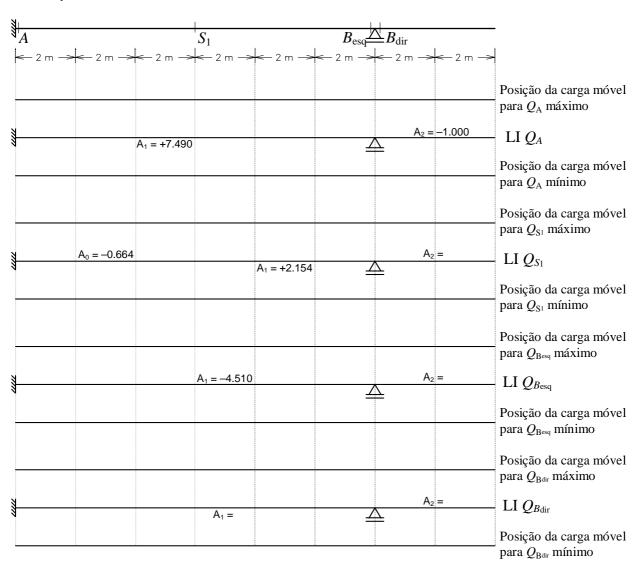

CIV 1127 – ANÁLISE DE ESTRUTURAS II – 1º Semestre – 2001

Terceira Prova – Data: 09/07/2001 – Duração: 3:00 hs – Sem Consulta

Nome:	Matrícula:
-------	------------

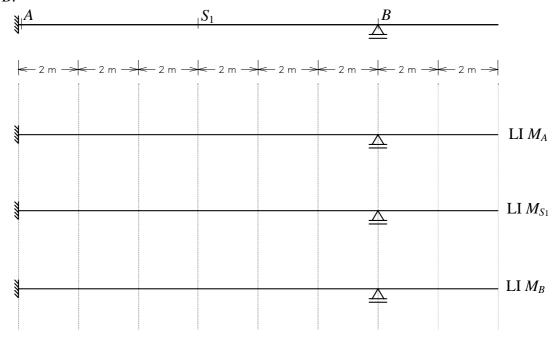

1ª Questão (3,5 pontos)

Você está envolvido no projeto de uma ponte rodoviária cujo sistema estrutural é a viga mostrada abaixo com um vão e um balanço. A carga permanente, constituída do peso próprio da estrutura, é uniformemente distribuída, tendo sido avaliada em g=4 kN/m. A carga móvel está indicada na figura, sendo que q representa a carga de multidão e as cargas P_1 e P_2 representam as cargas dos eixos do veículo de projeto. A carga de multidão não tem extensão definida, isto é, a sua área de atuação deve ser obtida de forma a majorar ou minorar um determinado efeito.

Pede-se:

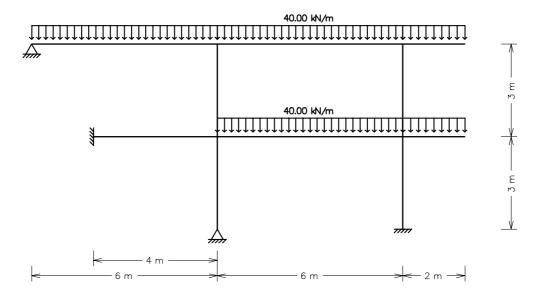
(a) Desenhe abaixo os aspectos das linhas de influência de esforços cortantes nas seções A, S_1 , $B_{\rm esq}$ e $B_{\rm dir}$. Obs.: a tabela do item (b) pode auxiliar no traçado das linhas de influência.

(b) A tabela abaixo mostra valores das ordenadas das linhas de influência do item (a). Complete a tabela, determinando os valores que não são fornecidos. O ponto *A* é a origem do eixo *x*. Determine também os valores que não são fornecidos para as áreas positivas e negativas (A₀, A₁ e A₂) das linhas de influência na figura da página anterior.


x	0 m	2 m	4 m	6 m	8 m	10 m	12 m	14 m	16 m
LI Q _A	1.000	0.961	0.852	0.688	0.481	0.248	0.000	-0.250	-0.500
LI Q _{S1}	0.000	-0.039	-0.148	-0.313 0.688	0.481	0.248	0.000		
$LI Q_{Besq}$	0.000	-0.039	-0.148	-0.313	-0.519	-0.752	-1.000 0.000		
LI Q_{Bdir}									

- (c) Com base nas linhas de influência do item (a) e na tabela do item (b) indique na figura da folha anterior as posições da carga móvel que provocam máximos e mínimos para esforço cortante nas seções indicadas.
- (d) Utilizando os resultados dos itens (a), (b) e (c), complete na tabela abaixo os valores do esforços cortantes máximos e míninos nas seções A, S₁, B_{esq} e B_{dir} provocados pela carga permanente e pela carga móvel. Utilize a convenção de sinais usual para esforços cortantes. Desenhe as envoltórias de esforços cortantes máximos e míninos baseadas nos valores obtidos.

