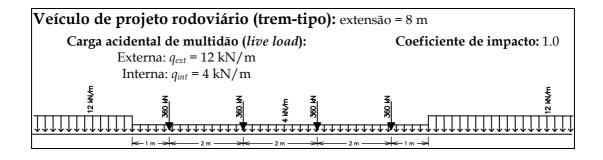

ENG 1204 – ANÁLISE DE ESTRUTURAS II – 1° Semestre – 2020 Terceiro trabalho (T3): carregamento móvel e linhas de influência


1ª questão do grau G3 (1,5 pontos) - Aplicação: 01/06/2020 - Entrega: 08/06/2020

Utilizando o Ftool, determine envoltórias de mínimos e máximos de esforço cortante e momento fletor para um dos modelos estruturais de ponte mostrados abaixo. Cada aluno tem um modelo de ponte. Veja valores para os vãos da ponte (parâmetros a, b, c, d e e) na tabela na próxima página. Utilize o módulo de elasticidade do concreto. As seções transversais da viga e dos pilares da ponte estão mostradas abaixo. A ponte está solicitada por uma carga permanente uniformemente distribuída (g) e por um carregamento móvel, que é o veículo de projeto (trem-tipo) com quatro cargas concentradas e cargas acidentais de multidão uniformemente distribuídas, q_{int} e q_{ext} , conforme indicado. As envoltórias devem ser traçadas para o efeito combinado da carga permanente e do veículo de projeto. Os valores das envoltórias devem ser mostradas com um passo de visualização de 2 metros, isto é, os valores devem ser mostrados em seções dos elementos estruturais da ponte a cada 2 metros.

O trabalho consiste em escrever um relatório descrevendo, com figuras, os procedimentos para determinação das envoltórias. A nota do trabalho vai ser baseada no conteúdo e na qualidade de apresentação do relatório. No relatório deve constar uma memória de cálculo para a verificação dos valores mínimos e máximos calculados para as envoltórias de esforço cortante e de momento fletor na seção central do segundo vão da viga da ponte (vão com comprimento *c*). As linhas de influência nesta seção devem ser desenhadas e devem ser indicadas as posições do carregamento móvel que determinam os valores mínimos e máximos de esforço cortante e momento fletor para esta seção. As áreas das linhas de influência, nos seus trechos positivos e negativos, devem ser calculadas com base nas ordenadas da linha de influência usando a regra dos trapézios.

Na *homepage* da disciplina tem disponível um roteiro para criação de um modelo de ponte com trem-tipo, e visualização de posições críticas do trem-tipo ao longo de linhas de influência e de envoltórias de esforços internos: http://www.tecgraf.puc-rio.br/ftp_pub/lfm/ftool400roteirotremtipo.pdf.

Sugestão de opções de configuração no Ftool:

Unidades: kN-m

Número de casas decimais para distâncias: 0 (nenhuma casa decimal)

Número de casas decimais para forças: 1 Número de casas decimais para momentos: 1

Número de casas decimais para cargas distribuídas: 0 (nenhuma casa decimal)

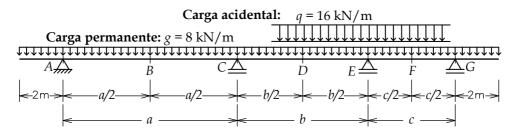
Número de casas decimais para dimensões de seção transversal (em metros): 2

Tamanho do passo (Step) de visualização: 2 m

Opção de desenho de valores de resultados (Display/Result Values): ativa.

Opção de desenho de valores de resultados em passos (Display/Step Values): ativa.

Opção de desenho transversal de valores de resultados (Display/Transversal Values): ativa.


Opção de desenho de sinais de momentos fletores (Display/Bending Moment Signs): ativa.

