using the metric from equation (1):

AB
mm

mm

N

N
D V

FE
GF

v
u

N
ABAB

ABAB

D

D
��

⋅








−−
=









=
2

2
2

 (7)

where ABV
�

 is a unit vector pointing from A to B.

 A

 B

h2D

N C

mAB

D N2

�
90 o in 3D space D N2 90 o

Figure 1. Measurements in parametric space.

In the advancing-front algorithm to be described in Section
3.2, it is necessary to compute the parametric coordinates
of point NC along the normal vector DN2

�

(see Figure 1). A
given distance, h3D, to point mAB, along the 3D surface,
defines the location of this point. The parametric
coordinates of point NC are computed using the equations
below:

DDABC hNmN
D 222

⋅+=
�

�

�

 (8)

where

22
3

2

2222
2

DABDDABDAB NmNNmNm

D
D

vGvuFuE

hh
++

=
(9)

3. DESCRIPTION OF THE ALGORITHM

The input data for the present algorithm is a parametric
description of a surface and a polygonal description of the
boundary of the surface patch to be meshed. This boundary
information is given by a list of nodes defined by their
parametric coordinates on the surface and a list of boundary
segments (or edges) defined by their node connectivity.
The input boundary must be defined a priori. The
definition of these points is not part of the proposed
algorithm and, for better results, the boundary segment
sizes should be consistent with surface curvatures. Figure 2
shows an example of a surface patch and a set of input
boundary segments.

Figure 2. Surface example and
input boundary segments.

From the boundary segments, a background auxiliary
quadtree structure is created to control the sizes of the finite
elements generated by an advancing-front technique. The
given boundary edges form the initial front that advances as
the algorithm progresses. At each step of this meshing
procedure, a new triangle is generated for each base edge of
the front. The front advances replacing the base edge with
new triangle edges. Consequently, the domain region is
contracted, possibly into several regions. The process stops
when all contracted regions result in single triangles. The
overall algorithm is presented next.

3.1 Quadtree Generation
The first phase of the algorithm involves a background
quadtree generation. The steps in this phase are as follows:

• Quadtree initialization based on given boundary
edges. Each segment of the input boundary data is
used to determine the local subdivision depth of the
quadtree. Additional procedures, described below,

are adopted in the generation of the initial quadtree to
take into account metric distortions in surface
parametric space.

• Refinement to force maximum cell size. The quadtree
is refined to guarantee that no cell in its interior is
larger than the largest cell at the boundary.

• Refinement to provide minimum size disparity for
adjacent cells. This additional refinement forces only
one level of tree depth between neighboring cells and
provides a natural transition between regions of
different degrees of mesh refinement.

• Refinement to force minimum curvature difference
between adjacent cells. This is explained below.

The first step has some modifications in relation to the
original 2D algorithm [2,3]. The second and third steps
have not changed. The fourth step was added to take into
account high surface curvatures.

There are some additional procedures in the first step of the
quadtree generation. The algorithm creates a two-
dimensional space to store coordinates of quadtree points.
This space is necessary to avoid excessive metric
distortions that might occur in the parametric space of a
surface. Distances in the quadtree space approximate
distances in 3D space along the surface.

Firstly, the algorithm determines the center of the input
boundary data in parametric coordinates (Centerx, Centery).
From this center, the algorithm computes the longest
horizontal and vertical distance to the boundary, using
equations (4) and (5). Then, it computes ratios Rx and Ry
between the longest distance and the corresponding
parametric distances. These ratios are used as proportional
factors to transform from surface parametric space to
quadtree space. The center of the quadtree is considered at
the center of the input boundary data. The initial quadtree
cell size, which includes the whole model, is computed as
twice the longest distance.

