TWF File Format Proposal

(25/01/00 11:11)

Tecgraf Web Format Specification

1 Introduction

1.1 Objectives

The Tecgraf Web Format is a file format designed to represent a drawing that contains lines, regions, text and images to be sent through the Web for displaying, browsing and printing. Its main goal is to allow drawings to be coded into small files without converting vector primitives into raster images. Text, lines and regions retain their scalable nature and can be directly selected by the user in the browser screen.

1.2 File elements

Functions are the TWF abstractions for graphics primitives and other control commands, such as changing the line drawing color. They are the basic building blocks of a TWF file, and encapsulate all the functionality of the format. In fact, a TWF file can be seen as a header followed by a list of functions. Each function will be discussed in detail in Section 5.

A drawing is a graphics figure encoded in a TWF file. Each TWF file contains one and only one drawing. A drawing is an ordered set of layers, which are given in the file in back-to-front order. A drawing must have at least one layer.

A layer is an ordered collection of functions, which are given in the file in back-to-front order. Each layer has a unique name, visibility flag and detectability flag. Layers may be visible or invisible. If a layer is visible, its elements may or may not respond to user interface events (detectability). If a layer is invisible, none of its elements respond to user interface events.

Objects are semantic groupings of functions for user interface interaction. Objects are named, as this allows the viewing program to externally associate a different action for each object. The action itself is not encoded in the TWF file, it is application-specific.

A shape is a set of functions that are geometrically grouped together. After the definition, a shape may be instantiated in the drawing many times. This is equivalent to introducing the output of its functions at that point in the file, geometrically transformed by the instantiation parameters. Shape definitions cannot be nested, and a shape cannot be instantiated inside the definition of another.

Attributes are values retained from one function to the next in the scope of each layer. The line drawing color is an attribute, for example.

The collection of all attribute values is known as the state. The state can be changed by functions, and its value affects the behavior of other functions.

A map is an approximate representation of the earth's surface on a plane. It contains geographical objects which are represented mainly by lines, regions bounded by lines, and images. Map borders are usually represented by very complex polygonal lines. The number of vertices in a map may easily amount to the hundreds of thousands. Line simplifications and other cartographic generalizations are necessary but not enough to reduce the size of map drawings.

1.3 Coordinate systems

In TWF, a drawing is encoded for display in a visualization surface that has limited resolution (wres, hres) and physical dimensions (wmm, hmm), as shown in Figure 1‑I. Considering that the drawing results from a request from an application to a web server, these values are probably the same ones sent with the request.

[image: image1.wmf]w

res

w

mm

visualization

surface

h

mm

h

res

Figure 1‑I – Coordinate systems

Graphical primitives in the TWF drawing abstraction are point sets in R2 defined with parameters (points and dimensions) that belong to Z2 or R2, as desired. Mapping real values into the integer domain allows for better compression ratios with a controlled loss of precision.

In the current technology of monitors, printers and plotters, the resolution usually results in less than 65535 points in each direction of the visualization surface, thus requiring two-byte integers. Using two bytes to describe all coordinates on all drawings, however, is very wasteful. Drawings with a resolutions of 4096x4096 are more than adequate for most displaying and printing purposes (images on the web today are usually smaller than 512x512).

To allow the primitives some flexibility, they are mapped to the application canvas according to the windows-to-viewport transformation illustrated in Figure 1‑II. This allows for some panning in the application without further requests to the server.

[image: image2.wmf]y

d

0

x

d

(

x

ll

,y

ll

)

(

x

ur

,y

ur

)

drawing

x

c

y

c

0

w

res

-1

h

res

-1

visualization

surface

Figure 1‑II – Mapping the drawing to the browser screen

Thus, prior to the exhibition on the visualization surface, each point in the drawing is transformed by:

[image: image3.wmf](

)

(

)

ll

d

ll

ur

res

c

ll

d

ll

ur

res

c

y

y

y

y

h

y

x

x

x

x

w

x

-

-

-

=

-

-

-

=

1

1

One important advantage of using Z2 with a limited resolution is that many polygonal lines which appear in map drawings will have segments with neighboring points in the 8-connected sense illustrated by Figure 1‑III.

[image: image4.wmf]x

x+

1

x-

1

y-

1

y+

1

y

Figure 1‑III – Neighbors of the point (x,y) in the 8-connected sense

An array of neighboring points can be efficiently coded using a stream of three-bit elements to indicate the 8 compass directions illustrated in Figure 1‑IV. The point Pi+1, for example, follows point Pi in the NE direction.

[image: image5.wmf]N

NE

E

SE

S

SW

W

NW

P

i

P

i+1

Figure 1‑IV – Compass directions to reference the neighbors of point Pi

Table 1‑A shows the three-bit codes used to represent each compass direction in the TWF file.

NO
N
NE

3
2
1

011
010
001

O
Pi
L
=
4
Pi
0
=
100
Pi
000

SO
S
SE

5
6
7

101
110
111

Table 1‑A – Coding for the compass directions

Figure 1‑V illustrates the use of this coding procedure for a segment with four points.

[image: image6.wmf]000

001

P

0

010

000

P

1

P

2

P

3

P

4

Figure 1‑V – Example of chain coding
1.4 File Layout

A TWF file is organized in a sequence of functions as shown in Figure 3‑I. A function identifier or function_id and a variable number of parameters compose each function. Note that layers, shapes and objects are also defined with the use of functions.

A Layer function starts a new layer and all primitives that follow are appended to it. When a new layer function appears in the file the definition of the current layer ends and the new layer begins. Layers cannot be redefined, and once a layer has been ended it cannot be resumed in another point in the file.

Before the first use of the Layer function, in the beginning of the file, all primitives are considered as parts of an internal layer, which is not exported to the user interface, called the global layer. This layer is always invisible, as it cannot contain any functions that have direct visual output in the drawing. The state after all the functions in the global layer have been processed, is the initial state of each the other layers in the file. Only state-changing functions may appear in the global layer, therefore it is not possible to actually draw anything in it, but only to configure the initial state.

The other layers, known as local layers, have their own private scopes for the state attributes, whose initial values are inherited from the global layer as described above. The separate scopes allow the layers to be processed in any order. Also, the viewers can skip any of them if so desired, with no ill effects. The existance of the global layer ensures that each function belongs to one and only one layer.

Objects are a mechanism devised to allow a group of primitives to be named, so that the application might manipulate it. Typical use would be to allow the user to assign an action to a mouse event on the primitives contained in the object. Layers and objects must have unique names. Unlike layers, objects do not have their own scopes.