	Matrícula	<i>a</i> [m]	<i>b</i> [m]	c [m]	<i>d</i> [m]	<i>e</i> [m]
1	1321330	8	26	40	34	12
2	1420321	8	28	38	34	12
3	1421699	8	30	36	34	12
4	1511787	8	32	34	34	12
5	1512423	8	34	32	34	12
6	1512478	8	34	34	32	12
7	1520758	8	34	36	30	12
8	1520812	8	34	38	28	12
9	1520887	8	34	40	26	12
10	1520996	10	40	26	34	10
11	1611378	10	38	28	34	10
12	1611768	10	36	30	34	10
13	1612042	10	34	32	34	10
14	1612589	10	32	34	34	10
15	1620460	10	34	34	32	10
16	1711313	10	36	34	30	10
17	1711666	10	38	34	28	10
18	1720639	10	40	34	26	10
19	1920012	10	34	26	40	10
20	2010186	10	34	28	38	10

ENG 1204 - ANÁLISE DE ESTRUTURAS II - 1° Semestre - 2020

2ª questão do grau G3 (4,0 pontos) - Aplicação: 15/06/2020 - Entrega: 22/06/2020

Considere a viga abaixo com carga permanente (g) e carga acidental (q) uniformemente distribuídas mostradas. Cada aluno tem um conjunto de valores para os parâmetros de comprimento (a, b, e c). Consulte pelo número de matrícula os dados do seu modelo na tabela fornecida. Adote para toda a viga um módulo de elasticidade do material $E = 2 \times 10^{+7} \text{ kN/m}^2$ e uma seção transversal retangular com base 0.30 m e altura 0.60 m.

Matrícula	a [m]	b [m]	C [m]
1321330	10	8	8
1420321	10	8	6
1421699	10	8	4
1511787	10	8	2
1512478	8	6	10
1520758	8	6	6
1520812	8	6	4
1520887	8	6	2
1520996	6	4	10
1611378	6	4	8
1612042	6	4	4
1612589	6	4	2
1620460	4	10	10
1711313	4	10	8
1711666	4	10	6
1720639	4	10	2
1920012	2	8	6
2010186	2	8	4

Pede-se:

Item (a) (0,5 ponto)

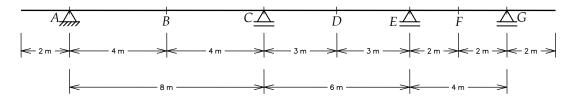
Utilizando o Ftool trace as linhas de influência de momentos fletores para as seções *A, B, C, D, E, F* e *G* indicadas. Os valores das linhas de influência devem ser indicados com um passo (*Step*) de 1 m. Utilize 4 casas decimais para os valores das linhas de influência. Sugestão: para não acavalar os valores das linhas de influência, selecione a opção *Transversal Values* do menu *Display*.

Item (b) (1,0 ponto)

Crie um carregamento que possibilite o cálculo dos valores de todas as linhas de influência do item (a) na seção B. Mostre no diagrama de momentos fletores para esse carregamento onde estão esses valores, identificando-os por: valor da LI M_A em B, valor da LI M_B em B, valor da LI M_C em B.

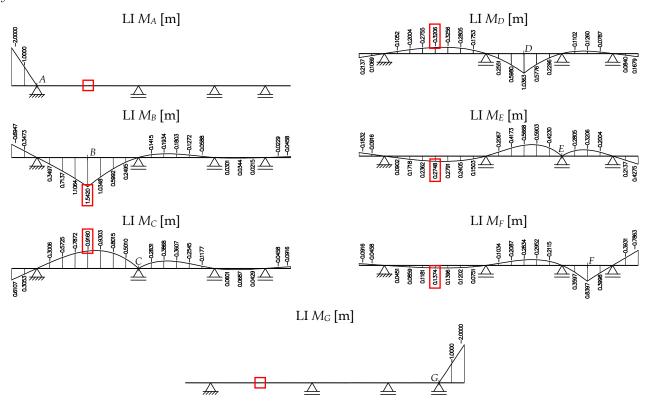
Item (c) (0,5 ponto)

Com base nas linhas de influência traçadas no item (a), defina os carregamentos que devem atuar na viga de forma a minimizar e maximizar os momentos fletores nas seções indicadas. Indique, para cada carregamento, os trechos onde atuam somente a carga permanente e os trechos onde atuam a carga permanente junto com a carga acidental.