Each segment of the input boundary data is used to
determine the local depth of tree subdivision. The midpoint
of each input segment in parametric space (Midx, Midy) is
obtained. The corresponding values in quadtree space
(Midquad_x, Midquad_y) are obtained by:

()
() yyyyyquad

xxxxxquad

CenterRCenterMidMid

CenterRCenterMidMid

+⋅−=

+⋅−=

_

_ (10)

The quadtree cell containing the midpoint is determined. If
the length, computed using equations (4) and (5), of this
cell's edge is larger than the length of the boundary edge,
then this cell is subdivided into four smaller cells. This
process is repeated recursively and finishes when the length
of the cell's edge is smaller than the length of the boundary
segment.

The fourth step of the quadtree generation refines the
quadtree to force a minimum curvature difference between
adjacent cells. Firstly, the algorithm stores gradient vectors
in each cell of the quadtree – equation (3) – evaluated at the

center of the cell. Then, it computes the vector normal to
the 3D surface at each cell. Finally, the algorithm obtains
the cosine of the angle between the normal vectors, NA and
NB, of the two adjacent cells:

BA

BA

NN
NN ⋅=θcos (11)

and compares it to a minimum value, cosθmin. If cosθ is
less than cosθmin, then a new cell size, Hnew, is obtained
from the current size, Hold, as:

θ
θ

cos
cos min

⋅= old
new

H
H (12)

This new size is used to locally refine both adjacent cells of
the quadtree. This process is repeated recursively to every
cell. After the whole quadtree is refined according to the
curvature criterion, the third step of the algorithm is
repeated to provide minimum size disparity for adjacent
cells.

Figure 3 shows the final quadtree obtained for the surface
in Figure 2 after all four steps. The quadtree is used as a
node-spacing function in the advancing-front technique to
be described in next section. In addition, each cell of the
quadtree stores local metric information (in this case,
gradient vectors) that is used to compute distances and
angles necessary for mesh generation.

Figure 3. Background quadtree of
surface in Figure 2.

3.2 Advancing-front Procedure
The advancing-front technique starts with a boundary that
bounds a region to be filled with a triangulation. Triangular
elements are “extracted” or “pared” from the region one at
a time. As each element is extracted, the boundary is
updated and the process is repeated. The procedure
terminates when the entire region is meshed. Therefore,
the boundary of the region to be meshed is formed by edges
of the triangles created in the contraction process. These
edges are referred to as boundary edges.

In this algorithm, as in its ancestors [1,2,3], the advancing-
front process is divided into two phases to ensure the
generation of valid triangulations. In the first phase, a
geometry-based element generation is pursued to generate
elements of optimal shapes. After this ideal phase is
exhausted and no more optimal elements can be generated,
a topology-based element generation takes place, creating
valid, but not necessarily well shaped, elements in the
remaining region. The required steps for the advancing-
front procedure are as follows.

Front initialization based on given boundary edges. The
process starts with the creation of the initial advancing
front, which is formed by the given boundary segments.
The current boundary edges are stored in two separate
doubly linked lists. The first is a list of active edges, which
includes all boundary edges that have not been used in an
attempt to generate valid triangles. The other is a list of
rejected edges, that is, it stores the edges that failed in the
generation of elements for the current phase. Initially, all
segments of the given boundary refinement are stored in
the first list, which is the one used in the geometry-based
generation phase.

The initial list of active edges on the boundary is sorted by
the length of the edges. This has been recommended by
other authors [11] to prevent large elements from
penetrating regions with small-length edges. This criterion
is only used in the initial boundary edge list.

It was also found convenient for some steps in the
algorithm to have an additional data structure storing a list
of adjacent boundary edges for each node on the current
advancing front. This data structure is initialized for all
nodes of the given boundary, and is updated as the
boundary-contraction procedure progresses.

In addition, all nodes (from the input boundary as well as
new internal nodes) store their corresponding gradient
vectors, obtained from the quadtree cells, as they are
created. As seen in Section 2, these vectors are used in the
surface measurements required by the advancing-front
procedure. This avoids excessive queries to the quadtree
structure, which could be expensive.

Front contraction (geometry-based element generation).
Ideally, the entire mesh could be generated in the
geometry-based phase. This depends on the geometry and
topology of the given boundary model and, as observed, is
strongly related to the segment-size disparity of the given
boundary refinement. In this phase, for each base edge on
the advancing front, the following is performed (see Figure
4):

Figure 4. Determination of a triangle.

