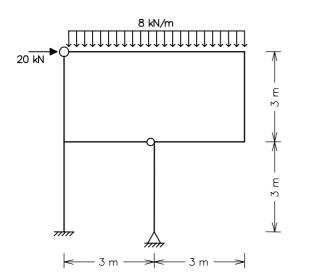
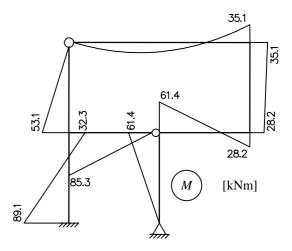
CIV 1127 - ANÁLISE DE ESTRUTURAS II - 2º Semestre - 2002

Primeira Prova – Data: 04/09/2002 – Duração: 2:45 hs – Sem Consulta

1ª Questão (6,0 pontos)

Considere a estrutura hiperestática abaixo, onde também está indicado o seu diagrama de momentos fletores. Todas as barras têm a mesma inércia a flexão *EI* e pode-se considerar que não existem deformações axiais e de cisalhamento nas barras.





Pede-se:

Item (a) -(0.5 ponto)

Determine um possível sistema principal (Método das Forças) para o quadro acima. As incógnitas (hiperestáticos) também devem ser indicadas. Mostre a decomposição do sistema principal em quadros isostáticos simples (tri-articulados, bi-apoiados ou engastados e em balanço).

Item (b) -(4.0 pontos)

Considerando o sistema principal encontrado no item anterior, indique o casos básicos – caso (0), caso (1), caso (2), etc. – utilizados para análise da estrutura pelo Método das Forças. Determine os diagramas de momentos fletores para todos os casos básicos.

Item (c) -(1,0 ponto)

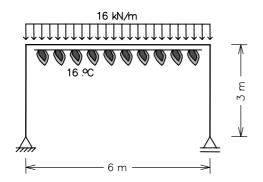
Escreva literalmente (somente símbolos, sem números) o sistema de equações finais da solução desta estrutura pelo Método das Forças. Escolha uma destas equações e indique as expressões numéricas envolvidas nos cálculos de cada um dos coeficientes da equação escolhida. Não é preciso completar as contas para calcular os coeficientes. Indique que tipo de condição que esta equação está impondo. Indique as interpretações físicas e unidades de todos os coeficientes que aparecem na equação escolhida.

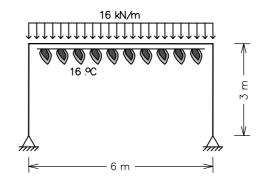
Item (d) – (0.5 ponto)

Com base no diagrama de momentos fletores fornecido para a estrutura hiperestática e no sistema principal escolhido, determine os valores das incógnitas (hiperestáticos) que resultariam da solução da estrutura pelo Método das Forças. Demonstre que a superposição dos casos básicos, considerando os valores dos hiperestáticos encontrados, resulta no diagrama de momentos fletores fornecido.

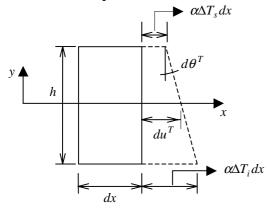
2ª Questão (3,0 pontos)

Considere os dois pórticos mostrados abaixo. As duas estruturas têm como solicitação o carregamento uniformemente distribuído indicado e um aumento de temperatura $\Delta T_i = 16 \, ^{\circ}\text{C}$ nas fibras inferiores da viga. As fibras superiores da viga não sofrem variação de temperatura ($\Delta T_s = 0 \, ^{\circ}\text{C}$). Todas as barras têm um material com módulo de elasticidade $E = 1.0 \, x \, 10^8 \, kN/m^2$ e coeficiente de dilatação térmica $\alpha = 10^{-5} \, / ^{\circ}\text{C}$. Todas a barras têm seções transversais com momento de inércia $I = 1.0 \, x \, 10^{-3} \, m^4$, altura $h = 0.60 \, m$ e centro de gravidade no meio de altura. Somente considere os efeitos axiais para a variação de temperatura.





Sabe-se com respeito ao elemento infinitesimal de viga:



Deslocamento axial relativo interno provocado pela variação de temperatura:

$$du^T = \alpha \Delta T_{CG} dx$$

 $\Delta T_{CG} \Rightarrow$ variação de temperatura na fibra do centro de gravidade obtida por interpolação linear de ΔT_i e ΔT_c .

Rotação relativa interna provocada pela variação de temperatura:

$$d\theta^T = \frac{\alpha(\Delta T_i - \Delta T_s)}{h} dx$$

Pede-se:

Item (a) -(0.5 ponto)

Determine o diagrama de momentos fletores da estrutura isostática.

Item (b) -(1.5 pontos)

Determine o diagrama de momentos fletores da estrutura hiperestática.