[image: image7.wmf]funtion

_

id

parameter

...

parameter

function

...

function

1

byte

variable

header

Figure 3‑I – File organization

The header has a signature (twf98à), one reserved byte, the major version number (0), the minor version number (4), the size in bits point_size and rel_point_size, the drawing resolution (wres,hres), the drawing window ((xll, yll), (xur, yur)) and finally the dimensions in millimeters (wmm,hmm). Also, a hint for the application is given in the form of the desired background color for the area in which the drawing will be displayed, in RGB format.

T
W
F
98 (hex)
225
reserved
major version
minor version

1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte

Point_size
rel_point_size
(wres,hres)
(xll, yll)
(xur, yur)
(wmm,hmm)

1 Byte
1 Byte
Point_size
point_size
point_size
point_size

Background_red
Background_green
Background_blue

1 Byte
1 Byte
1 Byte

If no quantization was performed, (wres,hres) must be set to (0, 0).
Data Types

To reduce the size of the TWF file, the function parameters must be coded with the minimum possible number of bits. This section defines the data types used in the file. All data types are written to the file in network order - the first bit of the first byte is the most significant one, followed by all other bits in decreasing significance order.

Some of the data types are dependent on the current value of a state variable, but most are not.

1.5 Bit

A Boolean information is stored as one bit (0=FALSE, 1=TRUE). When several Boolean variables are given in a sequence in a TWF file, they can share the same byte. If, however, this sequence does not stop at the byte boundary, the remainder of the byte is lost in order to respect the byte frontier. For more information, see topic 2.16 Byte Boundary Considerations.

1.6 Byte

An eight bits unsigned integer value ranging from 0 (zero) to 255 in two’s complement format.

1.7 Uint16

Two bytes unsigned integer (0 to 65,535) in two’s complement format.

1.8 Color

The Color type is used to code the index or components of a color. The codification relies on the value of the color_size state attribute according to Table 2‑A. The number of bytes and the meaning of each mode are also given in this table. Indexed color types access the colors as defined in the current palette.

The color components are encoded in the file as unsigned two’s complement values of the bit size given in the table. The components are also given in the left-to-right order of the columns in Table 2‑A.

If color_size is 6, for instance, a color would be encoded by an unsiged 8-bit red component, an unsigned 8-bit green component and an unsigned 8-bit blue component, in this order.

of bits per channel
 # of

Color_size
Index
gray
Red
Green
Blue
Alpha
 Bits

0
1

1

1
8

8

2

8

8

3

12

12

4

16

16

5

16

16
32

6

8
8
8

24

7

8
8
8
8
32

Table 2‑A – Color encoding
1.9 Point

The Point type is a generic coding of a point (x, y) in the drawing coordinate system. To better accommodate small coordinate values, the Point type can be 6 to 128 bits long according to the value of the point_size state attribute.

Table 2‑B provides more detail about Point. The “Type” column indicates the coordinate representation. The “double” and “single” types refers to double and single precision floating point values as defined by the IEEE 754 standard, respectively. The “integer” type is a signed two’s complement integer with the number of bits given in the following columns.

Although floating point numbers are allowed, they are not prone to file compression.

point_size
(in bits)
Type
of bits for x
of bits for y
Point
range

128
double
32
32
(10(308

64
float
16
16
(10(38

32
integer
16
16
[-32768, 32767]

24
integer
12
12
[-2048, 2047]

16
integer
8
8
[-128, 127]

Table 2‑B – Point encoding
1.10 RelPoint

The RelPoint type is a generic coding of a relative point position (x, y) in the drawing coordinate system. To better accommodate small increment values, the RelPoint type be 3 to 128 bits long depending on the value of the rel_point_size state attribute.

Table 2‑C provides more detail about RelPoint. The “Type” column indicates the coordinate representation. The “double” and “single” types refers to double and single precision floating point values as defined by the IEEE 754 standard, respectively. The “integer” type is a signed two’s complement integer with the number of bits given in the following columns.

Note that the byte frontier is not respected in the codifications that use 6 and 3 bits. For more information on byte boundary problems, see section 2.16 Byte Boundary Considerations.

rel_point_size (bits)
Type
of bits for x
of bits for y
RelPoint range

128
double
52+11
52+11
(10(308

64
float
23+8
23+8
(10(38

32
int
16
16
[-32768, 32767]

24
int
12
12
[-2048, 2047]

16
int
8
8
[-128, 127]

8
int
4
4
[-8, 7]

6
int
3
3
[-4, 3]

3
dir
3
(1

Table 2‑C – RelPoint encoding

Note that 3 bit points represents a neighboring point described by its relative compass direction, as illustrated in Figure 1‑III, Figure 1‑IV and Figure 1‑V.

1.11 Angle

The Angle type represents an angle in a single trigonometric circle. This is an alias to the Point type, and as such is also governed by the point_size state attribute. The encoded point is equivalent to the result of rotating the vector (1,0) in conterclockwise direction by the desired angle.

1.12 Size

The Size type is used to describe an unsigned integer up to 22 bits in length. The first bit in the first byte indicates the length of the number. If the most significant bit is zero, the number is defined in the next seven bits, ranging from 0 to 27-1 (127). If the first two bits equal 10, the number is defined in the next 14 bits, ranging from 0 to 214-1 (16,383). If the first two bits equal 11, the number is defined in the next 22 bits, ranging from 0 to 222-1 (4,194,303).

The payload bits are used to encode the desired number in two’s complement and in network order.

If the value is bigger than 222-1, then it cannot be represented by a Size type.

Value ([0;127]
0xxxxxxx

Value ([0;16,383]
10xxxxxx xxxxxxxx

Value ([0;4,194,303]
11xxxxxx xxxxxxxx xxxxxxxx

Table 2‑D – Size encoding

1.13 Identifier

The Identifier type is used to describe an unsigned handle to a TWF construct such as a face or image. It is an alias to the Size type, having the exact same encoding. Only the semantic interpretation of the type is different.

1.14 SIdentifier

The SIdentifier type is used to describe a signed handle to a TWF construct such as an edge. It is a signed version of the Identifier type. The payload bits are used to represent a two’s complement signed integer in network bit order.

The first bit in the first byte indicates the length of the number. If the most significant bit is zero, the number is defined in the next seven bits, ranging from -64 to +63. If the first two bits equal 10, the number is defined in the next 14 bits, ranging from –8,192 to +8,191. If the first two bits equal 11, the number is defined in the next 22 bits, ranging from –2,097,152 to +2,097,151.

The payload bits are used to encode the desired number in two’s complement and in network order.

Values outside of the previous ranges cannot be represented by a Sidentifier type.