• The optimal location N1, in parametric space, for the
vertex of the triangle to be formed is determined with
the help of the quadtree. The quadtree cell
containing the midpoint M of the base edge is
determined using equation (10). The optimal point
N1 lies on a line perpendicular (in the 3D space) to
the base edge passing through this midpoint. The
distance from the optimal point to the base edge
midpoint is computed using equations (6), (7), (8)
and (9), in which h3D is equal to the quadtree cell
size, H. The gradient vectors of point M are
considered as the average between the values of
points A and B.

• The optimal point defines an optimal region where
the vertex of the triangle to be generated is located.
This region is a sector of the circle whose center is
the optimal point and whose radius is proportional to
the quadtree cell size. In the current implementation,
a factor of 0.85 was adopted. Radius and distances
are computed using equations (4) and (5). This circle
defines an upper bound for the distance between the
target vertex of the triangle and the centroid of the
base edge. A lower bound is defined to ensure that
the generated triangle will have area greater than the
smallest acceptable area. In the current
implementation, this lower bound is defined by a
triangle with height equal to 1/10 of the base edge.
The optimal region is used for two reasons: first, to
ensure shape quality of the elements to be generated;
and, second, to ensure that new internal nodes will be
created only when it is strictly necessary and always
in good positions.

• If no existing node is inside the optimal region, a
new node is inserted at the optimal location N1 and
an element is generated using this node. The values
of gradient vectors to point N1 are held from the
quadtree. If only one node exists in the region, this
node is used to generate the element. If more than
one node is found in the region, they are ranked
according to the included angle with respect to the
base edge. The node with the maximum included
angle is used to generate the element. A heap list is
used to efficiently rank the nodes.

• Additional geometric checks are performed to ensure
that the edges of the new element do not intersect any

existing edge of the advancing front. If this is the
case, the element is rejected.

• Once a valid triangle is generated for the current base
edge, the list of active edges is updated. This is done
through the following steps: first, the base edge is
removed from the list; then, for the other edges of the
element, the edge is either deleted, if it coincides
with an edge already in the list, or inserted in the list
as a new one.

• Due to geometric bounds imposed by the current
advancing front, there are situations in which the
algorithm fails in forming a valid triangle for the
current boundary’s base edge. In these cases, the
current base edge is removed from the list of active
edges and is stored in the separate list of rejected
edges. It might happen that an edge is subsequently
removed from this latter list if it is used as part of a
valid triangle for an adjacent base edge.

• When there are no more edges in the list of active
edges, the algorithm tries to generate elements using
the edges that were previously rejected. It might be
the case that base edges that previously failed may
now work because the front has changed with the
addition of elements. The geometry-based element-
generation phase ends when either there are no edges
left in the boundary-contraction lists (in which case
an optimal mesh was generated) or when a rejected
edge fails for a second time.

Front contraction (topology-based element generation).
The objective of this phase of the algorithm is to force the
generation of valid triangles, even if the new elements do
not satisfy the bounds used in the previous phase for
element shapes.

The topology-based element-generation phase starts when a
boundary edge fails twice in trying to generate an optimal
element. The list of rejected edges of the previous phase is
transformed into a list of active edges and, similarly to the
geometry-based phase, a list of rejected edges is created for
edges that eventually fail in generating valid triangles.

In the topology-based element-generation phase, any node
close to the current base edge is selected and stored in the
local heap list of candidate nodes. The node that has the
maximum included angle with respect to the base edge is
chosen for the generation of the new triangle. If the edges
of this triangle do not intercept any other edge of the
current advancing front, the element is created and the
boundary is contracted accordingly. The topology-based
phase ends when the lists of active and rejected edges are
empty. This phase always generates a valid mesh (although
not optimal) because it is always possible to triangulate a
region defined by its boundary edges [14].