Item (d) (2,0 pontos)

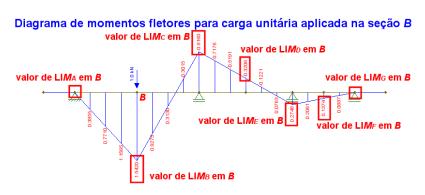
Com base nas linhas de influência traçadas no item (a) e nos carregamentos definidos no item (c), calcule as envoltórias de mínimos e máximos de momentos fletores. As áreas dos trechos negativos e positivos das linhas de influência devem ser calculadas pela regra dos trapézios com um passo (*Step*) de 1 m. A unidade para os valores dos momentos fletores nas envoltórias deve ser [kNm] e devem ser mostrados com uma casa decimal. Mostre as envoltórias determinadas pelo Ftool e compare com as envoltórias calculadas utilizando a regra dos trapézios.

ENG 1204 - ANÁLISE DE ESTRUTURAS II - 1º Semestre - 2020


Grau G3 - 2ª Questão (4,0 pontos) - SOLUÇÃO

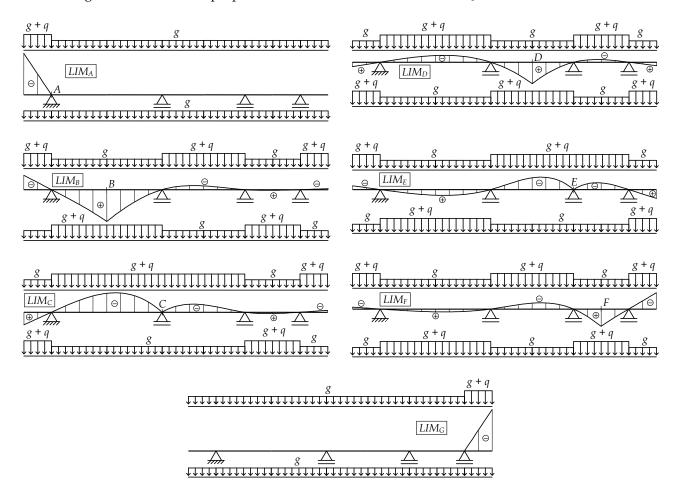
Esta solução adota os seguintes valores para os parâmetros de distância: a = 8 m, b = 6 m e c = 4 m.

Item (a)


Utilizando o Ftool trace as linhas de influência de momentos fletores para as seções A, B, C, D, E, F e G indicadas. Os valores das linhas de influência devem ser indicados com um passo (Step) de 1 m. Utilize 4 casas decimais para os valores das linhas de influência. Sugestão: para não acavalar os valores das linhas de influência, selecione a opção Transversal Values do menu Display.

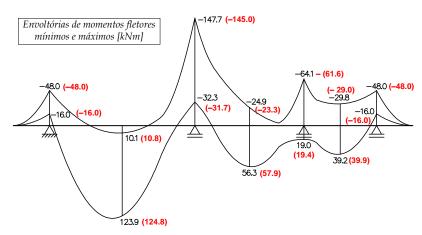
Item (b)

Crie um carregamento que possibilite o cálculo dos valores de todas as linhas de influência do item (a) na seção B. Mostre no diagrama de momentos fletores para esse carregamento onde estão esses valores, identificando-os por: valor da LIM $_{\rm A}$ em B, valor da LIM $_{\rm B}$ em B. Utilize 4 casas decimais para os valores dos momentos fletores.