Value ([-64;63]
0xxxxxxx

Value ([-8,192;8,191]
10xxxxxx xxxxxxxx

Value ([-2,097,152;2,097,151]
11xxxxxx xxxxxxxx xxxxxxxx

Table 2‑E – SIdentifier encoding

1.15 Text

The Text type represents a array of characters. This array is preceded by an integer of type Size that describes the number of characters in the text. The characters are coded in bytes according to the ISO 8859-1 (Latin-1) standard.

Text {Size nchar, Byte [nchar] text}

1.16 ByteArray

The type ByteArray represents an array of bytes. This array is stored in TWF preceded by a Size that describes the number of bytes.

ByteArray {Size nbytes, Byte [nbytes] bytes}

1.17 ColorArray

The ColorArray type represents an array of colors. This array is preceded by a Byte that contains the index of the last color component, which is the number of color components minus one, allowing a number of colors in the [1;256] range. Each color is coded according to the value of the color_size state attribute, as specified in Table 2‑A.

ColorArray {Byte lastcolor, Color [lastcolor+1] colors}

1.18 PointArray

The type PointArray represents an array of points. This array is stored in TWF preceded by an integer of type Size that describes the number of points. The points that follow are coded according to the value of the point_size state attribute.

PointArray {Size npoints, Point [npoints] points}

1.19 RelPointArray

The RelPointArray type represents an array of points described by the offsets from the previously defined point (x, y). The first relative point is an offset to a previously given absolute point coordinate. Then a generic point at position n is given as the offset from the point at position n-1. This array is stored in TWF preceded by an integer of type Size, which indicates the length of the array in points. The relative coordinates may be coded in one of the possible options from Table 2‑C as indicated by the rel_point_size state attribute.

RelPointArray {Size npoints, RelPoint [npoints] points}

1.20 Byte Boundary Considerations

Some of the TWF types are not byte-aligned: RelPoint, Color and Bit. All other types are aligned to the start of a byte.

Byte-aligned types always start at a byte boundary, even if the previous type did not end in one.

The following example function helps illustrate the desired behavior:

NonExistant (RelPoint relpoint, Bit bit, Uint16 int)

Let’s assume rel_point_size is 6. In this case, the parameters relpoint and bit are packed in the first six bits and in the seventh bit of one byte, respectively. The eighth bit of this byte is then set to zero so that third parameter starts at a byte boundary. This is necessary because Uint16 is a byte-aligned type.
Even the types which are not byte-aligned only behave that way in the modes or sizes in which they are not multiples of 8 bits. For example: if color_size equals to 0 or 3, then a Color will not be aligned to the start of a byte, but if color_size equals to 6 then it is aligned to the start of a byte. The same holds for RelPoint.

Function Prototypes and Identifiers

1.21 General

0x00 Extension (Text parameter, Text value)

0x01 Layer (Boolean vis, Boolean detect, Text name)

0x02 Object (Text name)

1.22 Primitives

Line

0x10 Polyline (Point start, RelPointArray rest)

0x11 DrawPolygon (Point start, RelPointArray rest)

0x12 DrawCubicBezier (Size nsegs, Point start,

 RelPoint[(nsegs * 3(] rest)

0x13 DrawArc (Point center, RelPoint bbox_ur, Angle start, Angle end)

Region

0x14 FillPolygon (Point start, RelPointArray rest)

0x15 FillCubicBezier (Size nsegs, Point start,

 RelPoint[((nsegs * 3)-1(] rest)

0x16 FillArc (Point center, RelPoint bbox_ur, Angle start, Angle end)

Text

0x17 Text (Point ref_point, Text text)

Shape

0x18 Shape (Identifier shape_id, Point center, Angle rotation,

 Point bbox_ur)

Image

0x19 Image (Identifier image_id, Point src_ll, RelPoint src_ur,

 Point dst_ll, RelPoint dst_ur)

Utility

Mark

0x30 reserved for Mark (Point location)

Line

0x31 Line (Point p0, RelPoint p1)

0x32 DrawBox (Point lower_left, RelPoint upper_right)

0x33 DrawCircle (Point center, Size radius)

0x34 DrawEllipse (Point center, RelPoint bbox_ur)

Region

0x35 FillBox (Point lower_left, RelPoint upper_right)

0x36 FillCircle (Point center, Size radius)

0x37 FillEllipse (Point center, RelPoint bbox_ur)

Shape

0x38 StampShape (Identifier shape_id, Point center)

0x39 RepeatShape (Point center)

Image

0x3A FullImage (Identifier image_id, Point dst_lower_left,

 RelPoint dst_upper_right)

Map

0x3B SetEdge (Point p0, Size nsegs,

 {Byte mode, RelPointArray points}[nsegs])

0x3C SetFace (Size nedges, SIdentifier edge_ids[nedges],

 Size nholes, Identifier hole_ids[nholes])

0x3D DrawEdge (SIdentifier edge_id)

0x3E DrawEdgeRange (SIdentifier edge_id_start,

 SIdentifier edge_id_end)

0x3F FillFace (Identifier face_id)

Attributes

0x50 SetPointSize16 ()

0x51 SetPointSize24 ()

0x52 SetPointSize32 ()

0x53 SetPointSize64 ()

0x54 SetPointSize128 ()

0x55 SetRelPointSize3 ()

0x56 SetRelPointSize6 ()

0x57 SetRelPointSize8 ()

0x58 SetRelPointSize16 ()

0x59 SetRelPointSize24 ()

0x5A SetRelPointSize32 ()

0x5B SetRelPointSize64 ()

0x5C SetRelPointSize128 ()

0x5D SetColorSize (Byte mode)

0x5E SetBlendMode (Byte mode)
0x5F SetLineColor (Color color)
0x60 SetLineDashes (Uint16 dash)
0x61 SetLineStyle (Byte joint, Byte begin, Byte end, Byte weight)
0x62 reserved for SetMarkColor (Color color)
0x63 reserved for SetMarkStyle (Byte type, Size size)

0x64 SetFillColor (Color color)
0x65 SetGradientFill (Point p0, Color c0, Point p1, Color c1)
0x66 SetTextureFill (Point p_ll, Identifier image_id)
0x67 SetStretchedTextureFill (Point p_ll, RelPoint p_ur, Identifier image_id)
0x68 SetImageStretchMode (Byte image_mode)

0x69 SetTextColor (Color color)
0x6A SetFont (Byte typeface, Byte style, Size size)
0x6B SetTextAlignment (Byte alignment, Angle direction)
0x6C SetPalette (ColorArray palette)

0x6D SetImage (Uint16 w, Uint16 h, Color[(w * h(] colors)

0x6E reserved for SetMIMEImage (Text MIME_type, ByteArray image)

0x6F BeginSetShape (Point bbox_ur)
0x70 EndSetShape ()
Function Descriptions

This section provides an in-depth description of each function and its desired behavior. The reserved functions in the opcode list must be fully read but ignored by any readers.