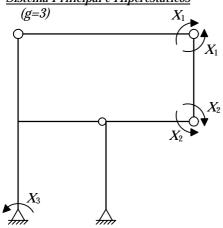
Item (c) -(1.0 ponto)

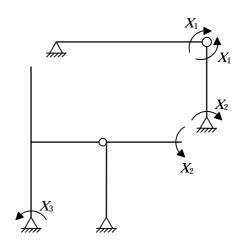
Considere que as colunas dos quadros acima tiveram a seção transversal modificada para uma com momento de inércia $I = 2.0 \times 10^{-3} \text{ m}^4$ (a viga não se altera). Responda:

- (c.1) Os diagramas de momentos fletores das estruturas isostáticas se alteram? Por que?
- (c.2) Os diagramas de momentos fletores das estruturas hiperestáticas se alteram? Por que?

3º Questão (1,0 ponto) – Grau vindo do primeiro trabalho (nota do trabalho x 0,1).

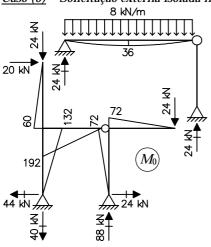
1ª Questão - Item (a)





1ª Questão - Item (b)

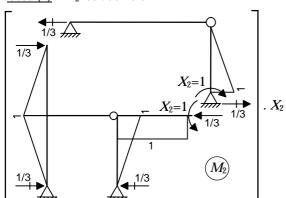
Caso (0) – Solicitação externa isolada no SP



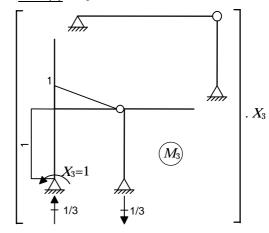
<u>Caso (1)</u> – X₁ isolado no SP



Caso (2) – X₂ isolado no SP



Caso (3) – X3 isolado no SP



1ª Questão - Item (c)

Equações de Compatibilidade

Considere a primeira equação deste sistema:

Esta equação impõe uma condição de compatibilidade interna: a rotação relativa entre as seções adjacentes à rótula associada a X_1 é nula, isto é, no ponto onde foi introduzida a rótula a rotação da elástica é contínua.

<u>Termo de carga δ_{10} [rad]</u> \rightarrow rotação relativa entre as seções adjacentes à rótula associada a X_1 devida à solicitação externa no caso (0):

$$\delta_{10} = \frac{1}{EI} \cdot \left[-\frac{1}{3} \cdot 1 \cdot 36 \cdot 6 - \frac{1}{3} \cdot 1 \cdot 60 \cdot 3 - \frac{1}{3} \cdot 0.5 \cdot 192 \cdot 3 + \frac{1}{3} \cdot 0.5 \cdot 72 \cdot 3 + \frac{1}{3} \cdot 0.5 \cdot 132 \cdot 3 + \frac{1}{3} \cdot 0.5 \cdot 72 \cdot 3 \right]$$

<u>Coeficiente de flexibilidade δ_{11} [rad/kNm]</u> \rightarrow rotação relativa entre as seções adjacentes à rótula associada a X_1 devida a X_1 = 1:

$$\delta_{11} = \frac{1}{EI} \cdot \left[\frac{1}{3} \cdot 1 \cdot 1 \cdot 6 + 2 \cdot \left(\frac{1}{3} \cdot 1 \cdot 1 \cdot 3 \right) + 4 \cdot \left(\frac{1}{3} \cdot 0.5 \cdot 0.5 \cdot 3 \right) \right]$$

<u>Coeficiente de flexibilidade δ_{12} [rad/kNm]</u> \rightarrow rotação relativa entre as seções adjacentes à rótula associada a X_1 devida a $X_2 = 1$:

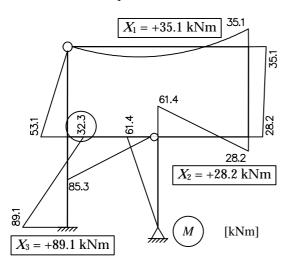
$$\delta_{12} = \frac{1}{EI} \cdot \left[-\frac{1}{3} \cdot 1 \cdot 1 \cdot 3 + \frac{1}{6} \cdot 1 \cdot 1 \cdot 3 - \frac{1}{2} \cdot 0.5 \cdot 1 \cdot 3 - \frac{1}{3} \cdot 0.5 \cdot 1 \cdot 3 - \frac{1}{3} \cdot 0.5 \cdot 1 \cdot 3 \right]$$

<u>Coeficiente de flexibilidade δ_{13} [rad/kNm]</u> \rightarrow rotação relativa entre as seções adjacentes à rótula associada a X_1 devida a $X_3 = 1$:

$$\delta_{13} = \frac{1}{EI} \cdot \left[\frac{1}{3} \cdot 0.5 \cdot 1 \cdot 3 - \frac{1}{2} \cdot 0.5 \cdot 1 \cdot 3 \right]$$

1ª Questão - Item (d)

Os valores dos hiperestáticos podem ser obtidos do diagrama de momentos fletores finais da estrutura que foi fornecido:



Demonstração de que a superposição dos casos básicos resulta nos momentos finais:

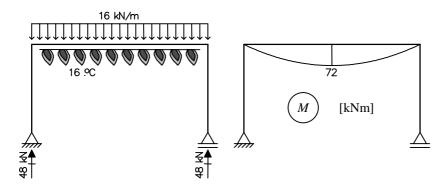
$$M_0 + M_1 \cdot X_1 + M_2 \cdot X_2 + M_3 \cdot X_3 = M$$