Seção	Carga	Carga Móvel		Envoltó	órias
	Permanente	Máximo	Mínimo	Máximo	Mínimo
$Q_{\rm A}$ [kN]					
Q_{S^1} [kN]					
Q _{Besq} [kN]					
Q _{Bdir} [kN]					


31		1.1	Envoltórias de
A	S_1	$B_{ m esq} \Delta B_{ m dir}$	Esforço Cortante

(e) Desenhe abaixo os aspectos das linhas de influência de momentos fletores nas seções A, S_1 e B

2ª Questão (2,5 pontos)

Empregando-se o Processo de Cross, obter o diagrama de momentos fletores (precisão de 1 KNm) para o quadro ao lado (<u>barras inextensíveis</u>). Todas as barras têm a mesma inércia à flexão *EI*. Utilize duas casas decimais para os coeficientes de distribuição de momentos.

3ª Questão (2,0 pontos)

Você está envolvido no projeto de uma estrutura, mas perdeu o desenho do modelo estrutural. Felizmente, você encontrou o arquivo de dados de entrada e saída para o programa de computador que foi utilizado para fazer a análise estrutural. Este arquivo está reproduzido abaixo.

Dados de Entrada e Resultados do Modelo Computacional

Nó	X	Y	Desloc. X	Desloc. Y	Rotação Z
	(m)	(m)			
1	0.0	0.0	Fixo	Fixo	Fixo
2	6.0	0.0	Livre	Fixo	Livre
3	0.0	4.0	Livre	Livre	Livre
4	6.0	6.0	Livre	Livre	Livre
5	0.0	8.0	Livre	Livre	Livre
6	6.0	10.0	Livre	Livre	Livre

Dados das Barras

Barra	Nó inicial	Nó final	Rótula inicial	Rótula final	Mod.Elast. (kN/m^2)	Área Seção (m^2)	Mom.Inércia (m^4)
1	1	3	Não	Não	1.0e+08	0.01	0.001
2	2	4	Não	Não	1.0e+08	0.01	0.001
3	3	4	Não	Não	1.0e+08	0.01	0.001
4	3	5	Não	Não	1.0e+08	0.01	0.001
5	4	6	Não	Não	1.0e+08	0.01	0.001
6	5	6	Não	Não	1.0e+08	0.01	0.001

Dados de Cargas Nodais

Nó Fx (kN) Fy (kN) Mz (kNm)

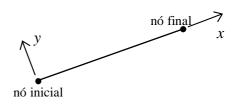
Nenhum

Dados de Carregamentos Uniformente Distribuídos em Barras

Barra	Direçao	Qx (KN/m)	QY (KN/m)
3	Local	0.0	-8.0
6	Local	0.0	-8.0

Resultados de Deslocamentos e Rotações Nodais

МО	Destoc. X	Desloc. Y	Rotação Z
	(m)	(m)	(rad)
1	0.000e+00	0.000e+00	0.000e+00
2	+3.367e-03	0.000e+00	-4.892e-05
3	+3.308e-03	-9.868e-05	-8.009e-04
4	+3.660e-03	-4.280e-04	-4.892e-05
5	+5.277e-03	-1.880e-04	-3.703e-04
6	+5.300e-03	-5.307e-04	-1.571e-04


Resultados de Esforços nas Barras (direções locais)

Barra	Normal	Normal	Cortante	Cortante	Momento	Momento
	Nó inicial	Nó final	Nó inicial	Nó final	Nó inicial	Nó final
	(kN)	(kN)	(kN)	(kN)	(kNm)	(kNm)
1	+24.7	-24.7	+32.0	-32.0	+84.0	+44.0
2	+71.3	-71.3	+16.0	-16.0	0.0	0.0
3	-36.3	+36.3	+14.6	+36.0	-19.2	-48.7
4	+22.3	-22.3	-7.0	+7.0	-24.8	-3.3
5	+25.7	-25.7	+23.0	-23.0	-48.7	+43.3
6	+13.7	-13.7	+19.0	+31.6	+3.3	-43.3

