
SimVR-Trei: A Framework for Developing VR-Enhanced Training

Peter Dam¹, Renato Prado¹, Daniel Radetic¹, Alberto Raposo¹, Ismael H. F. dos Santos²

1 – Tecgraf Institute/Pontifical Catholic University of Rio de Janeiro

{peter, rdprado, radetic, abraposo}@tecgraf.puc-rio.br

2 – CENPES/Petrobras

ismaelh@petrobras.com.br

ABSTRACT

There has been an increasing interest in using VR and serious

games that mock real scenarios and allow professionals to perform

operations that previously would only be possible in a real

environment. In this kind of VR-enhanced training application, it is

possible to identify aspects that are crucial to the quality of the

system, which were taken into account in the framework we

propose in this paper: SimVR-Trei. The most noticeable, to the end-

user, are the user interface (UI) and the 3D navigation/interaction

systems, which are key to establishing a valuable experience. Two

other crucial aspects in such kind of application are the rules

system, paired with the environment simulation, which are

responsible for creating a veritable world and enhancing the sense

of presence. The rules system is the aspect that relates to the

training procedures, in other words, it defines the game logic. The

environment simulation creates the behavior of the world in

response to the users’ actions, which, in some cases, may be

provided by an external simulator. Finally, the immersion support

system deals with the VR-related issues, such as support for

multiple display setups. The challenges imposed by these aspects

have been faced during the development of two industrial training

applications, leading to the creation of SimVR-Trei framework,

which seeks to facilitate the development and the reuse of solutions

for common issues in different applications.

Keywords: Training, components, simulation, VR.

1 INTRODUCTION

The use of simulation and serious games as an alternative method

to teach, train or reinforce skill acquisition has been subject of study

for quite some time [1]. Simulation and games as learning tools

have roots that date back to 5000 years ago [2]. Studies prove that

computer-simulated environments can effectively help establish the

link between theory and practice [3] [4], while providing a safe

environment in which to acquire experience [5]. For these reasons,

the industry has seen an increased interest in using serious games

and simulated virtual environments for training purposes [6] [7] [8].

One key factor in the success of a simulation is what is called

“situated learning” [9] [10], which is related to how engaged the

user is able to become [11]. For this reason, many initiatives have

turned to virtual reality as a potential way to enhance learning [12]

[13]. However, introducing virtual reality in a training application

and making use of its potential benefits are a challenge [14].

The recent rise of VR and natural user interface (NUI)

technologies, from the Wii Remote [15], to Kinect [16] and Oculus

Rift [17], has leveraged the use of VR in this kind of application.

While in some cases it may be true that “full immersion” is not

always necessary [18], it has been found that, for learning purposes,

more immersive experiences lead to better results [19] [20]. The

reason for this is that VR is able to divert attention away from the

real world [21], increasing focus on the content in the virtual

environment. This immersion effect is further enhanced by NUI,

which may reduce the effort of sending commands to the system

[22] [23].

This paper identifies and discusses aspects that are crucial to the

quality of a training application and presents a framework to help

to overcome common issues. In section 2, we identify the key

aspects of VR-enhanced simulations, the role they play and their

importance. In the third section, we present a high-level view of the

framework’s architecture, linking the components to the aspects

identified in section 2. At last, we present the usage of the

framework in two different industrial training applications.

2 VR-ENHANCED SIMULATIONS

Five aspects have been identified as key to developing a high

quality experience in a VR-enhanced training system: immersion

support, navigation & interaction, environment, rules, and user

interface (UI).

2.1 Immersion Support

In a process that involves learning, a person’s capacity to retain new

information and knowledge depends on their ability to maintain

focused. Studies show that multitasking while learning causes new

information to be stored in a different part of the brain [24]. Self-

repeating activities carried along with learning leads to storing

information in a region specialized in procedures instead of the

hippocampus, which is more organized and is easier to retrieve

from [25].

One way to help retain focus is increasing the sense of presence.

Although a completely immersive virtual environment may not be

strictly necessary for the training application at matter, researches

show that the more immersive the environment, the more likely for

a user to achieve better results [20].

