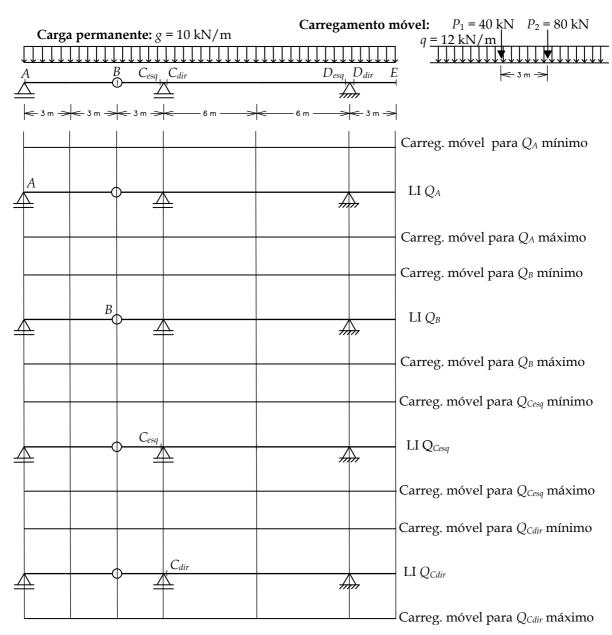
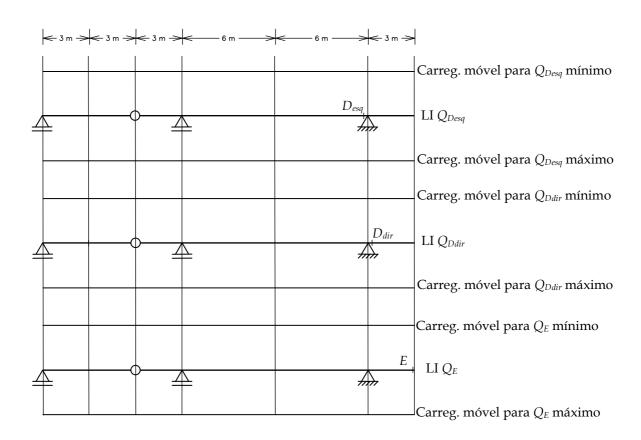
# ENG 1204 - ANÁLISE DE ESTRUTURAS II - 2º Semestre - 2018


# Terceira Prova – 05/12/2018 – Duração: 1:50 hs – Sem Consulta


| Nome: |  |
|-------|--|
|       |  |

### 1ª Questão (6,0 pontos)

Você está envolvido no projeto de uma ponte rodoviária cujo sistema estrutural está mostrado abaixo. A carga permanente, constituída do peso próprio da estrutura, é uniformemente distribuída, tendo sido avaliada em g = 10 kN/m. O carregamento móvel está indicado na figura, sendo que q representa a carga de multidão e as cargas  $P_1$  e  $P_2$  representam as cargas dos eixos do veículo de projeto. A carga de multidão não tem extensão definida, isto é, a sua extensão de atuação deve ser obtida de forma a majorar ou minorar um determinado efeito. Pede-se:

- (a) Trace nas figuras a seguir as Linhas de Influência (LI) de esforços cortantes na seções A, B,  $C_{esq}$ ,  $C_{dir}$ ,  $D_{esq}$ ,  $D_{dir}$  e E, indicando valores das ordenadas e das áreas positivas e negativas.
- (b) Indique nas figuras a seguir as posições do carregamento móvel que provocam os valores mínimo e máximo do esforço cortante para cada uma dessas seções.
- (c) Determine o diagrama de esforços cortantes para a carga permanente.
- (d) Com base na carga permanente e na carga móvel, monte uma tabela de esforços cortantes mínimos e máximos nessas seções.
- (e) Desenhe as envoltórias de esforços cortantes máximos e mínimos baseadas nos valores obtidos no item (b).





