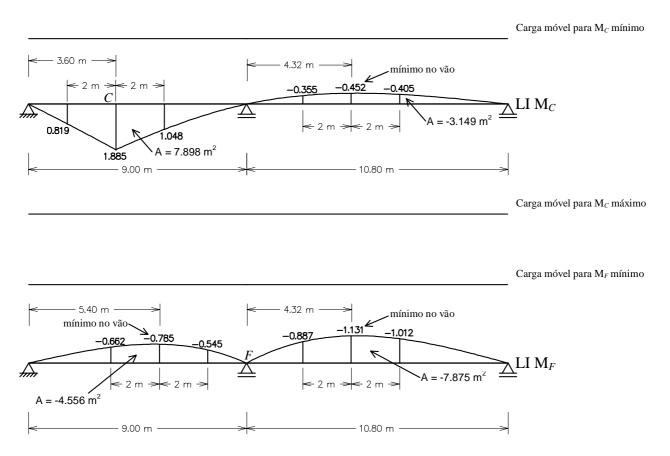
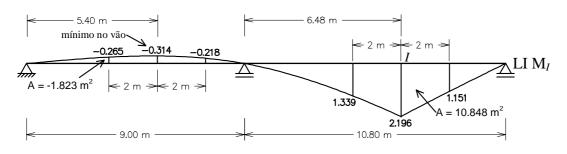

CIV 1127 - ANÁLISE DE ESTRUTURAS II - 2º Semestre - 2001

Terceira Prova – Data: 12/12/2001 – Duração: 3:00 hs – Sem Consulta

Nome:	Matrícula:

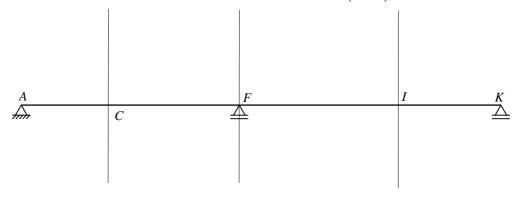

1ª Questão

Você está envolvido no projeto de uma ponte rodoviária cujo sistema estrutural é uma viga contínua com dois vãos, conforme mostrado abaixo. A carga permanente, constituída do peso próprio da estrutura, é uniformemente distribuída, tendo sido avaliada em $g=20~\mathrm{kN/m}$. A carga móvel está indicada na figura, sendo que q representa a carga de multidão e as cargas P_1 e P_2 representam as cargas dos eixos do veículo de projeto. A carga de multidão não tem extensão definida, isto é, a sua área de atuação deve ser obtida de forma a majorar ou minorar um determinado efeito.

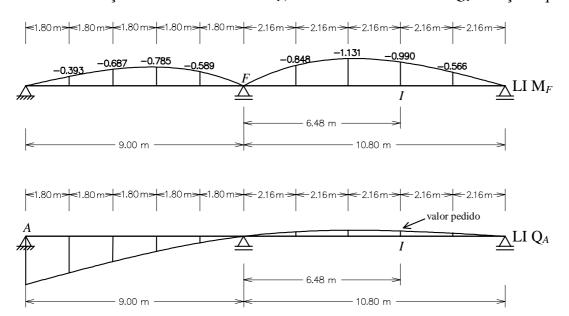


Item (a) (2,0 pontos)

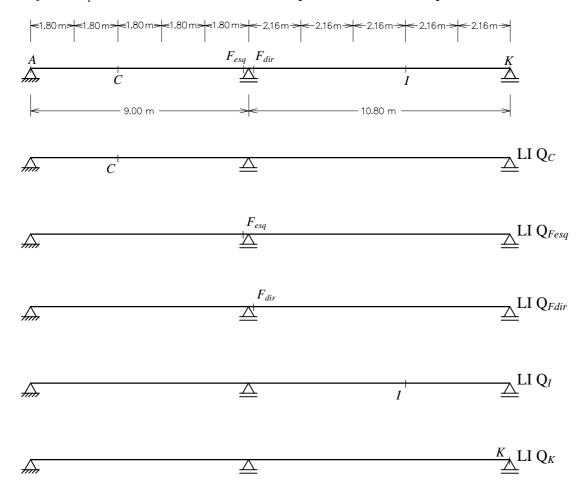
Abaixo estão indicadas as Linhas de Influência (LI) de momentos fletores na seções C, F e I da viga contínua, onde as áreas (com sinal) das LI's no primeiro vão e no segundo vão também estão mostradas. Com base na carga permanente e na carga móvel, monte uma tabela de momentos fletores míninos e máximos nestas seções e desenhe as envoltórias de momentos fletores míninos e máximos baseadas nos valores obtidos.