For this reason, immersion support is an important feature to

consider in a training application. Immersion support is both the

LEAVE 0.5 INCH SPACE AT BOTTOM OF LEFT COLUMN

ON FIRST PAGE FOR COPYRIGHT BLOCK

support for multiple input devices and multiple output devices. We

consider that it is important to be able to easily plug in new devices,

in order to keep the software up to date with newer technologies.

2.2 Navigation & Interaction

Navigation and interaction are two of the main actions a user can

perform in a virtual environment, where the latter can be broken

down into selection and manipulation [26]. Studies have shown the

importance of developing these techniques [27], which are

constantly being improved. In some cases, new technologies may

introduce new possibilities, making it crucial that these techniques

are able to be seamlessly implemented within the framework.

The way users translate their intentions into commands is another

factor that may reduce focus on the task itself. For this reason, the

quality of the input system is also an important factor for the

success of the learning process. In other words, frequently used

commands and tools demanded for fast-response situations should

be easier to activate than accessing a setting option that will rarely

be modified.

2.3 Environment

Information can be augmented for the user if it is closely related to

and tightly coupled with the virtual environment [28]. Furthermore,

the virtual environment should provide the user with challenges

that require and further develop specific skills while building

retainable knowledge to keep after the experience. In addition to

this, trainee behavior and attitude towards the given scenarios can

be improved aiming for safety and efficiency concerns. Besides, it

is also possible to use virtual training to test the ability to solve rare,

complex or dangerous situations that could happen in reality.

The environment is not limited to the 3D virtual reality in which

training takes place. In this sense, the environment includes the

feedback system and user interaction criteria, acting as an agent, as

the user itself or the instructor.

A feedback system in this case refers to the data flow in the

training environment, which returns human-friendly information to

the user. In other words, it does not include the GUI system or

peripheral devices operation, but the message treatment to make the

environment communicate with the user without ambiguity.

Designing such a system demands, but is not limited to,

understanding the user’s profile and expected behavior, as well as

the tasks and procedures being simulated and any technical

language required to accurately communicate the steps to conclude

the procedure.

As for the interaction criteria, as far as the environment is

concerned, it defines which elements can interact with the trainee

and under what circumstances. Many objects may exist in a virtual

workplace only to help with immersion, making it more real, or to

divert attention of those training from their given tasks. For instance

a noisy equipment that is along the path of a procedure and can be

interacted with, but the procedure requires no actions to be

performed on that equipment. To produce a rich and efficient

virtual environment, it is recommended to have more possible

interactions available than those strictly needed. Care must be taken

to ensure mandatory interactions are not harder to engage than they

would be in reality.

2.4 Rules

For behavioral training and educational purposes, the rules may

reflect only a sparse subset of reality which concerns the content

being taught. However, for other trainings, a veritable, close to

reality, simulation must be applied in order to demand from its

users the knowledge and skills expected in the real life procedures

they are learning.

Considering the objectives of the training application, rules must

be chosen to enforce the desired level of realism to the simulated

procedures. The framework should allow a designer to decide upon

the strictness of these rules. For instance, in any given application,

it may be desirable that users can be able to skip uninteresting steps

of a procedure, in which case the rules will be designed to purposely

leave out this portion.
Another case of varying rule set is the way these rules are

applied. A critical path of actions that define a task should be
required, whilst those that define the quality of the work should
remain partially or totally optional. The application can allow the
user to complete the whole operation, even if she/he makes a
mistake somewhere and inform of this mistake in the end, as long
as it isn’t critical to the procedure to excel in that specific task. On
the other hand, it might be interesting to not allow progress until
every requirement for a mandatory step has been met, persisting the
relevance of the related actions in the trainee’s memory and
ensuring the learning and practice of the same.

2.5 User Interface

We consider UI to be a combination of 3D objects in world-space

and 2D objects on screen-space. Each one plays an important role

in communication with the user. Studies have shown the

importance of the UI in virtual environments [29] [30], and the use

of 3D objects in what is called ecological interface has been proven

[31] to have a positive effect on target acquisition time, which

means how long a user takes to find the relevant information.

However not all information can be spatial, rendering 2D screen-

space elements is useful as well.

The framework should be capable of simultaneously

communicating with both types of UI. Different output devices

might require different layouts, especially regarding 2D screen-

space elements, since the screen-space may be radically different.

