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Traditional FE simulation process

3. Apply boundary
conditions

4. Computational analysis 5. Result visualization



Geometry-based FE simulation process
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1. Geometric modelling, apply 2. FE mesh generation, apply

attributes and boundary conditions boundary conditions

3. Computational analysis 4. Result visualization



Construction of a simple FE model




Construction of a simple FE model




Construction of a simple FE model




Construction of a simple FE model




Construction of a simple FE model




Construction of a simple FE model




Construction of a simple FE model




Construction of a simple FE model

Automatic region recognition




Construction of a simple FE model

Creating a hole




Construction of a simple FE model

Assigning hole attribute




Construction of a simple FE model

Applying attributes to geometry




Construction of a simple FE model

Defining meshing refinement parameters:
boundary subdivision f._hﬂxh\
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Construction of a simple FE model

Automatic unstructured mesh
generation




Construction of a simple FE model

Attributes automatically assigned
to mesh entities
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Construction of a simple FE model

Region decomposition to exploit structured
meshing algorithms
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Construction of a simple FE model

Region decomposition to exploit structured
meshing algorithms
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Construction of a simple FE model

Region decomposition to exploit structured

meshing algorithms % ‘




Construction of a simple FE model

Region decomposition to exploit structured
meshing algorithms | W




Construction of a simple FE model

Region decomposition to exploit structured
meshing algorithms
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Construction of a simple FE model

Defining meshing refinement parameters:
boundary subdivision Hi—_ﬂ.‘h\\
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Construction of a simple FE model

Automatic structured mesh
generation
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Construction of a simple FE model

What is the technology behind this?
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Generic space subdivision: many applications

An environment in which curves and surfaces are inserted
randomly.

Automatic region recognition and full adjacency
information.







2D subsurface simulation modeling

Curve digitalization




2D subsurface simulation modeling

Curve subdivision




2D subsurface simulation modeling

Mesh generation: triangular elements
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2D subsurface simulation modeling

Mesh generation: quadrilateral elements




Geometric modeling




Geometric modeling

Geometry definitions

Curves: bounded
by two vertices Surfaces: closed

\ set of curves

Vertices:
x,%,2 location

Body: collection
of volumes

Volumes: close
set of surfaces
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Requirements for underlying data representation

— The data structures must provide a natural
navigation across all phases of a simulation: pre-

processing (model creation), numerical analysis,
and post-processing (model results visualization).
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Requirements for underlying data representation (cont.)

— The data structures must take into account that the
simulation may induce, at least temporarily during
model creation, geometric objects (curves and
surfaces) that are inconsistent with the target final
model. This requires a non-manifold topology

representation capability.




Requirements for underlying data representation (cﬁ.

— The data structure should aid in key aspects of
geometric modeling, such as surface intersection

and automatic region recognition, as well as in
surface and solid finite element mesh generation in

arbitrary domains.
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Requirements for underlying data representation (coﬁ.)

— The data structure must provide for efficient
geometric operators, including automatic
intersection detection and processing.

This is necessary in simulations with evolving
topology and geometry.
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The need for non-manifold modeling

Multi-region modeling

Degenerated structures ; EasipiiorLocation
e g Stringer Shear Tie




Natural modeling: surface patches as primitives

Geological model

Manufactured model



Ideal environment: complete space subdivision

Space subdivision in 2D: high level operations
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Mesh generation




Library of mesh generation algorithms

2D structured meshes




Structured mesh — 2D Mapping

« Geometry
Requirements
— 4 topological sides

— Opposite sides
must have similar
discretization




Structured mesh — 2D Mapping

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 17, 1015-1044 (1981)
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TRANSFINITE MAPPINGS
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Cornell University, Ithaca, New York, U.S.A.



