
Real-Time Label Visualization in Massive CAD Models

Renato Deris Prado, Alberto Barbosa Raposo

Tecgraf Institute
Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro, Brazil
rdprado@tecgraf.puc-rio.br, abraposo@tecgraf.puc-rio.br

Abstract—Virtual Labels are used in computer graphics
applications to represent textual information arranged on
geometric surfaces. Such information consists of names, num-
bering, or other relevant data that need to be noticed quickly
when a user scans the objects in the scene. This paper focuses
on the so-called massive models, which have a large number of
geometric primitives whose rendering presents a high compu-
tational cost and for which conventional texturing techniques
can extrapolate the available computational resources. In this
work we have developed a way to view, in real time, virtual
labels with different information on the surfaces of objects
in massive models. The technique is implemented entirely on
the GPU, and shows no significant loss of performance and
low memory cost. CAD models’ objects are the main focus of
the work, although the solution can be used in other types of
objects once their texture coordinates are adjusted correctly.

Keywords-Surface labeling; Real time visualization; Massive
CAD Models.

I. INTRODUCTION

Virtual labels are textual information displayed on the

surfaces of virtual objects. Such information consists of

names, numbers, and any relevant information that needs to

be identified when the user scans the objects in the virtual

scenario. Labels could be used in games, maps or any other

graphical application which renders 2D or 3D objects and

needs to show text on those objects’ surfaces. This paper

focuses on real-time 3D visualizers of models with a large

number of objects, like CAD (Computer Aided Design)

models such as an oil refinery.

In industrial plants there are structures that contain labels

applied to their surfaces, which display the names of these

structures or other information about them, in order to

help professionals to easily identify them in fieldwork. The

same way that these labels help engineers identify the real

structures, virtual labels can help users in identifying objects

in visualization software in real time.

The main goal when displaying labels on the surfaces

of virtual objects is to help the user to quickly identify

relevant information about the objects being displayed on

the application, as well as to provide support for guidance

in the virtual scenario. In CAD visualization systems, it is

usual to have a list showing the names of all the objects

present in the scene. Thus, to find the name of an object,

the user needs to click on the object and check in the list

for the selected name, which is a more laborious process

than reading labels directly on the objects. Moreover, large

industrial plant models are typically massive, so called

when they present great complexity, such as an oil refinery

consisting of millions or billions of objects [1].

For this kind of model, there are some challenges for

rendering virtual labels; one of them is related to the

existence of a large number of objects with distinct names.

To illustrate this problem, if a simple texturing method is

used, it could be necessary to build a different texture for

each object (because each object has a different name).

Such an approach implies a large use of memory space

that can exceed the capacity of the video card. To solve

this problem, it is necessary to develop strategies to keep in

video card memory a limited number of textures per frame.

It is also possible that all textures could not be stored in

main memory at the same time and thus they would need to

be reconstructed to form the words of a label in real time,

which can affect the performance of the application.

Even in a scenario where one can store a different texture

for each object, there is still the need to perform multiple

texture context switches per frame, which can become the

bottleneck of the graphical application [2]. Another chal-

lenge is the positioning of labels on objects with different

geometries and sizes, making it necessary that the virtual

labels are automatically positioned by the application.

These problems (excessive use of video memory, many

texture context switches per frame, and the positioning of

labels on different surfaces) encourage the exploration of

solutions for the real time display of labels in massive

models. Since the visualization of massive models has itself

a high computational cost, it is necessary to devise a solution

that does not worsen the performance and spends the least

possible amount of memory.

This paper presents a technique for displaying virtual

labels in massive models implemented entirely in the GPU.

This technique does not cause significant performance loss

regardless of the number of objects that display labels and

consumes little video memory with labels coded and stored

in a buffer in the graphics hardware. The technique relies on

a two-pass algorithm. The first pass performs the rendering

of the scene and stores texture coordinate information in off-

screen buffers. The second pass uses the information from

2013 13th International Conference on Computer-Aided Design and Computer Graphics

978-1-4799-2576-6/13 $31.00 © 2013 IEEE

DOI 10.1109/CADGraphics.2013.51

337

these buffers to map the labels on virtual objects, calculating

the final color of each pixel of the screen individually by

sampling a texture that contains all characters.

This paper is organized as follows. Section 2 presents

work related to the rendering of textures with textual infor-

mation. Section 3 describes the technique developed in this

work and Section 4 discusses how to position labels on CAD

objects. Section 5 shows the results and Section 6 concludes

the paper.

II. RELATED WORK

There are only a few works that directly address the

problem of real time text rendering in massive models. This

section briefly discusses some of these works and shows

others that address more general problems regarding text

rendering (such as label positioning, memory management,

and aliasing) relating them to issues if applied to the case

of virtual labels in massive models.