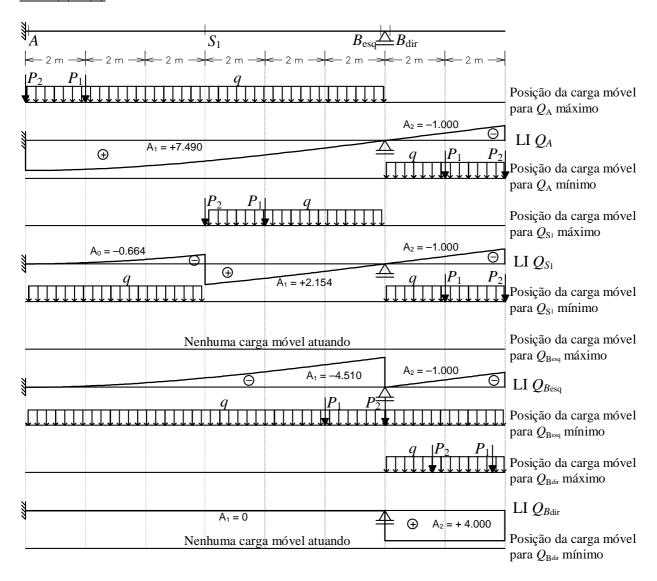
Os deslocamentos e rotações são fornecidos no sistema de coordenadas globais.

As cargas uniformemente distribuídas e os esforços (normal, cortante e momento fletor) são fornecidos no sistema de coordenadas locais de cada barra. Este sistema de coordenadas locais é definido de tal forma que o eixo local x vai do nó inicial ao nó final da barra, tal como mostrado na figura ao lado.

Neste caso, vale a convenção de sinais do Método dos Deslocamentos: o sinal positivo significa que o esforço está na mesma direção de um eixo local, e o sinal negativo, na direção contrária ao eixo local.

Com base nos resultados do modelo estrutural, pede-se:

- (a) Desenhe o modelo estrutural e a sua configuração deformada (exagerando os valores dos deslocamentos e rotações).
- (b) Desenhe os diagramas de esforços normais, esforços cortantes e momentos fletores fornecidos pelo modelo estrutural. Esforços normais de tração são positivos e de compressão são negativos. Esforços cortantes são positivos quando, entrando com as forças abaixo de uma seção transversal, a resultante das forcas na direção transversal à barra for no sentido da direita para a esquerda. O diagrama de momentos fletores é sempre desenhado do lado da fibra tracionada.
- (c) Ao verificar os diagramas desenhados no item (b), pode-se constatar que existem dois erros nos resultados fornecidos pelo programa de computador. Indique esses dois erros.


4ª Questão (2,0 pontos)

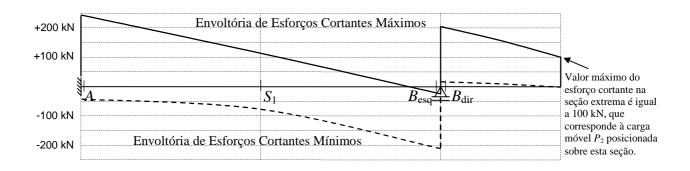
Grau vindo do terceiro trabalho (nota do trabalho x 0,2).

SOLUÇÃO

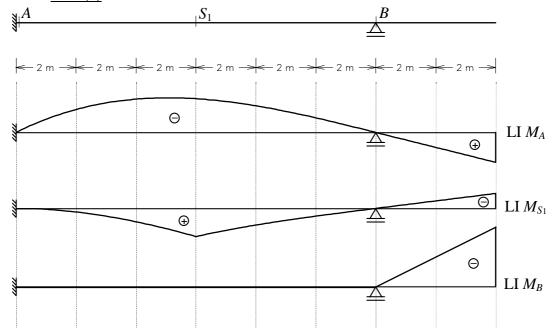
1ª Questão

Itens (a) e (c)

Item (b)


x	0 m	2 m	4 m	6 m	8 m	10 m	12 m	14 m	16 m
LI Q _A	1.000	0.961	0.852	0.688	0.481	0.248	0.000	-0.250	-0.500
LI Q _{S1}	0.000	-0.039	-0.148	-0.313	0.481	0.248	0.000	-0.250	-0.500
~				0.688					
$\mathrm{LI}\ Q_{\mathrm{Besq}}$	0.000	-0.039	-0.148	-0.313	-0.519	-0.752	-1.000 0.000	-0.250	-0.500
LI Q _{Bdir}	0.000	0.000	0.000	0.000	0.000	0.000	0.000 1.000	1.000	1.000

1ª Questão – Item (d)