Carga móvel para M_F máximo

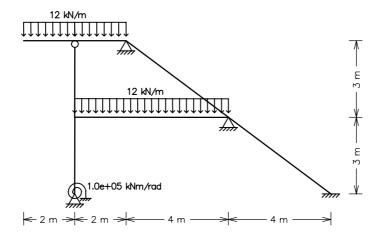
Carga móvel para M_I máximo


Envoltórias de Momentos Fletores [kNm]								
Seção	Carga	Carga Móvel		Envoltórias				
	Permanente	mínimo	máximo	mínimo	máximo			
C								
F								
I								

Envoltórias de momentos fletores (kNm)


Item (b) (1,5 ponto)

Abaixo estão mostradas as linhas de influência de momentos fletores na seção F e de esforços cortantes na seção A. Com base na LI M_F , calcule a ordenada da LI Q_A na seção I que está indicada.


Item (c) (0,5 ponto)

Desenhe os aspectos das linhas de influência de esforços cortantes nas seções C, $F_{\rm esq}$, $F_{\rm dir}$, I e K. As seções $F_{\rm esq}$ e $F_{\rm dir}$ ficam imediatamente à esquerda e à direita do apoio F.

2ª Questão (2,0 pontos)

Empregando-se o Processo de Cross, obter o diagrama de momentos fletores para o quadro abaixo (barras inextensíveis). Todas as barras têm a mesma inércia à flexão $EI = 10^5$ kNm². Utilize uma casa decimal para momentos fletores e duas casas decimais para os coeficientes de distribuição de momentos.

3ª Questão (2,0 pontos)

Durante o projeto de uma estrutura, você perdeu o desenho do modelo estrutural. Felizmente, você encontrou o arquivo de dados de entrada e saída para o programa de computador que foi utilizado para fazer a análise estrutural. Este arquivo está reproduzido abaixo.

Dados de Entrada e Resultados do Modelo Computacional

Coo	rdenadas	Noda:	is e Condi	ições de	Suporte			
Nó	X	Y	Desl.X	Desl.Y	Rot.Z	Mola X	Mola Y	Mola Z
	(m)	(m)				(kN/m)	(kN/m)	(kNm/rad)
1	0.0	0.0	Livre	Fixo	Livre	1.0e+03	0.0e+00	1.0e+05
2	10.0	0.0	Fixo	Fixo	Fixo	0.0e+00	0.0e+00	0.0e+00
3	0.0	3.0	Livre	Livre	Livre	0.0e+00	0.0e+00	0.0e+00
4	6.0	3.0	Livre	Livre	Livre	0.0e+00	0.0e+00	0.0e+00
5	-2.0	6.0	Livre	Livre	Livre	0.0e+00	0.0e+00	0.0e+00
6	0.0	6.0	Livre	Livre	Livre	0.0e+00	0.0e+00	0.0e+00
7	2.0	6.0	Livre	Livre	Livre	0.0e+00	0.0e+00	0.0e+00

Dados das Barras							
Barra	Nó	Nó	Rótula	Rótula	Mod.Elast.	Área Seção	Mom.Inércia
	inicial	final	inicial	final	(kN/m^2)	(m^2)	(m^4)
1	1	3	Não	Não	1.0e+08	0.01	0.001
2	3	4	Não	Sim	1.0e+08	0.01	0.001
3	3	6	Não	Sim	1.0e+08	0.01	0.001
4	4	2	Não	Não	1.0e+08	0.01	0.001
5	5	6	Não	Não	1.0e+08	0.01	0.001
6	6	7	Não	Não	1.0e+08	0.01	0.001
7	7	4	Não	Não	1.0e+08	0.01	0.001