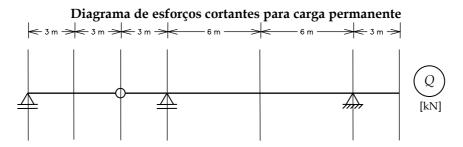
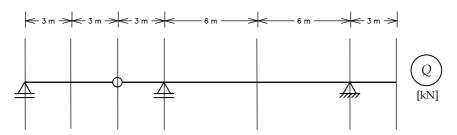
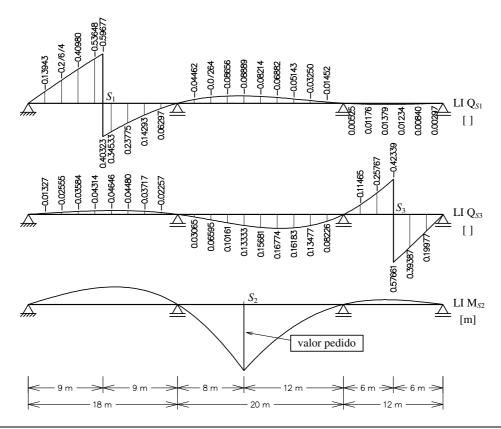




Tabela das envoltórias de esforços cortantes mínimos e máximos

| Envoltórias de Esforços Cortantes [kN] |            |             |        |             |        |  |
|----------------------------------------|------------|-------------|--------|-------------|--------|--|
| Seção                                  | Carga      | Carga Móvel |        | Envoltórias |        |  |
|                                        | Permanente | mínimo      | máximo | mínimo      | máximo |  |
| A                                      |            |             |        |             |        |  |
| В                                      |            |             |        |             |        |  |
| Cesq                                   |            |             |        |             |        |  |
| Cdir                                   |            |             |        |             |        |  |
| Desq                                   |            |             |        |             |        |  |
| Ddir                                   |            |             |        |             |        |  |
| Е                                      |            |             |        |             |        |  |

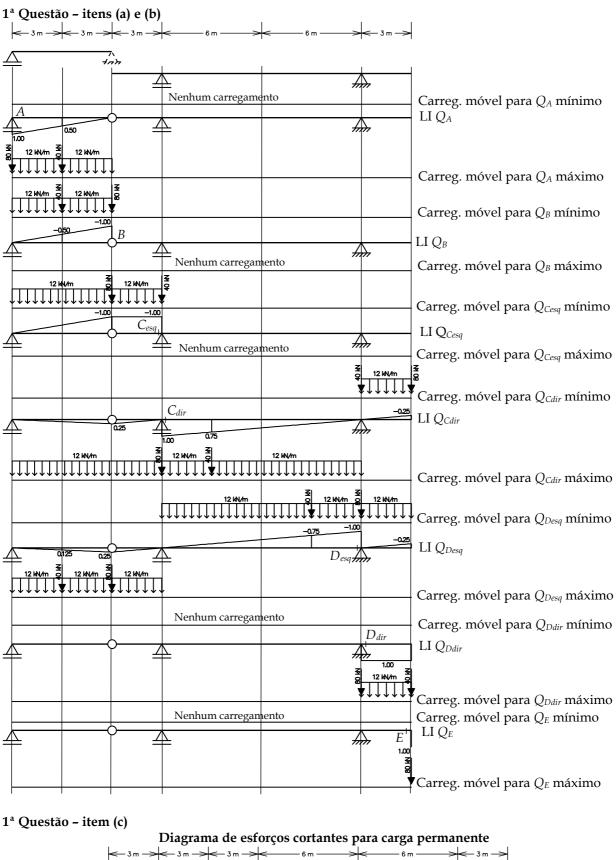
## Desenho das envoltórias de esforços cortantes mínimos e máximos

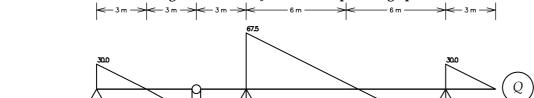



### 2ª Questão (1,0 ponto)

Através do método cinemático para o traçado de linhas de influência (Princípio de Müller-Breslau), explique porque as linhas de influência para estruturas isostáticas são formadas por trechos retos e as linhas de influência para estruturas hiperestáticas são formadas por trechos curvos dados por polinômios do 3º grau (para barras com seção transversal que não varia).

## 3ª Questão (2,0 pontos)


Abaixo estão mostradas as linhas de influência de esforços cortantes nas seções  $S_1$  e  $S_3$  de uma ponte. Os valores das ordenadas estão indicados a cada 2 metros. Também está indicada a linha de influência de momentos fletores na seção  $S_2$ . Calcule a ordenada indicada na LI  $M_{S2}$ .




| Solução da 3ª Questão |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |

## 4ª Questão (1,0 ponto)

Grau vindo do segundo trabalho (nota do trabalho x 0,1).