The commercial software Aveva Review [3] can display

labels on the surfaces of cylinders and boxes from CAD

models. Not all of them show their labels at the same time

— there is a strategy to select which objects display their

names at each frame; apparently, it prioritizes the ones with

a larger size in screen space.

Something that can make an application limit the number

of objects that display labels is the number of texture context

switches that may be required at each frame, since each

object has a different name. To solve the problem of multiple

texture context switches, NVIDIA [2] introduced the concept

of “texture atlas”, which groups images into a single texture,

and uses texture coordinates to access the relevant sub-

rectangle of the atlas. In this paper we use an atlas that

stores all the required characters, and the labels need to be

built from that atlas.

There are other works that do not directly address massive

models, but address issues related to text rendering. Qin,

McCool and Kaplan [4] present a way to perform text ren-

dering on three-dimensional objects using a vector graphics

image representation of text, so that characters show very

little aliasing when magnified. They use a strategy similar

to the one in “Texture Sprites” [5] to place the words on 3D

objects. However, they use a quadtree in the CPU to store

a table of characters with different resolutions depending

on the complexity of each character and a “sprites table”

to arrange the words. The table is encoded in the graphics

hardware as a texture, so that it can be sampled directly in

the GPU. As in “Texture Sprites”, the technique is presented

for a single object at a time.

Cipriano and Gleicher [6] focus on text positioning on

surfaces with sharp curvatures and even with holes. For this,

they create meshes, called scaffolds, to store the letters and

then place them so that they float over objects. A single

atlas is used to store all the characters and the texture

coordinates of the scaffolds are configured in order to obtain

the relevant characters. One difficulty in using this solution

is the introduction of new geometries in the scene, which

may be undesirable in massive models rendering, especially

when all objects need to display some text. Another work

that focuses on label positioning was presented by Ropinski

et al. [7], but it is target at medical illustrations and does

not explore large models.

Cmolik and Bittner [8] present a labeling method targeted

at interactive illustration of 3D models. Their labels are

positioned externally to the objects and the main focus of the

work is on the dynamic repositioning of labels. That method

does not support models with a large number of labels, since

the performance decays linearly with the number of labels.

The use of virtual textures as an out-of-core solution for

textures that occupy a large space and cannot be entirely

stored in memory was explained by Barret [9] and Mit-

tring [10]. A “virtual texture” is stored on the hard drive and

split into parts of equal size, called pages. Only the necessary

pages for the graphics API are transferred to memory and

stored in a “physical texture” as called by Barret. To map

the virtual pages into physical pages, a page table is built.

In the case of virtual labels, they would need to be built as

textures in pre-processing and arranged in a virtual texture,

which could solve the problem of memory. The problem lies

in how to organize the virtual texture, because the names

of the objects vary in size and it would require that the

page size (which is the same for all pages) be sufficient

to contain the biggest name. This would imply pages with

unused space, which is a waste of memory. Another way to

organize the virtual texture would be with a label occupying

more than one page, and objects therefore needing more than

one page to store their textual content. The solution adopted

in the present work took another approach, creating only

the necessary labels (those that will appear on the screen)

at each frame and spending little memory to save them, as

will be shown in the next section.

III. APPLYING LABELS TO OBJECTS

This section explains the procedure for displaying labels

on a large number of objects and the writing of words on

geometric surfaces in real-time. To do this, a two-pass algo-

rithm in the GPU was developed. For the implementation of

this algorithm we used OpenGL 2.1 [11], OpenGL Shading

Language 1.2 [12] and a few extensions.

The first pass of the algorithm renders the scene to an

off-screen color buffer and also creates a second buffer with

texture coordinates per pixel and an identifier of the label

which must be displayed on the geometry to which the pixel

belongs. This information will be useful for the second pass

when the pixels’ final colors are calculated and labels are

added to the scene.

To calculate the final pixels’ colors, it is necessary to know

whether they should show part of a label and which textual

information that label contains. For this reason, before the

338

rendering takes place, the ASCII codes of all labels must

be stored and made available for the GPU. In this work we

used a 2D texture for the label’s ASCII codes that is referred

to as a table, relating the label index with its text.

The number of texels that a 2D texture can store is

hardware dependent, but in general there is enough space for

a large quantity of textual information (e.g., 256MB for a

GeForce 9600GT and even more for modern graphic cards).

Of course, considering that the models to be visualized are

massive and their geometries can consume plenty of space

in the video memory, it is not be desirable to spend that

much with labels. However, if each label has 20 charac-

ters and 2,000,000 distinct labels are needed, the memory

consumption will be 38MB, what isn’t high considering the

large amount of information stored.