Structured mesh — 2D Mapping
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Structured mesh — 2D Mapping
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Structured mesh — 2D Mapping
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Structured mesh — 2D Mapping
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Trilinear projector: A4
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Trilinear projector: &,

Trilinear projector: co-ordinate
system and boundary curves
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Structured mesh — 2D Mapping
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Trilinear projector: 2
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Lib
rary of mesh generation algorithms

Quadrilateral template (new)
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Structured mesh — 3D Mapping

« Geometry Requirements
— 6 topological surfaces
— Opposite surfaces must have similar mapped meshes
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Structured mesh — 3D Mapping

 Many complex domains can be mapped




Structured mesh — 3D Mapping

« Algorithm must deal with:
— Multiple surfaces on boundary
— Concave surfaces




Structured mesh — Sweeping

Linked
 Geometry Requirements Surfaces

— Source and target
surfaces topologically
similar

— Mapped linked surfaces




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces T




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces




Structured mesh — Sweeping

« Geometry Requirements

— Source and target
surfaces topologically
similar

— Mapped linked surfaces
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« Examples



Structured mesh — Spline Sweeping

« Geometry Requirements
— Sequence of sections
— Meshes must be topologically equal

Topologically

equal \ -




Structured mesh — Spline Sweeping

« Geometry Requirements
— Sequence of sections
— Meshes must be topologically equal

Interpolated
by spline curves
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Structured mesh — Spline Sweeping

« Geometry Requirements
— Sequence of sections
— Meshes must be topologically equal

Squared section Circular section

N e

\

Squared section



Structured mesh — Spline Sweeping

« Geometry Requirements
— Sequence of sections
Meshes must be topologically equal

Squared sections




Unstructured mesh — Requirements

« Specific algorithm requirements inherited from its
ancestor
J-Mesh (Joaquim Cavalcante-Neto, Wawrzynek, Carvalho, Martha &
Ingraffea; 2001).
— Generation of well-shaped elements

— Ability to conform to an existing refinement at the boundary of
region

— Ability to transition well between regions with different element
sizes

— Capability for modeling discontinuities (internal restriction and
cracks)

- Additional requirements for surfaces
— Locally refine the mesh in regions with curvatures



Unstructured mesh generation outline

« Background mesh generation — quadtree/octree
— Initialization based on boundary mesh.
— Refinement to force a maximum cell size.
— Refinement to provide minimum size disparity for adjacent cells.

- Advancing-front procedure
— Geometry-based element generation
— Topology-based element generation
— Element generation based on back-tracking with face deletion.

* Local mesh improvement
— Laplacian smoothing,

— Local back-tracking with element deletion, or
— Taubin smoothing (surfaces)



Unstructured mesh — auxiliary background structure

* Quadtree and Octree
— Fast search procedures to navigate through end leaves

— Represent the desired size of elements with nearly the same size
as the end leaves

(root) (1 level) (2 levels)
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Create internal points on domain
Advancing front algorithm

Create element using patterns in each
cells

Advancing front algorithm near boundary

Use cell size as guideline to generate new
elements

Advancing front algorithm

Use cells to store desired sizes for
elements and surface metric information

Advancing front algorithm in parametric
space



Unstructured mesh — 3D auxiliary background structuré |

— Use cells to store desired sizes for
elements

— Advancing front algorithm

— Use cells to store desired sizes for
elements and surface metric information

— Advancing front algorithm direct in 3D
space



Unstructured mesh — background structure generation

- Hypothetical 2D model and its boundary refinement




Unstructured mesh — background structure generation

- Initialization based on boundary mesh
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Unstructured mesh — background structure generation’

 Refinement to force a maximum cell size
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Unstructured mesh — background structure generation’"""""ﬁ

* Refinement to provide minimum size disparity for
adjacent cells
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Unstructured mesh — advancing-front technique

« Advancing front algorithm
— Begin with boundary mesh — define as initial front

— For each edge (face) on front, locate initial node C based on front
AB




Unstructured mesh — advancing-front technique

« Advancing front algorithm

— Determine if any other node on current from are within search
radius r of ideal location C (Choose D instead of C)

REJECTED CANDIDATE NODES
NODES //—{
7 N
Q ¢ \\
/ o? / OPTIMAL REGION
R N1 \‘
/ \

/ 01.

