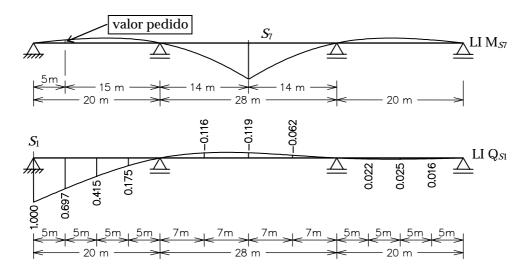

CIV 1127 – ANÁLISE DE ESTRUTURAS II – 1º Semestre – 2003

Terceira Prova – 02/07/2003 – Duração: 2:30 hs – Sem Consulta


1ª Questão (2,5 pontos)

Para a estrutura, cujo modelo é apresentado abaixo, calcule os valores mínimo e máximo de momento fletor na seção S_8 devidos às cargas permanente e acidental indicadas. Utilize o Processo de Cross para analisar a estrutura. Todas as barras são inextensíveis e têm a mesma inércia à flexão EI. Utilize duas casas decimais para os coeficientes de distribuição de momentos e uma casa decimal para momentos fletores.

2ª Questão (1,5 pontos)

Abaixo estão mostradas as linhas de influência de momentos fletores na seção S_7 e de esforços cortantes na seção S_1 de uma ponte. Calcule a ordenada da LI M_{S7} na seção que está indicada. Sugestão: explore a simetria da estrutura.

3ª Questão (4,0 pontos)

Você está envolvido no projeto de uma estrutura, mas perdeu o desenho do modelo estrutural. Felizmente, você encontrou o arquivo de dados de entrada e saída para o programa de computador que foi utilizado para fazer a análise estrutural. Este arquivo está reproduzido na folha seguinte. Os esforços internos nas extremidades das barras são fornecidos nos sistemas de eixos locais das barras com a convenção de sinais do Método dos Deslocamentos: esforços normais são positivos no sentido do eixo local x e negativos no sentido contrário; esforços cortantes são positivos no sentido do eixo local y e negativos no sentido contrário; e momentos fletores são positivos quando têm o sentido anti-horário e negativos no sentido contrário. Observe que os valores dos esforços internos da barra 2 não puderam ser recuperados do arquivo.

Pede-se:

- (a) Desenhe o modelo estrutural, indicando dimensões, apoios, cargas e rótulas (0,5 ponto).
- (b) Desenhe (na forma de um esboço) a configuração deformada da estrutura, exagerando os valores dos deslocamentos e rotações (0,5 ponto).
- (c) Com base nos valores dos deslocamentos e rotações nodais fornecidos e nos coeficientes de rigidez locais da barra 2, determine os valores dos esforços internos que estão faltando para essa barra (1,5 pontos).
- (d) Desenhe os diagramas de esforços normais, esforços cortantes e momentos fletores fornecidos pelo modelo estrutural. Esforços normais de tração são positivos e de compressão são negativos. Esforços cortantes são positivos quando, entrando com as forças à esquerda de uma seção transversal (de quem olha da fibra do lado –*y* para a fibra do lado +*y*), a resultante das forcas na direção transversal à barra for para cima. O diagrama de momentos fletores é sempre desenhado do lado da fibra tracionada (1,5 pontos).

Dados de Entrada e Resultados do Modelo Computacional

Coordenadas Nodais e Condições de Suporte

Nó	X	Y	Desloc. X	Desloc. Y	Rotação Z
	(m)	(m)			
1	0.0	0.0	Fixo	Fixo	Fixo
2	8.0	0.0	Fixo	Fixo	Fixo
3	8.0	3.0	Livre	Livre	Livre
4	0.0	9.0	Livre	Livre	Livre
5	8.0	9.0	Livre	Livre	Livre
6	0.0	15.0	Livre	Livre	Livre

Dados das Barras

Barra	Nó inicial	Nó final	Rótula inicial	Rótula final	Mod.Elast. (kN/m^2)	Área Seção (m^2)	Mom.Inércia (m^4)
1	1	4	Não	Sim	2.0e+08	0.006	0.00027
2	2	3	Não	Não	2.0e+08	0.006	0.00027
3	3	5	Não	Não	2.0e+08	0.006	0.00027
4	4	3	Não	Não	2.0e+08	0.006	0.00027
5	4	6	Não	Não	2.0e+08	0.006	0.00027
6	6	5	Não	Sim	2.0e+08	0.006	0.00027

Dados de Cargas Nodais

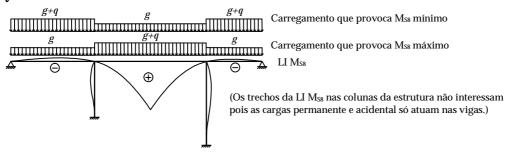
Nó	Fx (kN)	Fy (kN)	Mz (kNm)
3	-10.0	0.0	0.0
5	-10.0	0.0	0.0

Dados de Carregamentos Uniformente Distribuídos em Barras

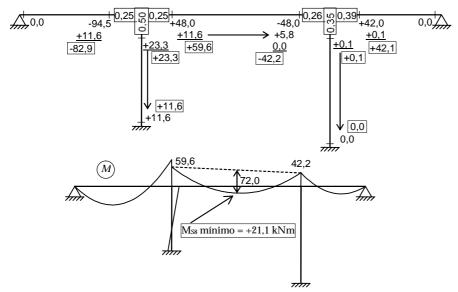
Barra	Direção	Qx (kN/m)	Qy (kN/m)
4	Local	0.0	-8.0
6	Local	0.0	-8.0