O carregamento que possibilita o cálculo dos valores de todas as linhas de influência do item (a) na seção *B* (salientados com retângulos vermelhos) é uma carga vertical unitária aplicada na seção *B*, tal como mostrado em seguida:

Item (c)

Com base nas linhas de influência traçadas no item (a), defina os carregamentos que devem atuar na viga de forma a minimizar e maximizar os momentos fletores nas seções indicadas. Indique, para cada carregamento, os trechos onde atuam somente a carga permanente e os trechos onde atuam a carga permanente junto com a carga acidental.


Para cada uma das linhas de influência selecionadas, o carregamento superior é o que provoca o mínimo momento fletor e o carregamento inferior é o que provoca o máximo momento fletor na seção de referência:

Item (d)

Com base nas linhas de influência traçadas no item (a) e nos carregamentos definidos no item (c), calcule as envoltórias de mínimos e máximos de momentos fletores. As áreas dos trechos negativos e positivos das linhas de influência devem ser calculadas pela regra dos trapézios com um passo (Step) de 1 m. A unidade para os valores dos momentos fletores nas envoltórias deve ser [kNm] e devem ser mostrados com uma casa decimal. Mostre as envoltórias determinadas pelo Ftool e compare com as envoltórias calculadas utilizando a regra dos trapézios.

A figura abaixo mostra as envoltórias de momentos fletores mínimos e máximos provocadas pelas cargas permanente e acidental. O traçado pelo Ftool está mostrado em cor preta. Os valores em vermelho entre parênteses são os valores calculados utilizando a regra dos trapézios com base nos valores indicados no item (a). A planilha na página seguinte mostra o cálculo pela regra dos trapézios. Observa-se que as diferenças são pequenas.

G3 - Questão 2 - SOLUÇÃO

Cálculo pela regra dos trapézios (passo de 1 m) das áreas dos trechos negativos e positivos das linhas de influência de momentos fletores nas seções selecionadas.

LIMA	Áreas	LIM _B	Áreas	LIMc	Áreas	LIM _D	Áreas	LIME	Áreas	LIM _F	Áreas	LIM _G	Áreas
[m]	[m ²]	[m]	[m ²]	[m]	[m ²]	[m]	[m ²]	[m]	[m ²]	[m]	[m ²]	[m]	[m ²]
-2.0000	-2.0000	-0.6947	-0.6947	0.6107	0.6107	0.2137	0.2137	-0.1832	-0.1832	-0.0916	-0.0916		0.0000
		0.3497		-0.3006		-0.1052		0.0902		0.0451			
		0.7137 1.1064		-0.5725 -0.7872		-0.2004 -0.2755		0.1718 0.2362		0.0859 0.1181			
		1.5420		-0.9160		-0.3206		0.2748		0.1374			
		1.0348		-0.9303		-0.3256		0.2791		0.1396			
		0.5992		-0.8015		-0.2805		0.2405		0.1202			
	0.0000	0.2495	5.5953	-0.5010	-4.8091	-0.1753	-1.6831	0.1503	1.4429	0.0751	0.7214		0.0000
		-0.1415		-0.2831		0.2551		-0.2067		-0.1034			
		-0.1934		-0.3868		0.5980		-0.4173		-0.2087			
		-0.1803		-0.3607		1.0363		-0.5668		-0.2834			
		-0.1272		-0.2545		0.5776		-0.5903		-0.2952			
	0.0000	-0.0588	-0.7012	-0.1177	-1.4028	0.2296	2.6966	-0.4230	-2.2041	-0.2115	-1.1022		0.0000
		0.0301		0.0601		-0.1102		-0.2805		0.3597			
		0.0344		0.0687		-0.1260		-0.3206		0.8397			
	0.0000	0.0215	0.0860	0.0429	0.1717	-0.0787	-0.3149	-0.2004	-0.8015	0.3998	1.5992		0.0000
	0.0000	-0.0458	-0.0458	-0.0916	-0.0916	0.1679	0.1679	0.4275	0.4275	-0.7863	-0.7863	-2.0000	-2.0000