For this reason the framework should also be able to identify

different target outputs and choose the appropriate 2D UI, if

provided in the application.
Audio messages and alerts may also be used to reinforce

communication. Although it is important to note that it should not
be the single source of information to any interface message if
audio is optional in the application.

3 ARCHITECTURE

We based our architecture on the Model-View-Controller design

pattern. Variations of it have been around for some time but ours is

similar to Cocoa’s MVC [32] where the controller acts as a

mediator between the model and view layers as shown on Figure 1.

The model and view layers are independent and can only

communicate back with the controller blindly, which means by

delegates and notifications. This way we can increase the objects’

reuse and have easily extensible programs.

Figure 1: Standard MVC

3.1 MVC in SimVR-Trei

We split views into two groups, the ones related to controlling the

game through the GUI (buttons, menus, dialogs, labels and a game

inventory or a mini-map, for instance), and the ones that are part of

the actual game (waypoints, the player and game elements that need

to be updated depending on the game logic or even GUI changes).

For this reason, we also have two types of view controllers: the

game elements’ controller and the GUI controller. Figure 2 presents

a high-level view of that architecture. When one of these controllers

change the game logic, the other receives a notification about the

changes and can update its views.

Figure 2: MVC adapted to SimVR

Most of what happens in the game is reported to the logic by a

controller. For instance, if the user enters a specific room and an

instruction containing what she/he needs to do next needs to be

presented on the screen, a 3DWorldController will treat the event

generated by a waypoint, which represents the user entering that

room, and will inform the logic about it. The action is going to be

processed and a notification is going to be sent to the game logic’s

observers. Then, the GUI controller, which is an observer, will be

able to show the instruction text on screen. Another example is the

score – if the game has a score system, the logic classes will

calculate and update it depending on the user actions during the

game.

This allows the system to build multiple presentations of the

same information, such as multiple instances of the GUI, which

allows us to target different display setups using the same

application.

With the chosen Model-View-Controller architecture, the game

could run without the 3D part. Although the 3D part is a

fundamental aspect of our application, the game could execute in

console mode for testing purposes for example. An interesting

aspect of this MVC architecture, applied to games, is that one could

program the entire logic independently of the chosen game engine

and without the need of an advanced GUI, or 3D game objects.

Since every user action coming from the GUI or from any in-game

actions are reported to the logic, the logic classes can be invoked

directly by a test script and then a GUI controller is able inform the

results on a console, for instance.

Depending on the content of the training game, the boxes in the

diagram in Figure 2 should be broken into several classes. For

example, in one project we have one controller for a mini map, one

for a thermal camera GUI and one for a report view, which is a view

for the user to submit data as well as to show the results at the end

of a training session. A main GUI controller manages them and is

the only one that has access to the game logic. The same goes for

the game logic service: we have an interface called IGameLogic

and a GameLogic class that implements it. The GameLogic class

delegates its responsibilities to specialized classes.

With the proposed architecture, it is simple to add components

such as an external simulator. One of our projects uses an external

simulator SDK to measure a solar power plant’s performance. The

user can change the input parameters from a simulation GUI. Even

during the training session, she/he can change simulation

parameters from the result of some action started in the 3D world.

For instance, the player can travel to a solar panel control box,

which is a three dimensional object in the virtual environment, and

change the angle of a group of solar panels, which affects the

performance of the solar power plant. In Figure 3, it is possible to

see how an external simulator can be integrated in the architecture.

The simulator is accessed through a simulation service API,

preferably an interface.

Figure 3: Simulator integration

3.2 Waypoint System

A waypoint is a reference point used for navigation purposes by in-

game characters. A basic type of waypoint is the movement

waypoint. Game objects assigned to these waypoints will move

towards them in sequential order, until they reach the final

waypoint. In training modes of serious games a waypoint system

might be an important resource to guide the player and the NPCs’

– non-player characters, or characters that are not controlled by a

player –, movement in a 3D scenario.

It is very common to have those NPCs in a game or a in a serious

game. For instance, in one of our applications of a solar power

plant, there are workers, who are not controlled by a player,

walking around following arbitrary paths determined by waypoints.