1.23 Extension (Text name, Text value)

This function allows the generator of the TWF file to insert optional extensions into the file. Extensions are specified as name-value pairs, and can be used to store additional information used by other programs, such as creation date, author name, copyright text, etc.

Viewers can safely ignore all extensions.

Parameters:

· name is the non-empty name of this extension. A list of pre-defined extensions is provided in Table 5‑A – Predefined extensions. The extension name is case sensitive, and the use of uppercase names is recommended.

· value is the text of this extension, which can be empty (zero characters long).

name
value

“AUTHOR”
The name of the human author of the drawing.

“CREATION DATE”
The date the drawing was created in human readable format.

“COPYRIGHT”
The copyright status of this image.

“DESCRIPTION”
A description or explanation of what the image represents.

“GENERATOR”
A human readable identification of the program used to generate the drawing.

Table 5‑A – Predefined extensions

1.24 Layer (Boolean vis, Boolean detect, Text name)

This function marks the start of a new layer in the TWF file. This forces the current state to be restored to the global state, which is the state as it was immediately after the full processing of the global layer. All the following functions will belong to this layer until another Layer function is found, in which case the current layer is permanently ended and completely defined, and a new layer begins.

The visibility of a layer indicates if its functions can initially generate output or not. Detectability controls whether the Objects defined in this layer initially respond to mouse events. Both settings have initial values specified by this function, but the viewing application should allow the user to change these properties at run time. It is not advisable, though, to allow a user to specify an invisible layer to be detectable.

Parameters:

· vis indicates whether this layer is initially visible (true) or not (false).

· detect indicates if this layer is initially detectable (true) or not (false).

· name is the unique name of this layer.

1.25 Object (Text name)

This function marks the start or end of a new object in the TWF file. An object is a collection of functions which are associated with a given name. The names are meant to allow the application to associate specific behaviors to happen when the user clicks on the on-screen representation of one of the functions present in an Object.

All functions following an Object belong to this object until another Object function appears, in which case the current object ends and another object (possibly) begins. If an Object with a zero-length name is found, that indicates that the current object ends and that no other object begins at this point. If a Layer function appears, then the current object ends.

Multiple objects may share the same name, even in different layers, to indicate that if any of the objects with that name is clicked, the same viewer-defined action is supposed to happen.

The Object function cannot appear in the global layer.

Parameters:

· name is the name of this object.

1.26 Polyline (Point start, RelPointArray rest)

This function draws a polygonal line, as specified by its vertices. Each vertex is connected by a line to the next one, following the guidelines of the Line function.

Parameters:

· start is the first vertex of the polygonal line.

· rest is a list of the following vertices of the polygonal line. The first point in the array is relative to start, and is connected by a line to it as well. This list must be at least one vertex long.

1.27 DrawPolygon (Point start, RelPointArray rest)

This function draws a closed polygon, as specified by its vertices. Each vertex is connected by a line to the next one, following the guidelines of the Line function. The last vertex is also connected to the first one.

Parameters:

· start is the first vertex of the polygon.

· rest is a list of the other vertices of the polygon. The first point in the array is relative to start, and is connected by a line to it as well. The last point is connected with a line to its predecessor and to start. This list must be at least two vertices long.

1.28 DrawCubicBezier (Size nsegs, Point start, RelPoint[(nsegs * 3(] rest)

This function draws a multi-segment cubic Bézier curve. Each segment is fully represented by a starting point, two control points, and an ending point. Since this is a continuous curve, however, the ending point of segment n is the starting point of segment n+1, thus saving some space.

Parameters:

· nsegs is the non-zero number of segments present in this curve.

· start is the starting point of the first curve segment.

· rest is a sequence of nseg*3 points that represent the first control point, the second control point and the ending point of all segments in this order. The first point in rest is relative to start, and the others are relative to their respective predecessors, as in a RelPointArray.

1.29 DrawArc (Point center, RelPoint bbox_ur, Angle start, Angle end)

This function draws the outline of the arc of an ellipse. The center and the upper-right coordinates of its bounding box specify the ellipse. The arc must always be traversed counter-clockwise, starting and ending at the given angles.

Parameters:

· center is the center of the ellipse.

· bbox_ur is a point relative to center which indicates the upper-right corner of the smallest bounding box that contains the desired ellipse.

· start is the angle relative to the trigonometric origin in which the drawing of the arc must begin.

· end is the angle relative to the trigonometric origin in which the drawing of the arc must end. If this angle is smaller than the start angle, it might be useful to add 360 degrees to it. For instance: an arc from 45 (start) to 30 (end) degrees must draw the whole ellipse except the arc between 30 and 45 degrees, as if drawing from 45 to 390 degrees. This allows specifying the full ellipse by giving equal start and end angles.

1.30 FillPolygon (Point start, RelPointArray rest)

This function fills the interior of a closed polygon, as specified by its vertices.

The output of this function depends directly on the state variables set by SetFillColor, SetGradientFill, SetTextureFill, or SetStrechedTextureFill.

Parameters:

· start is the first vertex of the polygon.

· rest is a list of the other vertices of the polygon.

1.31 FillCubicBezier (Size nsegs, Point start, RelPoint[((nsegs * 3)-1(] rest)

This function fills the interior of a closed multi-segment cubic Bézier curve.

Each segment is fully represented by a starting point, two control points, and an ending point. Since this is a continuous curve, however, the ending point of segment n is the starting point of segment n+1, thus saving some space. Furthermore, the ending point of the last segment is considered equal to the starting point of the first segment, forcing a closed curve.

The output of this function depends directly on the state variables set by SetFillColor, SetGradientFill, SetTextureFill, or SetStrechedTextureFill.

Parameters:

· nsegs is the nonzero number of segments present in this curve.

· start is the starting point of the first curve segment.

· rest is a sequence of (nseg*3)-1 points that represent the first control point, the second control point and the ending point of all segments in this order. The first point in rest is relative to start, and the others are relative to their respective predecessors, as in a RelPointArray. The ending point of the last segment must be omitted, as it is assumed to be equal to start.

1.32 FillArc (Point center, RelPoint bbox_ur, Angle start, Angle end)

This function fills the inside of the arc of an ellipse. The center and the upper-right coordinate of the bounding box define the ellipse. The arc must always be traversed counter-clockwise, starting and ending at the given angles. It is closed by lines from the starting and ending points to the center of the ellipse, so that the area filled is a slice of the full ellipse.