Valores das envoltórias de mínimos e máximos de momentos fletores nas seções selecionadas calculados com áreas de pela regra dos trapézios

M_{Amin}	-48.0	M_{Bmin}	10.8	M_{Cmin}	-145.0	M_{Dmin}	-23.3	M_{Emin}	-61.6	M_{Fmin}	-29.0	M_{Gmin}	-48.0
M_{Amax}	-16.0	M_{Bmax}	124.8	M_{Cmax}	-31.7	M_{Dmax}	57.9	M _{Emax}	19.4	M_{Fmax}	39.9	M_{Gmax}	-16.0

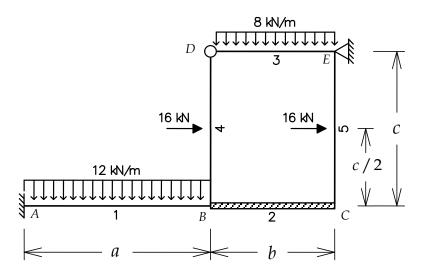
$$M_{\min} = \left(\sum \text{Áreas}^- + \sum \text{Áreas}^+\right) \cdot g + \left(\sum \text{Áreas}^-\right) \cdot q$$

$$M_{\text{max}} = \left(\sum \text{Áreas}^- + \sum \text{Áreas}^+\right) \cdot g + \left(\sum \text{Áreas}^+\right) \cdot q$$

em que:

 \sum Áreas $^ \rightarrow$ somatório das áreas dos trechos negativos de um linha de influência \sum Áreas $^+$ \rightarrow somatório das áreas dos trechos positivos de um linha de influência g=8 kN/m \rightarrow carga permanente q=16 kN/m \rightarrow carga acidental

ENG 1204 - ANÁLISE DE ESTRUTURAS II - 1° Semestre - 2020


Grau G3 - 3ª Questão - Aplicação: 29/06/2020, 9 hs - Entrega: 06/07/2020, 9 hs

3ª Questão (4,5 pontos)

Empregando-se o Método dos Deslocamentos, obter o diagrama de momentos fletores para o pórtico plano mostrado abaixo com barras inextensíveis e uma barra infinitamente rígida (barra horizontal inferior na direita). Todos os passos da solução devem ser mostrados.

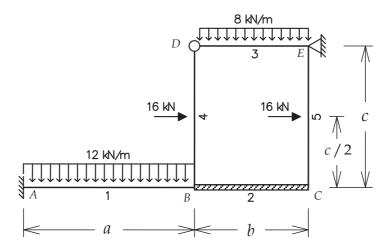
Despreza-se deformações axiais e deformações por cisalhamento. Considera-se apenas deformações por flexão. Todas as barras têm material com módulo de elasticidade $E=1\times10^8~\mathrm{kN/m^2}$ e seção transversal com área $A=0.012~\mathrm{m^2}$ e momento de inércia $I=0.0012~\mathrm{m^4}$. A área da seção transversal não é utilizada porque são barras inextensíveis, assim como o momento de inércia da barra infinitamente rígida não é utilizado.

Sugestão: Crie o seu modelo estrutural no Ftool e verifique quais são as deslocabilidades do problema. Você pode verificar os valores dos termos de carga e coeficientes de rigidez globais pelo Ftool.

Consulte pelo seu número de matrícula os dados do seu modelo na tabela fornecida.