Considere o momento fletor assinalado no diagrama. Observa-se que este valor pode ser obtido pela superposição dos momentos fletores dos casos básicos nesta seção:

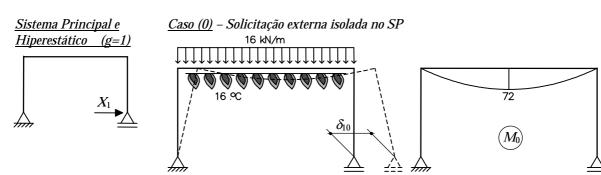
$$+132 + 0.5 \cdot 35.1 + (-1.0) \cdot 28.2 + (-1.0) \cdot 89.1 = +32.3$$

O mesmo pode ser verificado para outras seções.

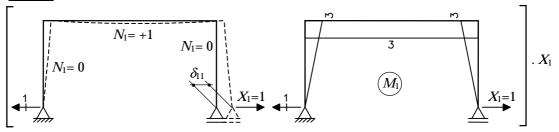
2ª Questão - Item (a)



2ª Questão - Item (b)



Caso (1) – X₁ isolado no SP



Equação de compatibilidade
$$\delta_{10} + \delta_{11} \cdot X_1 = 0$$

Sendo
$$\delta_{10} = \delta_{10}^{q} + \delta_{10}^{T}$$
:

 $\delta_{10}^q
ightarrow$ deslocamento horizontal da seção do apoio da direita devido à carga distribuída no caso (0).

 $\delta_{10}^T \rightarrow$ deslocamento horizontal da seção do apoio da direita devido à variação de temperatura no caso (0).

$$\delta_{10}^{q} = \int \frac{M_1 M_0}{EI} dx = \frac{1}{EI} \left[\frac{2}{3} \cdot 3 \cdot 72 \cdot 6 \right] = +864 \cdot 10^{-5} \, m$$

$$d\theta^{T} = \frac{\alpha \cdot (\Delta T_{i} - \Delta T_{s})}{h} dx = \frac{\alpha \cdot 80}{3} dx$$

$$du^{T} = \alpha \cdot \Delta T_{GC} \cdot dx = \alpha \cdot 8 \cdot dx$$

$$\delta_{10}^{T} = \frac{\alpha \cdot 80}{3} \int_{viga} M_{1} dx + \alpha \cdot 8 \int_{viga} N_{1} dx$$

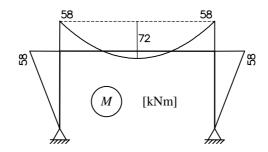
$$\delta_{10}^{T} = \frac{\alpha \cdot 80}{3} \cdot 6 \cdot 3 + \alpha \cdot 8 \cdot 6 \cdot 1 = +528 \cdot 10^{-5} m$$

 $\delta_{10}^T = \int M_1 d\theta^T + \int N_1 du^T$

$$\delta_{11} = \int \frac{(M_1)^2}{EI} dx = \frac{1}{EI} \cdot \left[2 \cdot \frac{1}{3} \cdot 3 \cdot 3 \cdot 3 + 3 \cdot 3 \cdot 6 \right] \qquad \begin{aligned} \delta_{10} + \delta_{11} \cdot X_1 &= 0 \to \\ (864 + 528) \cdot 10^{-5} + 72 \cdot 10^{-5} \cdot X_1 &= 0 \end{aligned}$$

$$\delta_{11} = +72 \cdot 10^{-5} \, m / \, kN \qquad \Rightarrow X_1 = -\frac{58}{3} \, kN$$

$$\frac{Momentos fletores finais}{M = M_0 + M_1 \cdot X_1}$$



2ª Questão - Item (c)

<u>Item (c.1)</u> – Na estrutura isostática, o diagrama de momentos fletores só depende dos valores da carga e reações, e da geometria da estrutura. Com a consideração da hipótese de pequenos deslocamentos, as equações de equilíbrio podem ser escritas para a geometria indeformada (original) da estrutura.

Portanto, o diagrama de momentos fletores <u>não se altera</u> com a modificação do momento de inércia da seção transversal das colunas.

No caso da carga uniformente distribuída, a estrutura isostática terá sempre o diagrama de momentos fletores indicado no *item (a)* (diagrama parabólico na viga). Momentos fletores devidos à variação de temperatura isolada na estrutura isostática são sempre nulos.

<u>Item (c.2)</u> – Na estrutura hiperestática, por ter vínculos excedentes, os esforços internos dependem da rigidez relativa entre as barras. Com as colunas mais rígidas do que a viga, as rotações das extremidades da viga são menores do que no caso com todas as barras com mesma rigidez à flexão *EI*, se aproximando do caso de uma viga com extremidades engastadas.

Portanto, o diagrama de momentos fletores <u>fica alterado</u> com a modificação do momento de inércia da seção transversal das colunas.

A solução da estrutura hiperestática pelo Método das Forças mostrada no *item (b)* demonstra que os valores dos momentos fletores finais dependem dos valores relativos entre momentos de inércia das seções transversais das barras.