3.3 Local Mesh Improvement
A smoothing technique is used to improve mesh quality by
relocating nodes within a patch. A general formulation for
this technique is given by equation (13), which is a generic
form of a weighted Laplacian function [15]:

∑

∑

=

=+
−

+= m

i
i

m

i

nn
ii

nn

w

XXw
XX

1
0

1
00

0
1

0

)(
φ

(13)

In this equation, m is the number of nodes connected to
node O, 1

0
+nX is the parametric position of node O at

smoothing iteration n+1, wi0 is the weighted function
between nodes i and O, and φ is a relaxation parameter
which is normally set in the interval (0,1]. In this work, a
value of φ = 0.7 is defined and wi0 is adopted as the ratio
between the 3D distance from node i to node O and the
corresponding parametric distance. Therefore, smoothing
is done in parametric space but takes into account size
distortion metrics between parametric and 3D spaces. The
smoothing procedure is repeated 5 times for all internal
nodes.

Figure 5 presents the final mesh obtained for the surface
example in Figure 2.

Figure 5. Generated mesh of surface of Figure 2.

4. EXAMPLES

This section provides some examples of finite-element
meshes generated on 3D surfaces using the proposed
algorithm. Figure 6 shows an example a mesh generated
on a conic surface and its representation in parametric
space. It may be observed that in parametric space the
elements are stretched, while on the 3D surface the
elements have a good shape.

The second example is a single-folded surface, shown in
Figure 7. The mesh at the top of this figure was generated
without taking into account surface curvatures, i.e., without
considering the fourth step of the background quadtree
generation described in Section 3.1. The mesh at the
bottom of Figure 7 was generated for the same surface now
considering the fourth step in the algorithm.

x

y

z

Figure 6. Mesh generated on a conic surface and
its representation in parametric space.

Figure 7. Mesh generated on a single-folded

surface without and with consideration of
surface curvatures.

The third example is a double-folded surface, shown in
Figure 8 without and with local refinement to consider high
surface curvatures.

Figure 8. Meshes generated on a
double-folded surface.

Finally, Figure 9 illustrates the so-called Utah teapot, which
is composed of several surface patches. It can be seen that
the mesh generated on a patch conforms to the meshes
generated on adjacent patches. This is accomplished
because all the common curves at the patches’ boundaries
are discretized a priori.

5. MESH QUALITY AND PERFORMANCE

In this section, a study on the quality of the meshes
generated by the proposed algorithm is presented. The
adopted shape quality measure is a normalized ratio γ/γ*
[2], in which γ is the ratio between the root mean square of
the lengths (Si) of a triangle’s edges and the triangle’s area,
and γ* is the value for the equilateral triangle:

AreaS
i

i∑
=

=
3

0

2
3
1γ (14)

Figure 9. Surface mesh generated for the
Utah teapot.

The γ/γ* quality measure has a valid interval between 1.0
and infinity, and the value for the equilateral triangle is 1.0.
It is desirable to have elements with values close to 1.0.

The quality of generated meshes is presented in the form of
a histogram such as the one shown in Figure 10. In this
histogram, the horizontal axis corresponds to the γ/γ*
quality measure in intervals represented by triangular
shapes that are shown below the histogram. The vertical
axis corresponds to the percentage of elements in each
interval of the quality measure.

The results of two examples are shown in Figure 10: the
single-folded mesh of Figure 7 and the double-folded mesh
of Figure 8 (both considering surface curvatures). These
results demonstrate that the proposed algorithm generates
meshes with good quality for the great majority of
elements.

An estimate of the expected performance of the 3D and 2D
versions of the proposed algorithm has been presented in
previous works [1,2]. Surface mesh generation requires
additional computations of surface metrics. Therefore, it is
worthwhile to present timing data outlining time spent in
each phase of the algorithm. Table 1 shows processing
times for the single-folded and double-folded meshes. The
performance of the algorithm was measured running on a

Pentium-650MHz PC with 128 MB of RAM, under
Windows 2000 operating system.