This is useful for simulating what real workers would be doing in a

plant. The NPC waypoints add realism to the scenario that the game

represents.

The waypoint system may be fundamental for the game logic

since the logic may need to be informed all the time about where

the player (or even an NPC) is in the 3D world – if she/he left an

important room, reached a checkpoint, or if she/he chose an

incorrect path. This way the programmer can deal with the player

movement generating responses for the waypoint events.

Another important feature is to be able to limit the user’s

movement along pre-defined paths, since sometimes it may not be

desirable that she/he can explore the entire scene. With the

waypoint movement system, it is possible to let the user make

decisions about which ways to go, but she/he will only be able to

follow the paths previously created with waypoints. There is also

the possibility of controlling the characters’ speed when they are

following a waypoint path.

A waypoint system that meets these needs – guiding and limiting

the player and the NPCS’s movement in the 3D world – should

have at least three types of waypoints. The “choose path” type,

which makes the player stop and lets him choose between different

paths to follow. The “turn around” type, which makes the player or

the NPCs turn around and go back when they reach that kind of

waypoint. Finally, the standard type, which forces the player or the

NPCs to follow arbitrary paths determined by the application

developer.

One other important property of waypoints are the looping type.

This defines what happens once an object reaches the last waypoint

in a given path. The different behaviors can be “once”, “loop”, and

“ping pong”. The first will simply leave the object in place, causing

it to become static. The second moves the object back to the first

waypoint in the path, starting over from the beginning. The last will

cause the object to turn around and move along the path back from

the end to the beginning.

We developed our own waypoint system but some engines may

already have one available. We created three classes: Waypoint,

WaypointMover, and WaypointsHolder. The first one (Waypoint),

is a script that contains waypoint visualization options and

associated actions – we want to be able to visually place the

waypoints when creating the scene. This class stores not only the

waypoint’s color and size, but also the character’s activation

distance to it and its type (regular waypoint, “choose path” or “turn

around”) and looping type. The WaypointMover is the most

important script; it controls the object’s movement along a

waypoint path. It has a WaypointHolder, which contains all the

waypoints and renders them as they were connected, as shown in

Figure 4.

Figure 4: Waypoint paths

3.3 SimVR-Trei and Unity3D

We have successfully integrated this architecture with the Unity 3D

game engine [33]. In Unity 3D, every object in the game is called a

GameObject and each of these game objects can have many

different components. The GameObjects do not do anything on

their own; they are containers for scripts that add different

behaviors to them. Scripts that add behavior to a game object are

called components. An example of a component would be a script

that adds physics behavior to an object. Even though Unity 3D has

this component architecture, we were still able to blend our MVC

with it and take advantages of both worlds.

To illustrate that, consider our thermal camera view, which is

shown in Figure 5. During a training session with one of our

applications, the user must make use of the thermal camera to

photograph failures on a solar panel. The thermal camera is a game

object, which has several components, such as a Transform and

a RenderTexture. The Transform component determines the

location of the game object in the 3D world; and we use a second

camera in the scene, which renders its image (with a thermal effect),

to the thermal camera texture. This is a simple way to implement

the thermal camera and it is possible thanks to the component

architecture. However, the thermal camera view needs more than

that: it has buttons for switching from thermal to regular camera

mode and a button to take a picture. When the regular camera mode

button is pressed, the image effect must change. Furthermore, all of

these actions must be reported to the game logic in order to decrease

the player’s score when he photographs a failure with the wrong

camera mode, for example. In other words, the view needs a

controller that can receive events and deal with them properly.

Figure 5: Thermal Camera

The solution is adding one more component to the thermal

camera with a view controller role, in this case

the ThermalCameraViewController. In addition to this, it is

necessary to connect the game objects that fire events, such as

buttons, to the view controller script – which is possible with

Unity’s GUI framework. This way the Model-View-Controller can

be effectively used within the Unity engine.