### 1ª Questão - item (d)

#### Determinação dos esforços cortantes mínimos e máximos nas seções

 $(c.p. \rightarrow \text{carga permanente}; c.m. \rightarrow \text{carregamento m\u00f3vel})$ 

Observe que os esforços cortantes para carga permanente podem ser calculados alternativamente multiplicando as áreas das linhas de influência (com sinal) pelo valor da força uniformemente distribuída.

## Tabela das envoltórias de esforços cortantes mínimos e máximos

| Envoltórias de Esforços Cortantes [kN] |            |             |        |             |        |
|----------------------------------------|------------|-------------|--------|-------------|--------|
| Seção                                  | Carga      | Carga Móvel |        | Envoltórias |        |
|                                        | Permanente | mínimo      | máximo | mínimo      | máximo |
| A                                      | +30.0      | 0.0         | +136.0 | +30.0       | +166.0 |
| В                                      | -30.0      | -136.0      | 0.0    | -166.0      | -30.0  |
| Cesq                                   | -60.0      | -192.0      | 0.0    | -252.0      | -60.0  |
| Cdir                                   | +67.5      | -24.5       | +195.5 | +43.0       | +263.0 |
| Desq                                   | -52.5      | -186.5      | +38.5  | -239.0      | -14.0  |
| Ddir                                   | +30.0      | 0.0         | +156.0 | +30.0       | +186.0 |
| Ε                                      | 0.0        | 0.0         | +80.0  | 0.0         | +80.0  |

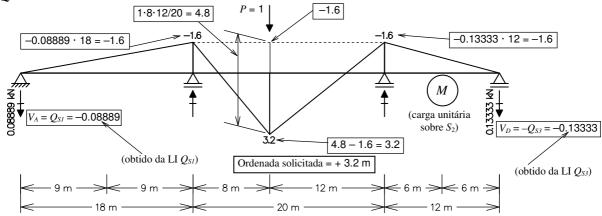
#### 1ª Questão - item (e)

Embora as envoltórias apareçam com trechos retos, elas são formadas por trechos curvos. Essa aparência se deve ao fato de terem sido utilizados poucos pontos para fazer a interpolação de valores.

#### 2ª Questão

O método cinemático para o traçado de linhas de influência (Princípio de Muller-Breslau) é tal que a linha de influência para um efeito qualquer em uma dada seção transversal é a elástica (configuração deformada) resultante da liberação do vínculo associado ao efeito na seção junto com a imposição de um deslocamento (ou rotação) generalizado unitário associado ao efeito.

As linhas de influência para estruturas hiperestáticas são curvas porque a liberação de um vínculo em uma seção resulta em um modelo estrutural que ainda oferece resistência ao deslocamento generalizado unitário imposto. Com isso, a estrutura vai se deformar para se ajustar a essa imposição, resultando no flexionamento das barras.


Por outro lado, a liberação de um vínculo em uma estrutura isostática transforma a estrutura em um modelo hipostático (um mecanismo) que se movimenta livremente sem oferecer resistência ao deslocamento generalizado unitário imposto. Dessa forma, as barras não se deformam (permanecem retas) e apenas sofrem movimentos de corpo rígido.

No caso de um modelo estrutural com barras uniformes (seção transversal que não varia), a equação diferencial que governa o fenômeno da flexão de barras, desprezando deformações por cisalhamento (teoria de vigas de Euler-Bernoulli), é a equação diferencial de Navier:

$$\frac{d^4v}{dx^4} = \frac{q(x)}{EI}$$

Em que v(x) é a elástica (deslocamento transversal), q(x) é a taxa de força transversal distribuída e EI é a rigidez à flexão. Como no caso do método cinemático para o traçado de linhas de influência só é imposto um deslocamento generalizado unitário e não tem força transversal distribuída, a equação diferencial resultante é  $d^4v/dx^4=0$ . Portanto, no caso de estruturas hiperestáticas com barras uniformes, a elástica é formada por trechos que são polinômios do 3º grau. As elásticas com trechos lineares (barras retas) para estruturas isostáticas também satisfazem esta equação diferencial.