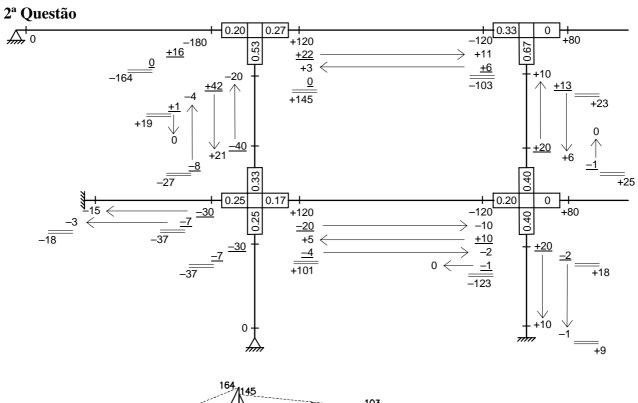

$$Q_A^g = 4 \cdot (7.490 - 1.000) = +25.960kN$$

$$Q_{S1}^g = 4 \cdot (-0.664 + 2.154 - 1.000) = +1.960kN$$

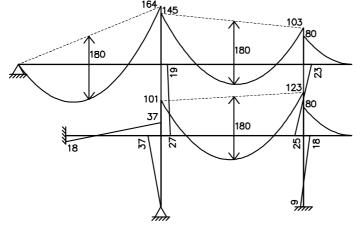
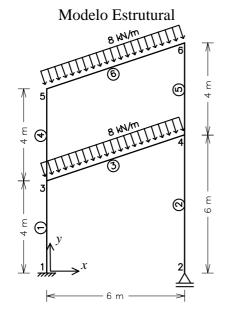
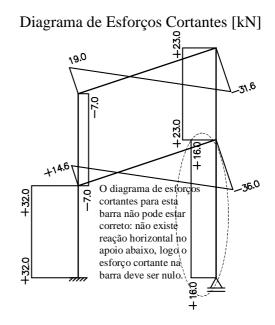
$$Q_{Besq}^g = 4 \cdot (-4.510 - 1.000) = -22.040kN$$

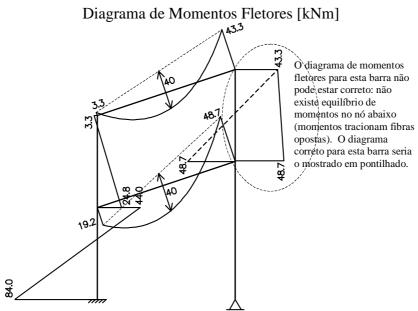
$$Q_{Besq}^g = 4 \cdot (+4.000) = +16.000kN$$

$$\begin{aligned} & \left(Q_A^{C.M.} \right)_{\text{max}} = +100 \cdot 1.000 + 50 \cdot 0.961 + 10 \cdot 7.490 = +222.950 kN \\ & \left(Q_A^{C.M.} \right)_{\text{min}} = -100 \cdot 0.500 - 50 \cdot 0.250 - 10 \cdot 1.000 = -72.500 kN \\ & \left(Q_{S1}^{C.M.} \right)_{\text{max}} = +100 \cdot 0.688 + 50 \cdot 0.481 + 10 \cdot 2.154 = +114.390 kN \\ & \left(Q_{S1}^{C.M.} \right)_{\text{min}} = -100 \cdot 0.500 - 50 \cdot 0.250 - 10 \cdot (0.664 + 1.000) = -79.140 kN \\ & \left(Q_{Besq}^{C.M.} \right)_{\text{max}} = 0 \\ & \left(Q_{Besq}^{C.M.} \right)_{\text{min}} = -100 \cdot 1.000 - 50 \cdot 0.752 - 10 \cdot (4.510 + 1.000) = -192.700 kN \\ & \left(Q_{Bdir}^{C.M.} \right)_{\text{max}} = +100 \cdot 1.000 + 50 \cdot 1.000 + 10 \cdot 4.000 = +190.000 kN \\ & \left(Q_{Bdir}^{C.M.} \right)_{\text{max}} = 0 \end{aligned}$$


Seção	Carga	Carga M	óvel	Envoltá	órias
	Permanente	Máximo	Mínimo	Máximo	Mínimo
$Q_{\rm A}$ [kN]	+25.960	+222.950	-72.500	+248.910	-46.540
Q_{S^1} [kN]	+1.960	+114.390	-79.140	+116.350	-77.180
Q _{Besq} [kN]	-22.040	0	-192.700	-22.040	-214.740
Q _{Bdir} [kN]	+16.000	+190.000	0	+206.000	+16.000

1ª Questão – Item (e)


Diagrama de Momentos Fletores [kNm]

Configuração deformada (exagerada)

Diagrama de Esforços Normais [kN]