3.4 Character Control System

In this architecture, we also built a character control system (Figure

6), which is responsible for allowing the user to move around the

virtual environment, but also allow non-player characters to do the

same. This is achieved by having a core component, the Character

Motor, which receives input in a standard format. Using LVRL

[34], we read information from devices and transform them, via an

implementation of an Input Manipulator, into the format expected

by the Character Motor. This allows a single implementation of the

motor to be used by any device or combination of devices. This also

enables the creation of different techniques or ways to translate

input data into commands, such as different approaches for

mapping Kinect gestures to actions in the virtual environment [35].

One such case is the use of Oculus Rift paired with a game pad.

While the Rift provides orientation, there is no travel associated

with this specific piece of device. By linking a character to both a

Rift manipulator and a game pad manipulator, we receive

orientation data from Rift and translation data from the game pad,

and can easily switch what kind of data and where it is obtained by

simply enabling different manipulators. For instance, if the system

detects a Kinect, it is possible to switch between game pad and

Kinect on the fly.

Furthermore, the state of any given character can be easily

obtained from the motor, which is how character animations are

dealt with. The Character Animator continuously reads the

character’s state and updates with the according animation.

One special case is the AI manipulator, which works as any

common input manipulator, but instead of reading information

from a device a specific behaviour is programmed, which is

responsible for feeding information as though it were a device.

Figure 6: Character control system

3.5 SimVR-Trei Server

An additional feature present in this framework is the possibility

to have multiple users in a single training instance. For this to be

possible, however, not only must each user be able to see one

another, their actions in the environment must be visible to all other

users. Every relevant interaction is automatically reported to a

server, which contains the state of all variables. The server is

responsible for pushing these updates to all clients. The basic layout

for the server can be seen in Figure 7.

In this architecture, the executor is responsible for ensuring a

proper interaction between the different modules as well as the

correct execution of the game rules. It receives and executes

commands coming from the training modules and client

applications, and guarantees that the variables do not become in an

invalid state. It also is responsible for executing the Game Machine

module, pushing and retrieving data from any simulators that may

be connected.

Figure 7: Server architecture

The executor also contains a memory space that can be accessed

by the clients and modules, called “shared state”. The shared state

contains variables that can be created and updated by the training

modules and clients, which automatically become available to all

other components. These variables are indexed by a key and can

hold values as long as they either are basic types or are previously

serialized.

These variables hold information of all parts of the system, such

as crucial information for representing the state of the simulation,

determining the state of the game or storing the location of users in

the virtual world.

The client manager controls the communication between server

and clients. When a client connects to the server, it must send a

“client registration” message. There are two types of permissions:

administrator and student. The administrator client can initiate

training sessions and the student client actively participates in those

sessions. This also allows different types of clients to communicate

with a single server, sharing the same abstract virtual world among

different views. One can connect using a three dimensional

application while another can connect using a top-down map-like

view, such as a spectator view. The client is responsible for both

defining what actions the user may perform in the world and

showing the information available in the shared state. Furthermore,

there is no hard requirement for how the client is built, since all

communication is made either via TCP/IP or through a web service,

the same world can be displayed in a web browser, on a desktop

application, on a smartphone and so on.

The simulation service allows external simulators to be

connected to the system. This service is responsible for feeding

information to the simulator and retrieving it, updating the

appropriate variables so that all the other components can read it

and update themselves accordingly.

The game machine is the component that is responsible for the

execution and application of the game rules. Each operation has its

own set of rules, which reflect the step-by-step actions the user

must perform, as well as the responses to any possible mistakes the

user might make.

4 CASE STUDIES

The SimVR-Trei framework is a by-product of the development of

two VR-enhanced training applications, where it was employed and

continuously improved during the development of both.

4.1 AmbSim

AmbSim (Figure 8) is an application for training operations on an

oil rig. The operations strictly follow a manual, as well as

employing general safety measures. All actions on the virtual

environment are sent to a simulator, which is responsible for

providing the behavior of the systems and equipment on the oil rig.

Figure 8: AmbSim screenshot

During the development of this application, the major aspects

that were developed were input and output systems, allowing it to

be effortlessly built for a large range of physical setups. The

environment and rules system were also seen as key factors to the

success of the application. While a system was built internally for

the rules system, we realized we could use an external simulator for

the environment, which is when we built the possibility of

connecting simulators to provide the behavior of the environment.