Also, a texture atlas that contains all the required charac-

ters must be available in the GPU, which is treated as a two-

dimensional array of characters. The atlas is an image with

the graphical representation of the characters arranged in the

same order of the ASCII encoding, so that it is possible to

find a character’s position by its row and column initials.

Using the atlas with all characters and the texture with

ASCII codes created by the application, two rendering

passes are performed to render the scene with labels applied

to the geometries. We are going to explain them in detail in

the sub sections below.

A. First rendering pass

Before the drawing commands of the objects are called,

the CPU informs the GPU of the label identifier that must

be displayed on each object (index in the texture of ASCII

codes) and the number of characters of that label.

The first pass is necessary for the generation of texture

coordinates for the objects. We generated the texture coor-

dinates in the vertex shader, as will be explained in section

IV. The fragment shader writes information into two off-

screen buffers that are textures attached to a Frame Buffer

Object (FBO). In the first buffer, the color data of the scene

are written, and in the second buffer, texture coordinates

interpolated per fragment, the label identifier, and the label’s

text size are written.

B. Second rendering pass

In order to obtain the data per fragment generated by

the first pass, it was necessary to draw a screen-sized

quad, whose texture coordinates range from 0 to 1 in both

dimensions. This makes it possible to sample the color buffer

and the buffer with texture information.

After setting new information of color and texture to a

fragment of the quad, the fragment shader performs calcula-

tions to add labels to the scene. If the fragment has no label,

it receives, in the first pass, a label identifier equal to zero

and texture coordinates equal to zero, so that no calculations

for labels are done in the second pass. The calculation for

mapping labels on an object is done as follows for each

fragment that has a label.

1) Find character index : The algorithm considers that

the label will be written parallel to the s axis of the object’s

texture space. This space can vary from 0 to 1, or to a

value greater than 1, to repeat the label along s. For each

interval of size 1 at the s axis, one must consider that the

interval will be divided in a total of columns equal to the

number of characters in the label. The purpose of this step

is to figure out in which column the current fragment is

contained, which indicates the index of the character in the

object’s label.

Figure 1. Fragment with character index = 2.

For example, in Fig. 1, for a label with 4 characters

(nchars = 4), given a fragment with texture coordinate

s = 1.6, the expected result is a character index ichar = 2.

For that, we use equation (1), where sfrac indicates the

fractional part of texture coordinate s. This fractional part

indicates the offset of the fragment within one instance of

the label, and is important for dealing with label repetitions.

ichar = floor(sfrac ∗ nchars) (1)

2) Find the ASCII code of the character : As explained

before, there is a texture that stores the ASCII codes of the

characters of all labels in the scene. The goal of this step

is, with the index of the character found in the previous

step and the label identifier of the current fragment, to find,

within this texture, the ASCII code of the character sought.

Fig. 2 shows an example of how the characters are stored

in the texture with textual information that, in this case,

uses two texels to store each label (texelsPerLabel = 2).

Since a texel has four color components, in two texels it

is possible to store up to eight characters. The values in

green on Fig. 2 are the label identifiers and in red are the

indices of each character within its labels (highlighted in the

figure, the index found on the previous step ichar = 2). The

values in blue show that the texture in the given example

possesses four texels horizontally and four vertically and,

at the same time, represent an index for each texel along

the s and t axes. As each label in the example occupies 2

339

texels, it is possible to store 2 labels per row of the texture

(labelsPerRow = 2).

Figure 2. ASCII codes stored in a 2D texture.

To obtain the character’s ASCII code, we must find the

texel containing the character. In the example of Fig. 2, as

highlighted, for a fragment in which label identifier (id) is 6

and ichar = 2, we will find the texel with horizontal index

is = 2 and vertical index it = 2 (values in blue on the

figure). These calculations are done according to equations

(2-3):

is = ((id− 1) mod labelsPerRow) ∗ texelsPerLabel

+floor(ichar/4)
(2)

it = floor(
id− 1

labelsPerRow
) (3)

Using the indices above, the texture coordinates of the

texel must be found so that the 2D texture can be sampled,

according to equations (4-5), where w and h are, respec-

tively, the width and height of the texture, in texels.

stemp =
is + 0.5

w
(4)

ttemp =
it + 0.5

h
(5)

The purpose of equations (4) and (5) is to find the texture

coordinates whose values represent the texel’s center, and

with a nearest neighbor filter, the texel can be correctly

retrieved from the texture. The obtained texel contains

the correct character in one of its RGBA components. To

finally find the ASCII code in the correct component, the

calculation shown in equation (6) is done, with ichar mod 4
an index that goes from 0 to 3 due to the RGBA components,

and char, the ASCII code we are looking for:

char = texel[ichar mod 4] (6)

In the example shown in Fig. 2, the expected result will

be the code of the ‘X’ character.