\ /A //
/ \
/ \ o CeLsize

Radius of optimal region is based
on quadtree/octree cell size



Unstructured mesh — advancing-front technique

« Advancing front algorithm

— New front edges (faces) added and deleted from front as
triangles (tetrahedral) are formed

— Continue until front edges (faces) remain on front




Unstructured mesh — advancing-front technique

« Advancing front algorithm

— New front edges added and deleted from front as triangles are
formed

— Continue until front edges remain on front




Unstructured mesh — advancing-front technique

« Advancing front algorithm

— New front edges added and deleted from front as triangles are
formed

— Continue until front edges remain on front




« Geometry-based element generation

— Boundary contraction list

- List of active edges
- List of rejected edges

— Generation of optimal elements

Size of element
Optimal location N1
Ratio = 0.85 * size

Upper bound and lower bond

Range Tree Search

Ideal node position

Active front

Surface mesh

}

= size of the
octree cell

Optimal
region
® Points in the front
© Ideal position
REJECTED CANDIDATE NODES
NODES P
// \\
3
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Unstructured mesh — advancing-front technique

« Topology-based element generation
— List of rejected edges becomes active edges

— Generation of elements by any node close to the base edge
(best angle)

— Generate a valid mesh, although not optimal

CANDIDATE VERTEX
ANGLE ,//_
“\\J\ CANDIDATE TRIANGLE
,u\/
II \
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EDGE BASE—
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Unstructured mesh — advancing-front technique

« Back-Tracking

— Locally modify the advancing front, deleting already generated
adjacent tetrahedra until a ‘near’ convex hon-meshed polyhedron
is formed

Elements to be deleted

Bad element in gray

Generated elements Created polyhedron



Unstructured mesh — local mesh improvement

« Laplacian smoothing
— Uses Laplacian equation and the closest point function for surface

ZWiO(Xin - Xy)
X; = X+

m

Z Wio

— ¢=1.0and w;=1.0 "~

- Taubin smoothing (surfaces)

— Uses twice Laplacian equation
« ¢=1.0and w;;=0.63
« ¢=1.0and w;,=- 0.67
— Filters high frequencies
— Preserves the low frequencies
— Good results with geological and microstructure surfaces

‘Node on surface




Unstructured mesh — Surface Meshing

- Parametric Space Meshing

* Direct 3D Meshing
— Elements formed in 2D using

— Elements formed in 3D using
actual x-y-z representation parametric representation of
of surface surface

— Nodes locations later mapped

to 3D space
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Unstructured mesh — Surface Meshing

* Direct 3D Meshing

Ideal Nodeﬁ @

Input Surface

— Normal
—» Tangent
—» Normal x Tangent
QO Boundary Node

Boundary ~ \
Edge /-

Node to Surface@ ﬁ

Ideal node position

_|—Active front

Smiface mesh

Node in space

Node on smTace

Smface

Ouput Mesh
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* Direct 3D Meshing — refinement of octree
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Unstructured mesh — Surface Meshing

* Direct 3D Meshing — node location

Active
front

Hit
direction

~
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Height of \ /
W

Ideal node position

Intercepted
existing
triangles
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Unstructured mesh —

ing

Examples

* Direct 3D Meshing
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Unstructured mesh — Surface Meshing

- Parametric Space Meshing

— Elements formed in 2D using parametric representation of
surface

— Distance and angles are distorted in parametric space
— Nodes locations later mapped to 3D space

51/!
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3D Surface

Parametric
Space




Unstructured mesh — Surface Meshing

- Parametric Space Meshing

e (iven an analytical surface e Background quadtree
description and boundary

segments

Metric T
Information