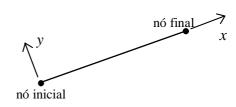
Dados de Cargas Nodais Nó Fx (kN) Fy (kN) Mz (kNm) 5 0.0 -20.0 0.0

Dados de Carregamentos Uniformente Distribuídos em Barras Barra Direção Qx (kN/m) Qy (kN/m)

2 Local 0.0 -12.0 6 Global 0.0 -12.0

Resultados de Deslocamentos e Rotações Nodais

Nó	Desloc. X	Desloc. Y	Rotação Z
	(m)	(m)	(rad)
1	-2.459e-03	0.000e+00	-1.064e-04
2	0.000e+00	0.000e+00	0.000e+00
3	-1.550e-03	-2.760e-04	-5.361e-04
4	-1.516e-03	-2.157e-03	+3.155e-04
5	-6.879e-04	-7.671e-04	+3.056e-04
6	-6.879e-04	-4.226e-04	-9.440e-05
7	-7.045e-04	-1.107e-03	-4.773e-04

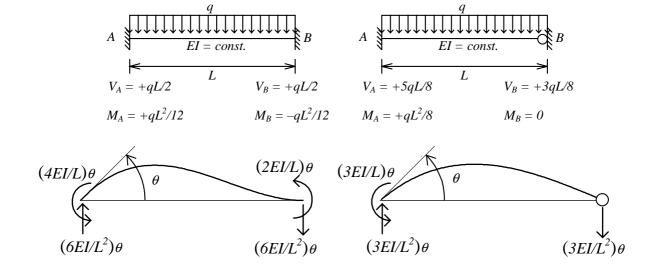

Resultados de Esforços nas Barras (direções locais)

		,	• •	•		
Barra	Normal	Normal	Cortante	Cortante	Momento	Momento
	Nó inicial	Nó final	Nó inicial	Nó final	Nó inicial	Nó final
	(kN)	(kN)	(kN)	(kN)	(kNm)	(kNm)
1	+92.0	-92.0	-24.6	+24.6	+10.6	-18.0
2	-5.8	+5.8	+43.1	+28.9	+42.9	0.0
3	+48.9	-48.9	-8.3	+8.3	-24.9	0.0
4	+16.4	-16.4	-17.7	+17.7	+38.0	-50.6
5	+5.0	-5.0	-20.0	+20.0	0.0	-40.0
6	+8.3	-8.3	+28.9	-4.9	+40.0	-6.3
7	+3.7	-3.7	+8.9	-8.9	+6.3	+38.0

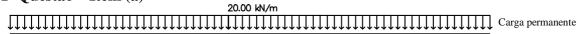
Os deslocamentos e rotações são fornecidos no sistema de coordenadas globais.

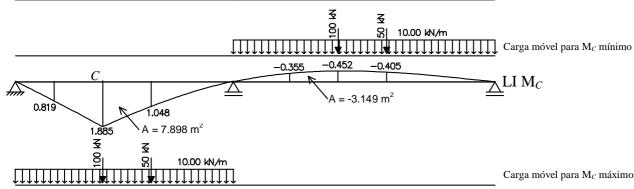
As cargas uniformemente distribuídas e os esforços (normal, cortante e momento fletor) são fornecidos no sistema de coordenadas locais de cada barra. Este sistema de coordenadas locais é definido de tal forma que o eixo local x vai do nó inicial ao nó final da barra, tal como mostrado na figura ao lado.

Neste caso, vale a convenção de sinais do Método dos Deslocamentos: o sinal positivo significa que o esforço está na mesma direção de um eixo local, e o sinal negativo, na direção contrária ao eixo local.