Parameters:

· center is the center of the ellipse.

· bbox_ur is a point relative to center which indicates the upper-right corner of the smallest bounding box that contains the ellipse desired.

· start is the angle relative to the trigonometric origin in which the filling of the arc must begin.

· end is the angle relative to the trigonometric origin in which the filling of the arc must end. If this angle is smaller than the starting angle, it might be useful to add 360 degrees to it. For instance: an arc from 45 (start) to 30 (end) degrees must fill the whole ellipse except the slice between 30 and 45 degrees, as if filling from 45 to 390 degrees. This allows specifying the full ellipse by giving equal start and end angles.

1.33 Text (Point ref_point, Text text)

This function draws a string of ISO Latin-1 characters in the TWF drawing. The text is positioned relative to a reference point according to the current state as set by the SetTextAlignment function.

The output of this function depends directly on the state variables set by SetTextColor, SetFont, and SetTextAlignment.

Parameters:

· ref_point is the reference point to indicate where the text should be displayed.

· text is the string of characters to display. The output for ASCII control characters (newline, horizontal and vertical tabulation) is not defined and they should be avoided.
1.34 Shape (Identifier shape_id, Point center, Angle rotation, Point bbox_ur)

This function instantiates a previously defined shape. The shape will be translated, rotated, and scaled according to parameters given to this function. This is the equivalent of processing all the functions contained in the shape’s definition, performing the requested transformations.

The order of the transformations is most important. First, the shape will be scaled to meet the new bounding box. Then, this scaled shape will be rotated by the given rotation angle in counter-clockwise direction. Finally, the scaled and rotated shape will be translated so that its center, previously at (0,0), is at the given center.

The shape identifier must be stored in the current state so that it can be used in a possible call to RepeatShape. This requires the existence of a state variable that stores the last used shape identifier. This variable must have an initial value of an invalid shape identifier.

Except for this variable, the current state is not changed by this function, even if the shape contains state-changing functions. This means that instantiating a shape is the equivalent of processing its functions with a copy of the state as it was when the shape was defined, that is, when BeginSetShape appeared.

Parameters:

· shape_id is the unique identifier of the previously defined shape to instantiate.

· center is the point to which the center of the shape must be translated.

· rotation is the rotation angle relative to the center of the shape.

· bbox_ur is the new bounding box’s upper-right corner. It cannot equal the point (0,0), the center of the shape, as it would indicate an invalid bounding box. It is considered to be relative to (0,0), the center of the shape when it was defined.

1.35 Image (Identifier image_id, Point src_lower_left, RelPoint src_upper_right, Point dst_lower_left, RelPoint dst_upper_right)

This function instantiates a rectangular area of a previously defined image and displays it in a given location. This allows for just part of an image to be used as if it was a complete image itself.

It should be noted that the image must be scaled to fit the destination area, even if this does not respect its aspect ratio. The algorithm used to stretch the image and force it to fit the destination rectangle is indicated by the state variable set by SetImageStretchMode.

Parameters:

· image_id is the unique identifier of the previously defined image desired.

· src_lower_left is the lower-left corner of the area desired in the image. This value will be interpreted in relation to the image as if it had been rendered with its lower-left corner at (0,0) with each pixel being a TWF unit square.

· src_upper_right is the upper-right corner of the area desired in the image, relative to src_lower_left. This value will be interpreted in relation to the image as if it had been rendered with its lower-left corner at (0,0) with each pixel being a TWF unit square.

· dst_lower_left is the lower-left corner of the rectangular area in the drawing in which the image must be rendered.

· dst_upper_right is the upper-right corner of the rectangular area in the drawing in which the image must be rendered, relative to dst_lower_left.

1.36 Line (Point p0, RelPoint p1)

This function draws a line between two specified points.

The output of this function depends directly on the state variables set by SetLineColor, SetLineDashes, and SetLineStyle.

Parameters:

· p0 is the first point of the line.

· p1 is a point relative to p0 which is the last point of the line.

1.37 DrawBox (Point lower_left, RelPoint upper_right)

This function draws the outline of a rectangle or box specified by its lower-left and upper-right coordinates.

The output of this function depends directly on the state variables set by SetLineColor, SetLineDashes, and SetLineStyle.

Parameters:

· lower_left is the lower-left corner of the box.

· upper_right is the upper-right corner of the box. Both coordinates of this point must be greater than zero.

1.38 DrawCircle (Point center, Size radius)

This function draws the outline of a circle specified by its center and radius.

The output of this function depends directly on the state variables set by SetLineColor, SetLineDashes, and SetLineStyle.

Parameters:

· center is the position of the center of the circle.

· radius is the radius of the circle in TWF units. The use of the Size type allows only integer values to be used. If a circle with a real radius is desired, the DrawEllipse function must be used with a square bounding box.

1.39 DrawEllipse (Point center, RelPoint bbox_ur)

This function draws the outline of an ellipse specified by its bounding box.

The output of this function depends directly on the state variables set by SetLineColor, SetLineDashes, and SetLineStyle.

Parameters:

· center is the position of the center of the ellipse, which coincides with the center of its bounding box.

· bbox_ur is a point relative to center which indicates the upper-right corner of the bounding box of the desired ellipse. Both coordinates of this point must be greater than zero.

1.40 FillBox (Point lower_left, RelPoint upper_right)

This function fills the interior of a rectangle or box specified by its lower-left and upper-right coordinates.

The output of this function depends directly on the state variables set by SetFillColor, SetGradientFill, SetTextureFill, or SetStrechedTextureFill.

Parameters:

· lower_left is the lower-left corner of the box.

· upper_right is the upper-right corner of the box. Both coordinates of this point must be greater than zero.

1.41 FillCircle (Point center, Size radius)

This function fills the inside of a circle specified by its center and radius.

The output of this function depends directly on the state variables set by SetFillColor, SetGradientFill, SetTextureFill, or SetStrechedTextureFill.

Parameters:

· center is the position of the center of the circle.

· radius is the radius of the circle in TWF units. The use of the Size type allows only integer values to be used. If a circle with a real radius is desired, the FillEllipse function must be used with a square bounding box.

1.42 FillEllipse (Point center, RelPoint bbox_ur)

This function fills the inside of an ellipse specified by its bounding box.

The output of this function depends directly on the state variables set by SetFillColor, SetGradientFill, SetTextureFill, or SetStrechedTextureFill.

Parameters:

· center is the position of the center of the ellipse, which coincides with the center of its bounding box.