The AmbSim application has two major targets: Kinect setup and

Oculus Rift setup. The Kinect setup (Figure 9) uses one large screen

and focuses on performing a sequence of actions to successfully

complete an operation on the oil rig. The Oculus Rift setup (Figure

10) is the same application, just using different input and output

systems. While the Kinect setup is focused on the operation, the

Rift setup is focused on exploring and allowing the user to become

familiarized with the environment, which was built precisely based

on blueprints. Due to this, the Rift setup allows the user to move

freely around the environment and, when she/he approaches a

certain equipment, she/he can hear technical information about that

equipment.

As mentioned in section 3.5, the way the server was built,

the same data for a virtual world can be accessed on different

devices, and can perform different roles in the training system. In

Figure 11 is an example of a web client that is accessible on a

smartphone. The role of this client is to allow the user to submit a

report to the server. This report is linked to the same session the

same user is performing on the desktop or VR client. While in the

latter the user should inspect the virtual location for potential

failures, in the former the user will report which failures he has

encountered. This data is sent to the server and will be processed,

sending feedback to the desktop or VR client that the same user is

using. This feedback is also available for other clients, such as a

supervisor client.

Figure 9: AmbSim using Kinect

Figure 10: AmbSim using Oculus Rift

Figure 11: Web client for smartphone access

4.2 Solar

Solar (Figure 12) is an application for training routines in a solar

power plant. These require the user to have basic knowledge of the

plant layout and what types of failures might occur. The application

teaches and tests response to potential situations.

Figure 12: Solar Screenshot

In this application we improved the input system, allowing

multiple input systems to be built into the same application, and the

system will detect which is active to receive proper input from, as

well as displaying the appropriate visual cues. The visual cues may

be input sensitive, which means that a different graphic may be

displayed depending on which input system is active.

Two different images are shown in Figure 13. The left image

represents the expected gesture when the input system is using

Kinect. The right image represents the expected button input when

the input system is using the keyboard. Both perform the same

action in the world (move forward).

Figure 13: Input-sensitive visual cues

One interesting aspect is that this architecture can be used not

only for training applications. An alternative application was built

for the Solar project (Figure 14) that allows users to fly and control

the date and time to visualize the interaction between the sun and

the power plant.

5 CONCLUSION

This paper presented SimVR-Trei, a framework for developing

VR-enhanced training applications. Training applications and VR

applications require a series of features, which are present in this

framework.

Figure 14: Alternative Solar application

The five key aspects for VR-enhanced training applications we

identified in section 2 are covered in the framework as follows.

For immersion support, we use the LVRL library [34] to provide

communication to input and output devices, paired with a basic

system to detect which target setup is active and switch the

application in to the proper state.

As for navigation & interaction, the framework has a character

motor, which allows the use of any techniques and combination of

techniques to send data via an Input Controller to perform travel,

selection and manipulation actions. In addition, a waypoint system

was built to allow creation of specific paths, either for the user or

for AI-controlled characters. The waypoint system uses the same

character controller, making it easy to opt between placing

characters on a path or not without having to change any input

configuration.

Regarding the environment, the framework allows connecting to

external simulators, which, via the Simulator Service,

communicates with the application, receiving and sending data in

response to the user’s actions. Environment behavior, however, can

be programmed directly in the application and should use the same

communication infrastructure. This allows a highly customizable

and veritable scene to be designed, contributing to an immersive

experience.

The rules are an important feature for training applications.

These are implemented as a module in the Game Logic, which is in

constant communication with the other modules of the system,

evaluating every action performed in the virtual environment. The

strictness of these rules can be defined, where a critical path can be

created, which are the mandatory parts of a training procedure,

while the secondary rules allow quality evaluation. The user might

not follow some of the rules and still be allowed to complete the

procedure, however the system will track these mistakes, enabling

them to be reported at the end of the session.

Finally, the MVC architecture proposes the use of view classes

to handle all user communication with the system. All system logic

and information is accessible through controllers, while the view is

responsible for the layout and display of the information. This is

because the user interface is very specific to each application. By

using this approach the framework allows the same underlying

virtual environment, with its rules and behavior, to be displayed in

context-sensitive situations, either due to different physical setups

or due to different execution modes, for instance, a simple

visualization versus a systematic guide for a specific procedure.