Matrícula	<i>a</i> [m]	<i>b</i> [m]	С [m]
1321330	10	8	8
1420321	10	6	8
1421699	10	4	8
1511787	10	2	8
1512478	8	10	6
1520758	8	6	6
1520812	8	4	6
1520887	8	2	6
1520996	6	10	4
1611378	6	8	4
1612042	6	4	4
1612589	6	2	4
1620460	4	10	10
1711313	4	8	10
1711666	4	6	10
1720639	4	2	10
1920012	2	6	8
2010186	2	4	8

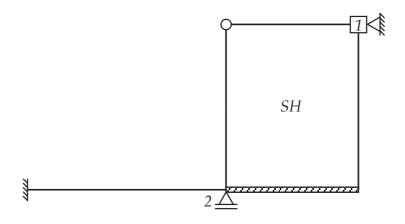
PUC-Rio - Análise de Estruturas II - 2020.1 - Luiz Fernando Martha


Método dos Deslocamentos

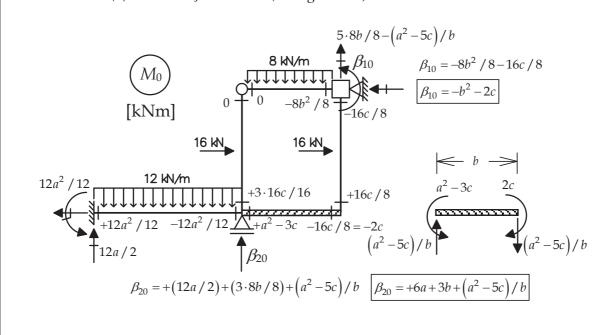
Grau G3 – 3ª Questão

Aplicação: 29/06/2020, 9 hs - Entrega: 06/07/2020, 9 hs

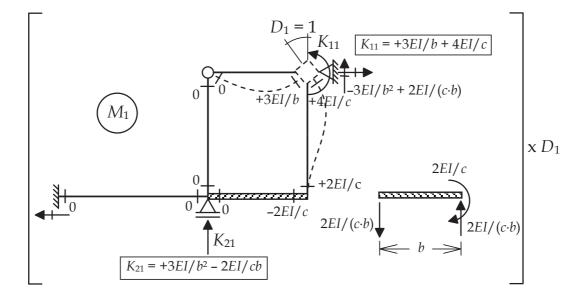
Pórtico com barras ortogonais e barra horizontal infinitamente rígida


Pórtico com barra horizontal infinitamente rígida

Todas as barras são inextensíveis, com inércia à flexão *EI* constante, exceto a barra horizontal inferior direita, que é infinitamente rígida.

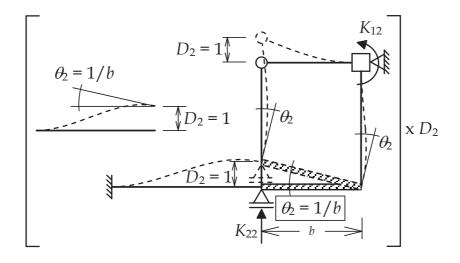

Pede-se o diagrama de momentos fletores.

Sistema Hipergeométrico:

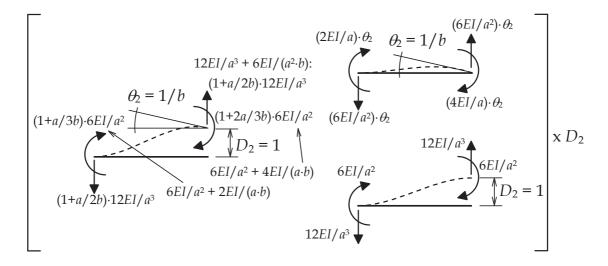


Pórtico com barra horizontal infinitamente rígida

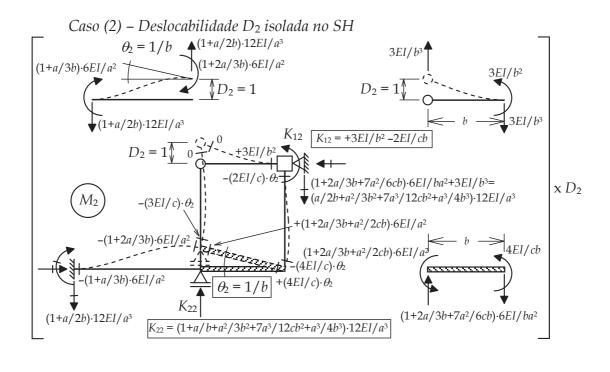
Caso (0) - Solicitação externa (carregamento) isolada no SH