· bbox_ur is a point relative to center which indicates the upper-right corner of the bounding box of the desired ellipse. Both coordinates of this point must be greater than zero.

1.43 StampShape (Identifier shape_id, RelPoint center)

This function instantiates a previously defined shape. The shape will have its center translated to a given position. This is exactly the same as the Shape function without any rotation or scaling, including its effects on the current state.

Parameters:

· shape_id is the unique identifier of the shape to be instantiated.

· center is the new position of the center of the shape, previously at the origin (0,0).

1.44 RepeatShape (RelPoint center)

This function instantiates a previously defined shape. The shape will have its center translated to a given position. This is the same as the Shape function without any rotation or scaling.

The shape instantiated by this function is the last shape instantiated by a call to Shape or StampShape, as stored by those functions in the current state. It is considered an error to call RepeatShape if neither Shape nor StampShape were ever called to initialize the state variable.

Parameters:

· center is the new position of the center of the shape, previously at the origin (0,0).

1.45 FullImage (Identifier image_id, Point dst_lower_left, RelPoint dst_upper_right)

This function instantiates a previously defined image and displays it in a given location. Unlike the Image function, this one always displays the full image as it was defined by SetImage.

It is important to note that the image must be scaled to fit the destination area, even if this does not respect its aspect ratio. The algorithm used to stretch the image and force it to fit the destination rectangle is indicated by the state variable set by SetImageStretchMode.

Parameters:

· image_id is the unique identifier of the previously defined image desired.

· dst_lower_left is the lower-left corner of the rectangular area in the drawing in which the image must be rendered.

· dst_upper_right is the upper-right corner of the rectangular area in the drawing in which the image must be rendered relative to dst_lower_left.

1.46 SetEdge (Point p0, Size nsegs, {Byte mode, RelPointArray points}[nsegs])

This function defines a map edge, which is basically a (usually very large) polygonal line. Edges can be put together to form a closed surface called a face (see SetFace).

Each one of the defined edges has an implicit edge identifier or edge id. Edge identifiers are SIdentifier values which are used in other functions to reference one of the previously defined edges. The first edge defined by SetEdge is edge 1, the second one is edge 2, and so forth.

This function indicates the presence of an edge table, indexed by an integer in increasing definition order, present in the TWF state. This table is used by the SetFace, DrawEdge, and DrawEdgeRange functions. The initial value is an empty table.

Except for the addition to the edge table, this function does not alter the current state in any way, which includes the rel_point_size state variable.

Parameters:

· p0 is the first point of this edge.

· nsegs is the number of ‘segments’ this edge if made of. Each segment is composed of a mode and a points field.

· mode is a byte that contains the relative point size used for the following RelPointArray only. Its value must be one of the valid rel_point_size values.

· points is an array of points, relative to the last point processed (either p0 or the last point of the previous segment).

1.47 SetFace (Size nedges, SIdentifier edge_ids[nedges], Size nholes, Identifier hole_ids[nholes])

This function defines a map face, a closed polygonal line which is the concatenation of several previously defined edges (see SetEdge) minus the area of a list of previously defined faces.

Each one of the defined faces has an implicit face identifier or face id. Face identifiers are Identifier values which are used in other functions to reference one of the previously defined faces. The first face defined by SetFace is face 0, the second one is face 1, and so forth.

The functionality of the holes is such that, when a face is filled by a call to FillFace, the area inside the holes of the face being drawn will not be modified. The holes are also not considered part of the face when object picks are handled (see Object).

This function indicates the presence of a face table, indexed by an integer in increasing definition order, present in the TWF state. This table is used by the SetFace and FillFace functions. The initial value is an empty table.

With the exception of the addition to the face table, this function does not alter the current state in any way.

Parameters:

· nedges is the number of edges present in this face.

· edge_ids is a list of nedges edge identifiers. A face is the closed polygonal line obtained by connecting all the points in the given edges, in the given order of edge identifiers, as if the points had been given as the vertices of a polygon (see DrawPolygon and FillPolygon). If a negative edge identifier appears, this means that the edge identified by its absolute value is to be traversed in the opposite direction relative to its definition. That is, the edge should be traversed from the last to the first point.

· nholes is the number of holes given for the new face.

· hole_ids is the list of faces that specifies the areas to be considered as holes. This list may only contain identifiers considered valid before this function is fully processed, thus avoiding a face which has itself as a hole.

1.48 DrawEdge (SIdentifier edge_id)

This function draws a previously defined edge specified by its edge identifier. Each vertex of the edge is connected by a line to the next one, following the guidelines of the Line function.

Parameters:

· edge_id is the (greater than zero) identifier of the edge that should be drawn.

1.49 DrawEdgeRange (SIdentifier edge_id_start, SIdentifier edge_id_end)

This function draws a series of previously defined edges specified by their edge identifiers. All edges whose identifiers range from edge_id_start (inclusive) to edge_id_end (inclusive) are drawn as in DrawEdge.

Parameters:

· edge_id_start is the (greater than zero) identifier of the first edge that should be drawn.

· edge_id_end is the (greater than zero) identifier of the last edge that should be drawn. This should be greater than edge_id_start.

1.50 FillFace (Identifier face_id)

This function fills the interior of a previously defined face specified by its face identifier. For more information, see SetFace.

The output of this function depends directly on the state variables set by SetFillColor, SetGradientFill, SetTextureFill or SetStrechedTextureFill.

Parameters:

· face_id is the identifier of the face that should be filled.

1.51 SetPointSizeXX ()

This group of state functions changes the value of the point_size state variable to one of its possible values (see Table 2‑B – Point encoding).

Parameters:

(none)
1.52 SetRelPointSizeXX ()

This group of state functions changes the value of the rel_point_size state variable to one of its possible values (see Table 2‑C – RelPoint encoding).

Parameters:

(none)
1.53 SetColorSize (Byte mode)

This function changes the value of the color_size state variable to one of its possible values (see Table 2‑A – Color encoding).

Parameters:

· mode is one of the valid color_size values.

1.54 SetBlendMode (Byte mode)

This function sets the basic alpha compositing rule for combining source and destination pixels to achieve blending and transparency effects with graphics and images. The rules used here are a subset of the Porter-Duff rules described in T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84, 253-259.

If any input does not have an alpha channel, an alpha value of 1.0, which is completely opaque, is assumed for all pixels. This is true for colors defined in a color mode which does not specify the alpha channel value.

The following abbreviations are used in the description of the rules:

 Cs = one of the color components of the source pixel.

 Cd = one of the color components of the destination pixel.

 As = alpha component of the source pixel.

 Ad = alpha component of the destination pixel.