The applications in section 4 were built in parallel with SimVR-

Trei, where their requirements lead to the creation of new features

for the framework. The usefulness of this framework was noticed

when we were able to revisit the applications, retroactively

enhancing them with some of the newly available features.

Furthermore, with the release of new technologies, we have been

able to easily extend both the framework and the applications. The

client-server architecture also allows enhancing the application by

enabling the creation of remote assisted operations [36].

Even though the framework provides these facilities, it is

important to note that the final quality of a VR-enhanced training

application ultimately lies in the hands of those responsible for

designing them. The proper use of the rules system, the creation of

a veritable environment, and an adequate communication with the

user are the responsibility of the developers using the framework.

It is important to consider aspects of gamification, although it might

not be indicated for all cases, it has its benefits and can be

successfully used to increase user engagement and improve the

learning process.

REFERENCES

[1] G. Andlinger, "Business Games - Play One," Harvard

Business Review, vol. 36, no. 2, 1958.

[2] J. Wolfe and D. Crookall, "Developing a Scientific

Knowledge of Simulation/Gaming," Simulation &

Gaming, vol. 29, no. 1, pp. 7-19, 1998.

[3] D. Michael and S. Chen, Serious Games: Games That

Educate, Train, and Inform, Muska & Lipman/Premier-

Trade, 2005.

[4] S. Tobias, J. Fletcher and A. Wind, "Game-Based

Learning," in Handbook of Research on Educational

Communications and Technology, New York, Springer,

2014, pp. 485-503.

[5] H. Haapasalo and J. Hyvönen, "Simulatin Business and

Operations Management - A Learning Environment for

the Electronics Industry," International Journal of

Production Economics, vol. 73, no. 3, pp. 261-272, 2001.

[6] VStep, "VSTEP," [Online]. Available:

http://vstepsimulation.com/. [Accessed January 2015].

[7] Skills2Learn, "Virtual Reality Case Studies," [Online].

Available: http://www.skills2learn.com/virtual-reality-

case-studies.html. [Accessed January 2015].

[8] Siemens, "COMOS Walkinside ITS," [Online].

Available: http://w3.siemens.com/mcms/plant-

engineering-software/en/comos-lifecycle/comos-

walkinside/walkinside-its/pages/default.aspx. [Accessed

January 2015].

[9] J. Lave and E. Wenger, Situated Learning: Legitimate

Peripheral Participation, Cambridge University Press,

1991.

[10] L. Lunce, "Simulations: Bringing the Benefits of

Situated Learning to the Traditional Classroom," Journal

of Applied Educational Technology, vol. 3, no. 1, pp. 37-

45, 2006.

[11] C. Dede, "Immersive Interfaces for Engagement and

Learning," Science, vol. 323, no. 5910, pp. 66-69, 2009.

[12] M. Jou and J. Wang, "Investigation of Effects of Virtual

Reality Environments on Learning Performance of

Technical Skills," Computers in Human Behavior, vol. 29,

no. 2, pp. 433-438, 2013.

[13] S. Borsci, G. Lawsone and S. Broome, "Empirical

Evidence, Evaluation Criteria and Challenges for the

Effectiveness of Virtual and Mixed Reality Tools for

Training Operators of Car Service Maintenance,"

Computers in Industry, vol. 67, pp. 17-26, 2015.

[14] T. Moher, A. Johnson, S. Ohlsson and M. Gillingham,

"Bridging Strategies for VR-based Learning," in SIGCHI

Conference on Human Factors in Computing Systems,

1999.

[15] Nintendo, "Wii Remote Plus Controller," Nintendo,

[Online]. Available:

http://www.nintendo.com/consumer/downloads/Wii_Re

mote_Plus_En.pdf. [Accessed January 2015].

[16] Microsoft, "Kinect for Xbox 360," Microsoft, [Online].

Available: http://www.xbox.com/en-US/xbox-

360/accessories/kinect/KinectForXbox360. [Accessed

January 2015].

[17] Oculus, "Oculus Rift - Virtual Reality Headset for

Immersive 3D Gaming," Oculus, [Online]. Available:

https://www.oculus.com/rift/. [Accessed January 2015].