Caso (1) – Deslocabilidade D₁ isolada no SH



Pórtico com barra horizontal infinitamente rígida


Caso (2) – Deslocabilidade D_2 isolada no SH

Caso (2) - Deslocabilidade D2 isolada no SH

Pórtico com barra horizontal infinitamente rígida

Equações de equilíbrio e cálculo das deslocabilidades:

$$\begin{cases} \beta_{10} + K_{11}D_1 + K_{12}D_2 = 0 \\ \beta_{20} + K_{21}D_1 + K_{22}D_2 = 0 \end{cases}$$

$$\beta_{10} = -b^2 - 2c$$

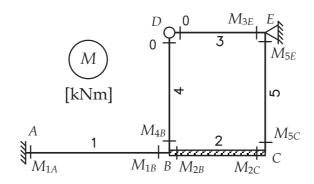
$$\beta_{20} = +6a + 3b + (a^2 - 5c)/b$$

$$K_{11} = +3EI/b + 4EI/c$$

$$K_{12} = K_{21} = +3EI/b^2 - 2EI/cb$$

$$K_{22} = (1 + a/b + a^2/3b^2 + 7a^3/12cb^2 + a^3/4b^3)\cdot 12EI/a^3$$

Pórtico com barra horizontal infinitamente rígida

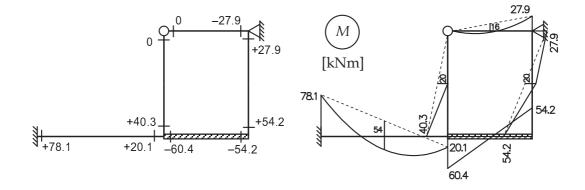

Matrícula	а	b	С	β_{10}	eta_{20}	K_{11}	$K_{12} =$	K_{22}
Watticala	[m]	[m]	[m]				K_{21}	
1321330	10	8	8	-80	91.5	7EI/8	EI/64	1689EI/32000
1420321	10	6	8	-52	88	EI	EI/24	2927EI/36000
1421699	10	4	8	-32	87	5EI/4	EI/8	2697EI/16000
1511787	10	2	8	-20	96	2EI	5EI/8	3063EI/4000
1512478	8	10	6	-112	81.4	29EI/30	-EI/300	2969EI/48000
1520758	8	6	6	-48	215/3	7EI/6	EI/36	397EI/3456
1520812	8	4	6	-28	68.5	17EI/12	5EI/48	85EI/384
1520887	8	2	6	-16	71	13EI/6	7EI/12	349EI/384
1520996	6	10	4	-108	67.6	13EI/10	-EI/50	2089EI/18000
1611378	6	8	4	-72	62	11EI/8	-EI/64	649EI/4608
1612042	6	4	4	-24	52	7EI/4	EI/16	97EI/288
1612589	6	2	4	-12	50	5EI/2	EI/2	173EI/144
1620460	4	10	10	-120	50.6	7EI/10	EI/100	113EI/400
1711313	4	8	10	-84	43.75	31 <i>EI</i> /40	7EI/320	803EI/2560
1711666	4	6	10	-56	109/3	9EI/10	EI/20	269EI/720
1720639	4	2	10	-24	13	19EI/10	13EI/20	109EI/80
1920012	2	6	8	-52	24	EI	EI/24	67EI/32
2010186	2	4	8	-32	15	5EI/4	EI/8	317EI/128