 Fs = fraction of the source pixel that contributes to the output.

 Fd = fraction of the input destination pixel that contributes to the output.

The color and alpha components produced by the compositing operation are calculated as follows:

 Cd = Cs*Fs + Cd*Fd

 Ad = As*Fs + Ad*Fd

Fs and Fd are set according to the mode parameter.

Parameters:

· mode indicates the value to be used for Fs and Fd. The default value for the blend mode is the Source Over Destination rule (0x02). A list of all possible modes is provided in Table 5‑B – Blend modes.

Mode
Mode Name
Fs
Fd

0x00
Clear
0
0

0x01
Source
1
0

0x02
Source Over Destination
1
(1 – As)

0x03
Destination Over Source
(1 – Ad)
1

0x04
Source In Destination
Ad
0

0x05
Destination In Source
0
As

0x06
Source Held Out By Destination
(1 – Ad)
0

0x07
Destination Held Out By Source
0
(1 – As)

Table 5‑B – Blend modes

1.55 SetLineColor (Color color)

This function changes the color currently used to draw lines, such as done by the Line function.

This function indicates the presence of a state attribute to hold the current line color. The initial value is solid black, with the R, G and B channels at zero and the alpha channel at its maximum value.

Parameters:

· color is the new line color to be set in the current state.

1.56 SetLineDashes (Uint16 dash)

This function changes the pattern currently used to draw lines, such as is done by the Line function. The pattern is a series of 16 bits, representing 16-point pieces of the line. Each bit indicates that a point along the line should be drawn if the bit value is 1, and not drawn if the bit value is 0. The pattern repeats itself along each line drawn.

This function indicates the presence of a state attribute to hold the current line dashes pattern. The initial value is 0xFFFF, a full line.

Parameters:

· dash is the new dash pattern to be set in the current state.

1.57 SetLineStyle (Byte joint, Byte begin, Byte end, Byte weight)

This function changes the style used for line joints and edges, and the thickness of lines.

This function indicates the presence of state attributes to hold the current line style. The initial value for the line joint style is the system default (0) value. The initial line begin and end styles are both no arrow (0). The default line weight or thickness is also system dependent, with a recommended value of one TWF unit.

Parameters:

· joint is the new style used when joining two adjacent lines. For a list of possible values, see Table 5‑C – Line joint style. The default value is 0, the system’s default line joint style, which might be any of the other styles.

· begin is the new style used for the beginning of lines. In the case of polygonal lines, only the first point of the first segment is affected by this style. For a list of possible values, see Table 5‑D – Line edge style. The default value is 0, which indicates that no arrow is used.

· end is the new style used for the ending of lines. In the case of polygonal lines, only the last point of the last segment is affected by this style. For a list of possible values, see Table 5‑D – Line edge style. The default value is 0, which indicates that no arrow is used.

· weight is the thickness or ‘weight’ of lines in TWF units. If zero is given as the line weight, then the line thickness should be infinitely thin. An infinitely thin line always has the same apparent thickness regardless of the current zoom, and it is always visible. For screen viewers, this should mean the line is always one pixel wide.

Joint
Description

0
System default

1
Miter

2
Round

3
Bevel

Table 5‑C – Line joint style

[image: image9.png]

Figure 5‑I – Line joint examples from left to right: miter, round, and bevel

begin or end
Description

0
No arrow (default)

1
Arrow

2
Open arrow

3
Stealth arrow

4
Diamond arrow

5
Oval arrow

Table 5‑D – Line edge style

1.58 SetFillColor (Color color)

This function changes the current fill style to a given color. The fill style is used by all functions that perform filling, such as FillPolygon, FillCurve, etc.

This function indicates the presence of a state attribute to hold the current fill pattern. The initial value is a solid black color, with the R, G and B channels at zero and the alpha channel at its maximum value.

Calling this function negates the effect of previous calls to SetFillColor, SetGradientFill, SetTextureFill, and SetStrechedTextureFill, as all of them change the fill pattern in the current state.

Parameters:

· color is the new fill color to be set in the current state.

1.59 SetGradientFill (Point p0, Color c0, Point p1, Color c1)

This function changes the current fill style to a gradient transition between two given colors.

As point p0 with color c0 and point p1 with color c1 are specified in TWF space, the color on the (p0, p1) connecting line is proportionally changed from c0 to c1. Any point P not on the extended (p0, p1) connecting line has the color of the point P' which is the perpendicular projection of P on the extended (p0, p1) connecting line. Points on the extended line outside of the (p0, p1) segment are colored so that points on the p0 side of the segment have the constant color c0 while points on the p1 side have the constant color c1.

Calling this function negates the effect of previous calls to SetFillColor, SetGradientFill, SetTextureFill, and SetStrechedTextureFill, as all of them change the fill pattern in the current state.

Parameters:

· p0 is the point of reference for color c0.

· c0 is the first color of the gradient fill.

· p1 is the point of reference for color c1.

· c1 is the second color of the gradient fill.

1.60 SetTextureFill (Point p_ll, Identifier image_id)

This function changes the current fill style into a texture. The lower-left corner of the texture is anchored to a given point. Texture is then computed by conceptually replicating the specified image infinitely in all directions.

Calling this function negates the effect of previous calls to SetFillColor, SetGradientFill, SetTextureFill, and SetStrechedTextureFill, as all of them change the fill pattern in the current state.

Parameters:

· p_ll is the anchor for the lower-left corner of the texture.

· image_id is a valid identifier for a previously defined image to be used as the texture.

1.61 SetStretchedTextureFill (Point p_ll, RelPoint p_ur, Identifier image_id)

This function changes the current fill style into a texture. The texture is anchored to a given rectangle, as specified by its lower-left and upper-right coordinates. Texture is then computed by conceptually replicating the specified image infinitely in all directions.

Calling this function negates the effect of previous calls to SetFillColor, SetGradientFill, SetTextureFill, and SetStrechedTextureFill, as all of them change the fill pattern in the current state.

Parameters:

· p_ll is the lower-left corner of the texture anchor.

· p_ur is the upper-right corner of the texture anchor.

· image_id is a valid identifier for a previously defined image to be used as the texture.

1.62 SetImageStretchMode (Byte image_mode)

This function changes the current algorithm used when stretching images.

This function indicates the presence of a state attribute to hold the current image stretch mode. The initial value is 0, which indicates the use of the Nearest Neighbor algorithm.

Parameters:

· image_mode is the new image stretch mode to be set in the current state. For a list of possible values, see Table 5‑E – Image stretch modes.

image_mode
Image Stretch Algorithm

0
Nearest Neighbor

1
Bilinear Interpolation

Table 5‑E – Image stretch modes

1.63 SetTextColor (Color color)

This function changes the color currently used to draw text by means of the Text function.