0

10

20

30

40

50

1.000-1.014 1.014-1.069 1.069-1.200 1.200-1.500 1.500-Inf

%
 o

f E
le

m
en

ts

single-folded
surface
double-folded
surface

1.000 1.014 1.069 1.200 1.500

γ / γ∗

Figure 10. Histogram of element quality.

Table 1. Processing time for single-folded and
double-folded surfaces.

Folded Surface Single Double

Quadtree Generation [sec.] 0.09 0.11

Surface Metrics [sec.] 1.95 6.59

Boundary Contraction [sec.] 0.16 2.03

Total Time [sec.] 2.11 8.63

Number of Elements 1356 5669

Number of Elements / second 641.7 657.5

In Table 1, it is clear that most of the computational effort
is spent in surface metrics calculation – equations (1), (2),
and (3). The computation of these metrics depends on the
underlying surface parametric representation that provides
surface gradients. This is not part of the proposed meshing
algorithm, any surface parametric representation may be
used. The present implementation uses a public domain
NURBS library [16].

The total time of surface metric computation depends on
the complexity of the surface. An almost flat surface
requires a smaller amount of quadtree refinement than a
surface with high curvatures. Since surface metrics are

computed for each cell of the quadtree, a greater amount of
metrics computation is required for a surface with high
curvatures.

It is also interesting to observe in Table 1 that the
processing time for quadtree generation is minimum
compared to the other phases of the algorithm.

6. CONCLUSION

This paper has described an algorithm for generating finite-
element triangular meshes on surfaces of arbitrary shape
and with high curvatures. The algorithm incorporates
aspects of well-known meshing procedures and includes
some original steps.

This algorithm is an extension of a previously proposed
algorithm for generating unstructured meshes in three-
dimensional and two-dimensional domains. The mesh is
generated in the surface’s parametric space and mapped to
3D space. Finite elements may be stretched on parametric
space, but they present a good-quality shape on the 3D
surface.

Previous works have demonstrated the computational
efficiency of the proposed meshing scheme [1,2], which
should be maintained in the present case of surface mesh
generation. However, it was shown that surface metrics
calculation is an expensive additional computation.

The algorithm uses a metric map defined by Tristano et al.
to obtain correct distances and stretches. Differently from
their work, the present algorithm uses a quadtree structure,
instead of a background triangulation, to hold surface
metric information. The background quadtree is also used
to develop local guidelines for the size of elements, which
are generated by means of an advancing-front technique.

The input data for the present algorithm is a parametric
description of the surface and a polygonal description of
the boundary of the surface patch to be meshed. The steps
in the algorithm are as follows:

• A background quadtree is generated to control the
distribution of node points generated in the interior.
The quadtree refinement is defined by the given
boundary discretization and by surface curvatures.

• A two-pass advancing-front procedure is used to
generate elements. On the first pass, elements are
generated based on geometrical criteria, which
produce well-shaped elements. On the second pass,
elements are generated based only on the criterion
that they have valid topology.

Some examples have demonstrated the quality of the
generated meshes and compared results with and without
local refinement to consider high surface curvatures.

Finally, it should be mentioned that the use of a
background quadtree structure makes the proposed
algorithm well suited for adaptive finite-element analysis.
An additional step is required in the generation of the
quadtree to account for the refinement due to estimated

numerical errors. This has been used in two-dimensional
analysis [17] and the implementation for adaptive surface
mesh generation is straightforward.

ACKNOWLEDGEMENTS

The first author acknowledges a doctoral fellowship
provided by CNPq. The second author acknowledges
financial support by CNPq (Project 300.483/90-2). The
authors acknowledge the financial support provided by
agency Finep/CTPetro, processes numbers 65999045400
and 2101033200. The authors are grateful to Carolina
Alfaro for the manuscript copydesk. The present work has
been developed in Tecgraf/PUC-Rio (Computer Graphics
Technology Group).