Resultados de Deslocamentos e Rotações Nodais

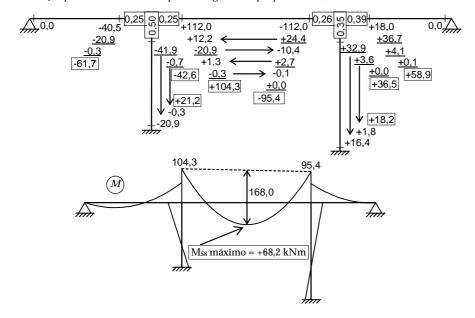
Nó	Desloc. X (m)	Desloc. Y (m)	Rotação Z (rad)
1	0.000e+00	0.000e+00	0.000e+00
2	0.000e+00	0.000e+00	0.000e+00
3	-1.343e-02	+5.228e-05	+5.826e-03
4	-1.550e-02	-1.117e-03	+2.496e-03
5	-5.174e-02	-1.280e-04	+6.665e-03
6	-5.230e-02	-1.257e-03	+3.608e-03

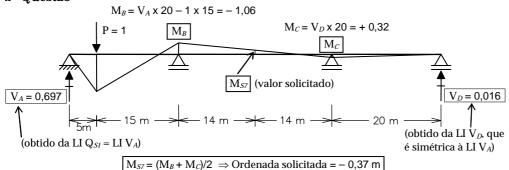

Resultados de Esforços nas Barras (direções locais)

Barra	Normal	Normal	Cortante	Cortante	Momento	Momento
	Nó inicial	Nó final	Nó inicial	Nó final	Nó inicial	Nó final
	(kN)	(kN)	(kN)	(kN)	(kNm)	(kNm)
1	+148.9	-148.9	-3.4	+3.4	-31.0	0.0
2	xxxxx	xxxxx	xxxxx	xxxxx	xxxxx	xxxxx
3	+36.1	-36.1	-2.5	+2.5	-15.1	0.0
4	-114.2	+114.2	+65.6	+14.4	+176.5	+79.1
5	+27.9	-27.9	-55.5	+55.5	-176.5	-156.4
6	+27.6	-27.6	+55.6	+24.4	+156.4	0.0

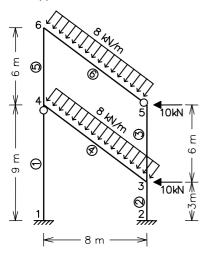

4^a Questão (2,0 pontos)

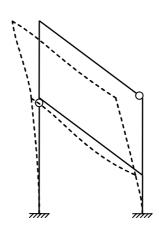
Grau vindo do segundo trabalho (nota do trabalho x 0,2).


1ª Questão


Solução pelo Processo de Cross para carregamento que provoca Ms8 mínimo:

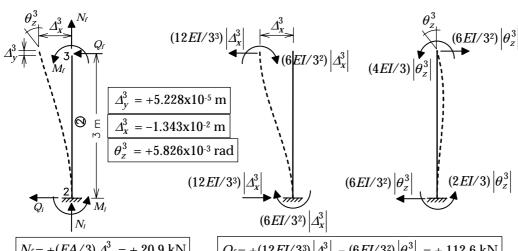
Solução pelo Processo de Cross para carregamento que provoca M_{S8} máximo:


2ª Questão



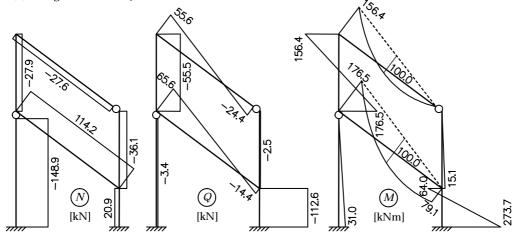
3ª Questão

Item (a) – Modelo estrutural


Item (b) - Configuração deformada

Item (c) – Determinação dos esforços internos na barra 2 a partir dos deslocamentos do nó 3

Deformada da barra 2 e esforços internos com sentidos positivos (nas direções dos eixos locais) Isolando efeito do deslocamento horizontal do nó 3 (esforços indicados nos sentidos físicos) Isolando efeito da rotação do nó 3 (esforços indicados nos sentidos físicos)



$$N_f = +(EA/3) \Delta_y^3 = +20.9 \text{ kN}$$

 $N_i = -(EA/3) \Delta_y^3 = -20.9 \text{ kN}$

$$E = 2.0 \times 10^8 \text{ kN/m}^2$$

 $A = 6.0 \times 10^{-3} \text{ m}^2$ $I = 2.7 \times 10^{-4} \text{ m}^4$

$$\begin{aligned} Q_f &= + (12EI/3^3) \left| \Delta_x^3 \right| - (6EI/3^2) \left| \theta_z^3 \right| = + 112.6 \text{ kN} \\ M_f &= - (6EI/3^2) \left| \Delta_x^3 \right| + (4EI/3) \left| \theta_z^3 \right| = - 64.0 \text{ kNm} \\ Q_i &= - (12EI/3^3) \left| \Delta_x^3 \right| + (6EI/3^2) \left| \theta_z^3 \right| = - 112.6 \text{ kN} \\ M_i &= - (6EI/3^2) \left| \Delta_x^3 \right| + (2EI/3) \left| \theta_z^3 \right| = - 273.7 \text{ kNm} \end{aligned}$$

Item (d) – Diagramas de esforços internos