This function indicates the presence of a state attribute to hold the current text color. The initial value is solid black, with the R, G and B channels at zero and the alpha channel at its maximum value.

Parameters:

· color is the new text color to be set in the current state.

1.64 SetFont (Byte typeface, Byte style, Size size)

This function changes the font currently used to draw text by means of the Text function.

This function indicates the presence of a state attribute to hold the current font, its size and style. The initial font is a system-dependent font in plain style with a size of one TWF unit.

Parameters:

· typeface is the new font typeface to use. For a list of possible values, see Table 5‑F – Font typefaces. The initial value for the font typeface is 0, the system default font.

· style is the style used to draw the font. For a list of possible values, see Table 5‑G – Font styles. The initial value is 0, the plain font style.

· size indicates the font size in TWF units. The initial font size is 1.

typeface
Font Name
Description

0
System Default
This setting uses the default font of the viewer or system.

1
Monospaced
A monospaced font, such as Courier.

2
Serif
A serif font, such as Times Roman.

3
Sans Serif
A sans serif font, such as Arial.

Table 5‑F – Font typefaces

style
Font Style

0
Plain

1
Bold

2
Italic

3
Bold Italic

Table 5‑G – Font styles

1.65 SetTextAlignment (Byte alignment, Angle direction)

This function sets the alignment used to draw text strings by means of the Text function.

The purpose of this function is to give meaning to the reference point parameter of the Text function, indicating how the text should be drawn around it. Figure 5‑II – Text alignment samples is an example of text strings displayed with different alignments. The red dots indicate the reference point used for each string.

Parameters:

· alignment indicates what the reference point given to the Text function means in relation to the text string. The default value is Baseline Center (0x0A). A list of all possible values is given in Table 5‑H – Text alignments.

· direction is an angle that indicates in which direction the text should flow. The default value is 0 degrees, which means the text is horizontal and flowing from left to right. The angle is then interpreted in the trigonometric sense, rotating the text flow direction around the reference point given to the Text function.

[image: image8.png]3
NorthEast|

NorthWest
SouthEast

SouthWest

Figure 5‑II – Text alignment samples

Alignment
Direction Name

0x00
North

0x01
South

0x02
East

0x03
West

0x04
Northeast

0x05
Northwest

0x06
Southeast

0x07
Southwest

0x08
Center

0x09
Baseline Left

0x0A
Baseline Center

0x0B
Baseline Right

Table 5‑H – Text alignments

1.66 SetPalette (ColorArray palette)

This function defines the current palette of colors. This palette is used in the indexed color modes, and is a part of the current state. When this function is called, it completely destroys the previous palette and replaces it with the newly given one in the current state.

This function indicates the presence of the palette in the TWF state. The palette is a list of Colors indexed by an integer value. The first color is color 0, the second is color 1, and so forth. It is considered a syntax error to access an undefined color. The default palette consists of a 256-color list with the solid white color in position 0 and the solid black color in positions 1 to 255.

Parameters:

· palette is an array of up to 256 colors which will be, in the order given, the elements of the palette in the current state.

1.67 SetImage (Uint16 w, Uint16 h, Color[(w * h(] colors)

This function defines a raster image in the global state for future instantiation. This function can only appear inside the global layer and, as such, does not generate any output in the drawing canvas.

Each of the defined images has an implicit image identifier or image id. Image identifiers are Identifier values which are used in the image drawing functions to reference one of the previously defined images. The first image defined by SetImage is image 0, the second one is image 1, and so forth.

This function indicates the presence of an image table, indexed by an integer in increasing definition order, present in the TWF state. This table can only be appended to in the global layer. It is read by the Image, FullImage, and SetTextureFill functions. The initial value is an empty table.

Parameters:

· w is the width of the defined image in points.

· h is the height of the defined image in points.

· colors is the list of colors for each and every one of the w * h points present in the image. The colors are listed line by line, from top to bottom. Each line is given from left to right.

1.68 BeginSetShape (Point bbox_ur)

This function begins the definition of a shape, which is the TWF equivalent of a macro. This function can only appear inside the global layer and, as such, does not generate any output in the drawing canvas.

Each one of the defined shapes has an implicit shape identifier or shape id. Shape identifiers are Byte values which are used in the shape instantiation functions to reference one of the previously defined shapes. The first shape defined by BeginSetShape is shape 0, the second one is shape 1, and so forth.

The functions that appear between a BeginSetShape and an EndSetShape function are considered part of the shape. All TWF functions may be present inside a shape, with the following exceptions: Object, BeginSetShape, SetImage, SetMIMEImage, Layer, Shape, StampShape, and RepeatShape. Shapes cannot be nested or recursive.

The functions inside a shape definition are not considered part of the global layer, and should not be executed, only stored for shape instantiation with the Shape, StampShape, or RepeatShape functions.

This function indicates the presence of a shape table, indexed by an integer in increasing definition order, present in the TWF state. This table can only be appended to in the global layer. This table is read by the Shape, StampShape, and RepeatShape functions. The initial value is an empty table.

Parameters:

· bbox_ur is the upper-right corner of the bounding box of the shape. It cannot equal the point (0,0), the center of the shape, as it would indicate an invalid bounding box.

1.69 EndSetShape ()

This function ends the definition of a shape. It function can only appear inside the global layer and, as such, does not generate any output in the drawing canvas.

As was already described in BeginSetShape, the global state after EndSetShape must be exactly the same as it was before the matching BeginSetShape. If this function appears outside a shape definition, viewers should consider this a serious error.

Parameters:

(none)

To-Do List

This is a small list of things to come in the TWF format:

· Allowing the line weight to be specified in units smaller than a TWF unit. Two possible solutions: have the weight be defined in a fraction of the TWF unit (1/10, 1/100) or enumerate several pre-defined line weights (VERY THIN, THIN, DEFAULT, THICK, VERY THICK, etc…)

· Document the fact that TWF files can be zlib compressed and specifiy the file extensions and MIME types: *.twf -> image/x-twf and *.twfz -> image/x-twf-compressed-zlib.

· Document SetMIMEImage(Text MIME_type, ByteArray image_data) for TWF 1.1

· Document Mark, SetMarkColor and SetMarkStyle for TWF 1.1

· Specify if Objects are valid across Layer boundaries, that is, if a new layer definition forcibly ends the definition of the current Object or not.

4

_967483410.unknown

_967017370.doc

N

NE

E

SE

S

SW

W

NW

P

i

P

i+1