Solução do sistema de equações de equilíbrio: valores das deslocabilidades

Matrícula	a [m]	<i>b</i> [m]	C [m]	D_1	D_2
1321330	10	8	8	2893920/23521EI	-41632000/23521 <i>EI</i>
1420321	10	6	8	568408/5729EI	-6492000/5729EI
1421699	10	4	8	94656/1135EI	-131200/227EI
1511787	10	2	8	602520/9127EI	-1636000/9127EI
1512478	8	10	6	639008/5739EI	-7518080/5739EI
1520758	8	6	6	51872/921 <i>EI</i>	-195712/307EI
1520812	8	4	6	4096/93EI	-153536/465 <i>EI</i>
1520887	8	2	6	42976/1251 <i>EI</i>	-125312/1251 <i>EI</i>
1520996	6	10	4	402552/5417EI	-3085920/5417EI
1611378	6	8	4	169056/3565EI	-1550592/3565 <i>EI</i>
1612042	6	4	4	26112/1349EI	-213120/1349EI
1612589	6	2	4	11352/793EI	-37728/793EI
1620460	4	10	10	688120/3953 <i>EI</i>	-732400/3953EI
1711313	4	8	10	699020/6211EI	-915040/6211 <i>EI</i>
1711666	4	6	10	163720/2403EI	-28400/267EI
1720639	4	2	10	32920/1733EI	-32240/1733EI
1920012	2	6	8	63288/1205EI	-15072/1205 <i>EI</i>
2010186	2	4	8	41536/1577EI	-11648/1577EI

Pórtico com barra horizontal infinitamente rígida

Diagrama de momentos fletores finais: $M = M_0 + M_1D_1 + M_2D_2$


					1	1	1	1			
Matrícula	а	b	С	M_{1A}	M_{1B}	M_{2B}	M_{2C}	M_{3E}	M_{4B}	M_{5C}	M_{5E}
Wiatricala	[m]	[m]	[m]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1321330	10	8	8	250.4	94.7	-201.7	-157.4	-100.8	107.0	157.4	100.8
1420321	10	6	8	205.8	43.5	-138.4	-135.2	-80.8	94.8	135.2	80.8
1421699	10	4	8	163.6	<i>-</i> 7.5	-70.7	-109.1	-61.8	78.2	109.1	61.8
1511787	10	2	8	128.7	-53.4	-4.2	-77.3	-39.4	57.6	77.3	39.4
1512478	8	10	6	219.6	124.3	-207.8	-136.4	-105.9	83.5	136.4	105.9
1520758	8	6	6	150.3	48.9	-120.0	-101.6	-61.0	71.1	101.6	61.0
1520812	8	4	6	115.6	8.2	-67.5	-81.7	-44.9	59.3	81.7	44.9
1520887	8	2	6	85.9	-29.6	-13.5	-56.8	-27.6	43.0	56.8	27.6
1520996	6	10	4	149.9	96.9	-151.6	-102.1	-94.8	54.7	102.1	94.8
1611378	6	8	4	126.6	72.7	-125.5	-86.1	-66.6	52.8	86.1	66.6
1612042	6	4	4	75.5	16.7	-58.3	-57.2	-31.1	41.6	57.2	31.1
1612589	6	2	4	51.9	-12.2	-17.6	-38.9	-18.2	29.8	38.9	18.2
1620460	4	10	10	94.7	72.0	-107.6	-62.2	-53.3	35.6	62.2	53.3
1711313	4	8	10	80.5	57.7	-93.2	-49.9	-28.7	35.5	49.9	28.7
1711666	4	6	10	64.8	41.6	-76.9	-40.7	-10.8	35.3	40.7	10.8
1720639	4	2	10	27.6	0.3	-33.1	-27.5	10.5	32.8	27.5	-10.5
1920012	2	6	8	24.8	18.9	-43.7	-30.2	-10.8	24.8	30.2	10.8
2010186	2	4	8	16.9	10.8	-35.5	-23.5	2.4	24.7	23.5	-2.4

Pórtico com barra horizontal infinitamente rígida

Diagrama de momentos fletores finais: $M = M_0 + M_1D_1 + M_2D_2$

Adotando a = 6 m; b = 4 m; c = 5 m:

$$D_1 = 4915/187EI$$
 $D_2 = -31500/187EI$