[18] D. Bowman and R. McMahan, "Virtual Reality: How

Much Immersion Is Enough?," Computer, vol. 40, no. 7,

pp. 36-43, 2007.

[19] J. Jacobson, "Digital Dome Versus Desktop Display in

an Educational Game: Gates of Horus," International

Journal of Gaming and Computer-Mediated Simulations,

vol. 3, no. 1, pp. 13-32, 2011.

[20] W. Winn, M. Windschitl, R. Fruland and Y. Lee, "When

Does Immersion in a Virtual Environment Help Students

Construct Understanding?," in International Conference

of the Learning Sciences, 2002.

[21] J. Lin, H. Duh, D. Parker, H. Abi-Rached and T.

Furness, "Effects of Field of View on Presence,

Enjoyment, Memory, and Simulator Sickness in a Virtual

Environment," in Virtual Reality, 2002.

[22] D. Wigdor and D. Wixon, Brave NUI World: Designing

Natural User Interfaces for Touch and Gesture, Elsevier,

2011.

[23] R. Francese, I. Passero and G. Tortora, "Wiimote and

Kinect: Gestural User Interfaces Add a Natural Third

Dimension to HCI," in International Working Conference

on Advanced Visual Interfaces, 2012.

[24] K. Jimura, F. Cazalis, E. Stover and R. Poldrack, "The

Neural Basis of Task Switching Changes With Skill

Acquisition," Frontiers in Human Neuroscience, vol. 8,

2014.

[25] D. Levitin, The Organized Mind: Thinking Straight in

the Age of Information Overload, Penguin, 2014.

[26] D. Bowman, E. Kruijff, J. LaViola Jr and I. Poupyrev,

3D User Interfaces: Theory and Practice, Addison-

Wesley, 2004.

[27] D. Bowman and L. Hodges, "Formalizing the Design,

Evaluation, and Application of Interaction Techniques for

Immersive Virtual Environments," Journal of Visual

Languages & Computing, vol. 10, no. 1, pp. 37-53, 1999.

[28] D. Bowman, L. Hodges and J. Bolter, "The Virtual

Venue: User-Computer Interaction in Information-Rich

Virtual Environments," Presence: Teleoperators and

Virtual Environments, vol. 7, no. 5, pp. 478-493, 1998.

[29] G. Leach, G. Al-Qaimari, M. Grieve, N. Jinks and C.

McKay, "Elements of a Three-Dimensional Graphical

User Interface," in Human-Computer Interaction, 1997.

[30] D. Bowman, E. Kruijff, J. LaViola Jr and I. Poupyrev,

"An Introduction to 3D User Interface Design," Presence:

Teleoperators and Virtual Environments, vol. 10, no. 1,

pp. 96-108, 2001.

[31] W. Ark, D. Dryer, T. Selker and S. Zhai, Representation

Matters: the Effect of 3D Objects and a Spatial Metaphor

in a Graphical User Interface, Springer London, 1998.

[32] Apple, "Cocoa Fundamentals," [Online]. Available:

https://developer.apple.com/legacy/library/documentatio

n/Cocoa/Conceptual/CocoaFundamentals/CocoaFundam

entals.pdf. [Accessed January 2015].

[33] Unity Technologies, "Unity - Game Engine," Unity

Technologies, [Online]. Available:

http://www.unity3d.com. [Accessed January 2015].

[34] D. Trindade, L. Teixeira, M. Loaiza, F. Carvalho, A.

Raposo and I. Santos, "LVRL: Reducing the Gap Between

Immersive VR and Desktop Graphical Applications,"

International Journal of Virtual Reality, vol. 12, no. 1, pp.

3-14, 2013.

[35] P. Dam, P. Braz and A. Raposo, "A Study of Navigation

and Selection Techniques in Virtual Environments Using

Microsoft Kinect®," in 15th International Conference on

Human-Computer Interaction, Las Vegas, 2013.

[36] D. Medeiros, E. Ribeiro, P. Dam, R. Pinheiro, T. Motta,

M. Loaiza and A. Raposo, "A Case Study on the

Implementation of the 3C Collaboration Model in Virtual

Environments," in XIV Symposium on Virtual and

Augmented Reality, 2012.