Com base nos resultados do modelo estrutural, pede-se:

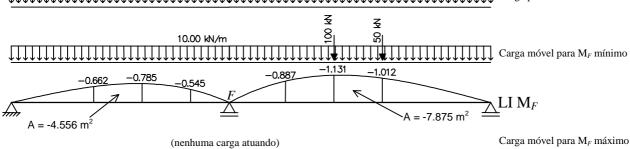
- (a) Desenhe o modelo estrutural e a sua configuração deformada (exagerando os valores dos deslocamentos e rotações).
- (b) Desenhe os diagramas de esforços normais, esforços cortantes e momentos fletores fornecidos pelo modelo estrutural utilizando a seguinte convenção de sinais:
 - Esforços normais de tração são positivos e de compressão são negativos.
 - Esforços cortantes são positivos quando, entrando com as forças à esquerda de uma seção transversal (de quem olha da fibra do lado -y para a fibra do lado +y), a resultante das forças na direção transversal à barra for para cima.
 - O diagrama de momentos fletores é sempre desenhado do lado da fibra tracionada.
- (c) Ao verificar os diagramas desenhados no item (b), pode-se constatar que existem três erros nos resultados fornecidos pelo programa de computador para os esforços internos. Indique esses três erros.


4ª Questão (2,0 pontos)


Grau vindo do terceiro trabalho (nota do trabalho x 0,2).

Formulário

1ª Questão – Item (a)

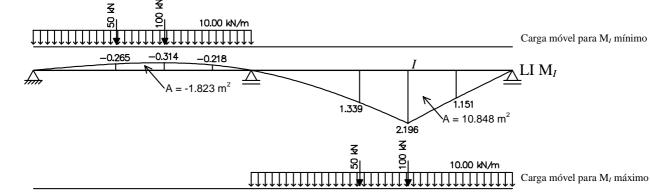


$$(M_C)^{C.P.} = 20 \cdot (7.898 - 3.149) = +94.98kNm$$

$$(M_C)_{min}^{C.M.} = 100 \cdot (-0.452) + 50 \cdot (-0.405) + 10 \cdot (-3.149) = -96.94 kNm^{-1}$$

$$(M_C)_{max}^{C.M.} = 100 \cdot (1.885) + 50 \cdot (1.048) + 10 \cdot (7.898) = +319.88 kNm$$

20.00 kN/m Carga permanente

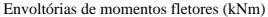


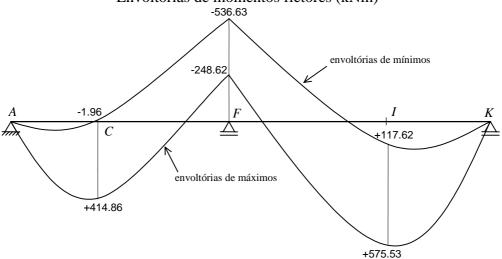
$$(M_F)^{C.P.} = 20 \cdot (-4.556 - 7.875) = -248.62kNm$$

$$(M_F)_{min}^{C.M.} = 100 \cdot (-1.131) + 50 \cdot (-1.012) + 10 \cdot (-4.556 - 7.875) = -288.01 kNm$$