REFERENCES

[1] J. B. Cavalcante Neto, P. A. Wawrzynek, M. T. M.
Carvalho, L. F. Martha, and A. R. Ingraffea, “An
Algorithm for Three-Dimensional Mesh Generation
for Arbitrary Regions with Cracks”, Engineering
with Computers, Vol 17(1) pp.75-91 (2001).

[2] A. C. O. Miranda, J. B. Cavalcante Neto, and L. F.

Martha, “An Algorithm for Two-dimensional Mesh
Generation for Arbitrary Regions with Cracks”,
SIBGRAPI’99 – XII Brazilian Symposium on
Computer Graphics, Image Processing and Vision,
IEEE Computer Society Order Number PRO0481,
ISBN 0-7695-0481-7, Eds.: J. Stolfi & C. Tozzi,
pp.29-38 (1999).

[3] A. C. O. Miranda, M. A. Meggiolaro, J. T. P. Castro,

L. F. Martha, and T. N. Bittencourt, “Fatigue Life
and Crack Path Predictions in Generic 2D Structural
Components”, accepted for publication in
Engineering Fracture Mechanics (2002).

[4] J. R. Tristano, S. J. Owen, and S. A. Canann,

“Advancing Front Surface Mesh Generation in
Parametric Space Using Riemannian Surface
Definition”, 7th International Meshing Roundtable
Proceedings, pp.429-445 (1998).

[5] S. J. Owen and S. Saigal, “Neighborhood-Based

element sizing Control for Finite Element Surface
Meshing”, 6th International Meshing Roundtable
Proceedings, pp.143-154 (1997).

[6] C. T. Chan and K. Anastasiou, “An Automatic

Tetrahedral Mesh Generation Scheme by the
Advancing Front Method,” Communications in

Numerical Methods in Engineering, Vol 13 pp.33-46
(1997).

[7] H. Jin. and R. I. Tanner, “Generation of Unstructured

Tetrahedral Meshes by Advancing Front Technique”,
International Journal for Numerical Methods in
Engineering, Vol 36 pp.1805-1823 (1993).

[8] S. H. Lo, “A New Mesh Generation Sheme for

Arbitrary Planar Domains”, International Journal for
Numerical Methods in Engineering, Vol 21 pp.1403-
1426 (1985).

[9] R. Lohner and P. Parikh, “Generation of Three-

dimensional Unstructured Grids by the Advancing-
front Method”, International Journal for Numerical
Methods in Fluids, Vol 8 pp.1135-1149 (1988).

[10] P. Moller and P. Hansbo, “On Advancing Front

Mesh Generation in Three Dimensions”,
International Journal for Numerical Methods in
Engineering, Vol 38 pp.3551-3569 (1995).

[11] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, and O.

C. Zienkiewicz, “Finite Euler Computation in Three-
Dimensions”, International Journal for Numerical
Methods in Engineering, Vol 26 pp.2135-2159
(1988).

[12] A. Rassineux, “Generation and Optimization of

Tetrahedral Meshes by Advancing Front Technique”,
International Journal for Numerical Methods in
Engineering, Vol 41 pp.651-674 (1998).

[13] J. C. Cuilière, “And Adaptive Method for the Auto-

matic Triangulation of 3D Parametric Surfaces”,
Computer Aided Design, Vol 30 pp.139-149 (1998).

[14] J. O'Rourke, Art Gallery Theorems and Algorithms.

Oxford University Press (1987).

[15] T. A. Foley and G. M. Nielson, “Knot Selection for

Parametric Spline Interpolation”, Mathematical
Methods in CAGD, Ed. L. Schumaker, Academic
Press, pp.445-467 (1989).

[16] P. Lavoie, NURBS++: The Nurbs Package -

User’s Reference Manual,
http://yukon.genie.uottawa.ca/~lavoie/software/
nurbs.

[17] G. H. Paulino, I. F. M. Menezes, J. B. Cavalcante

Neto, and L. F. Martha, “A Methodology for
Adaptive Finite Element Analysis: Towards an
Integrated Computational Environment”,
Computational Mechanics, Vol 23(5/6) pp. 361-388
(1999).