$$(M_F)_{m\acute{a}x}^{C.M.}=0$$

20.00 kN/m Carga permanente

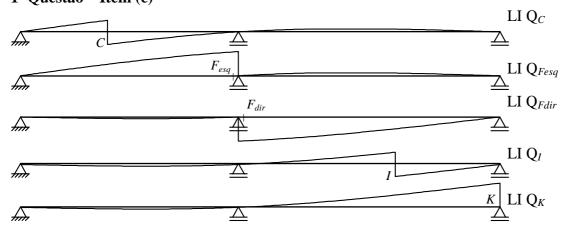


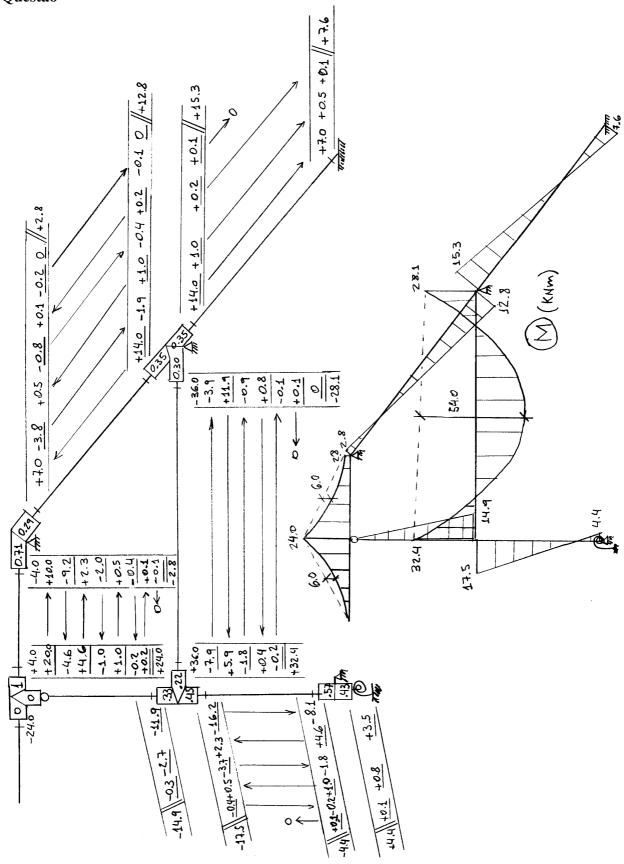

$$(M_I)^{C.P.} = 20 \cdot (-1.823 + 10.848) = +180.50kNm$$

$$(M_I)_{min}^{C.M.} = 100 \cdot (-0.314) + 50 \cdot (-0.265) + 10 \cdot (-1.823) = -62.88 kNm$$

$$(M_1)_{max}^{C.M.} = 100 \cdot (2.196) + 50 \cdot (1.339) + 10 \cdot (10.848) = +395.03kNm$$

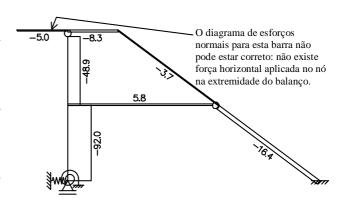
Envoltórias de Momentos Fletores [kNm]							
Seção	Carga	Carga M	lóvel	Envoltórias			
	Permanente	mínimo	máximo	mínimo	máximo		
C	+94.98	-96.94	+319.88	-1.96	+414.86		
F	-248.62	-288.01	0	-536.63	-248.62		
I	+180.50	-62.88	+395.03	+117.62	+575.53		



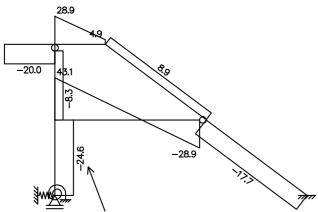

1ª Questão – Item (b)

Portanto, o valor do esforço cortante na seção A quando a carga passa pela seção I é igual a: $Q_A = -0.11$. Esta é a ordenada da LI Q_A pedida.

1ª Questão – Item (c)



3ª Questão


Modelo Estrutural e Configuração deformada (exagerada)

12 kN/m 12 kN/m 2 12 kN/m 2 12 kN/m 2

Diagrama de Esforços Normais [kN]

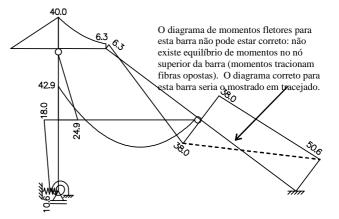


Diagrama de Esforços Cortantes [kN]

O diagrama de esforços cortantes para esta barra não pode estar correto: o produto da constante de mola $(1.0 \times 10^{13} \text{kN/m})$ pelo deslocamento horizontal do nó $1 (-2.459 \times 10^{13} \text{m})$, que é a reação horizontal na mola e o esforço cortante nesta barra, resulta em um valor igual a -2.459 kN e não -24.6 kN.

Diagrama de Momentos Fletores [kNm]