3) Sample the character atlas: Knowing the character’s

code, it is then necessary to find its graphical representation

in the texture atlas containing all characters. More specif-

ically, the correct texel within the bounds of a character’s

image in the atlas must be found. For that, the offset of the

fragment in the geometry’s texture space must be calculated

and related to an offset in the atlas, as shown in Fig. 3.

Figure 3. On top, a fragment and its offsets from the beginning of the
character on the object. Below, the related offsets in the atlas.

To calculate the offset along the s axis in the geometry

texture space (sOffsetgeom), at first, one must calculate

the width of the character in a 0 to 1 range. This value

(charWidthgeom) is found simply by dividing 1 by the

number of characters in the label. The offset is calculated

with equation (7), using once again, the fractional part of

the s coordinate of the fragment (sfrac) and the character

index obtained previously (ichar).

sOffsetgeom = sfrac − (ichar ∗ charWidthgeom) (7)

The calculation of the offset along the t axis

(tOffsetgeom) is simpler, since the height of the character

(charHeightgeom) is always 1, even considering the vertical

repetition of text. This way, tOffsetgeom is simply the

fractional part of the t coordinate of the fragment.

340

To find the related offsets in the atlas’s texture space,

it is necessary only to multiply the offsets found in the

geometry’s texture space by the ratio of the character’s size

in the geometry’s texture space to the size of the same in

the atlas’s texture space, a value known since the creation

of the atlas. This way:

sOffsetatlas = sOffsetgeom ∗ charWidthatlas

charWidthgeom
(8)

tOffsetatlas = sOffsetgeom ∗ charHeightatlas (9)

In equation (9), the denominator of the fraction doesn’t

appear because, as we mentioned earlier, charHeightgeom
is always 1. The offsets calculated with equations (8-9) must

be added to the character’s initial position in the atlas, to find

the texture coordinate and then to sample the atlas in the

correct position to obtain a color for the current fragment.

With the color obtained from the atlas and the color of

the object (which is stored in the color buffer created in the

first pass) it is possible to calculate the fragment’s final color

treating the label as a sticker.

With the presented technique, it is noticeable that, inde-

pendently of the number of objects loaded by the application,

label calculation is needed only for the pixels of the screen,

which justifies the use of the technique for massive models.

In the second pass, a few texture accesses are needed and

the algorithm benefits from hardware resources for texturing,

since the fragments next to each other, that are processed

in parallel, in most cases, need to access near parts of the

textures. The technique for displaying labels did not present

any significant performance impact with massive models, as

will be shown in Section V. The next section discusses the

way to position labels in objects of CAD models.

IV. LABEL POSITIONING

In this section we explain the procedure to position labels

on some surfaces of CAD models, with the goal of providing

to the user a good way to visualize text, independently of

the angle of vision. With the correct definition of texture

coordinates, the algorithm for displaying labels works for

objects of different shapes and sizes.

For all presented primitives, texture coordinates are gen-

erated in the vertex shader of the first pass. This can

be done because the developed graphics engine uses a

primitive instantiation technique, which shapes the different

geometries in the vertex program from a grid of vertices

built in the CPU. For that, the vertex program must know

the dimension, scale, position and orientation of the object

and those data need to be informed by the CPU before

the drawing of each object. The scale and dimension data

are essential to automatic generation of texture coordinates

for the geometries with different shapes and sizes, and for

having labels with a varying character quantity.

Firstly, the technique was tested in simple geometries,

such as quads. Texture coordinates can be defined in several

ways, but we concluded that it would be better to centralize

the labels vertically on the objects so that the visualization of

the 3D models wouldn’t be polluted. Horizontally, it would

be better to repeat the text as many times as necessary, so

that the user can visualize the text or easily knows how to

find it from any position.

To centralize the text vertically, only a determined area of

the object should have coordinates varying from 0 to 1. Thus,

the fragments whose texture coordinates are outside that

interval are identified in the fragment shader of the first pass

and associated to a label identifier equal to zero — which

makes the second pass to calculate the final color of those

fragments without the mapping of labels. The procedure to

centralize the text calculates the ideal number of times that

a label must be repeated along the surface (considering the

object’s size). Initially an ideal number of label repetitions

must be defined based on a visual observation of a unit

quad, and then, those parameters will provide a base for the

automatic texture coordinate generation for quads of any size

— for instance, if it was noticed that vertically it was ideal

to repeat the text 3 times so that the label wasn’t stretched or

squeezed, then in a quad of size 5 the text could be repeated

15 times. However, text should be displayed only at the

center of the object; therefore, the texture coordinates should

be shifted from 0 to 15 to -7 to 8, totaling 15 repetitions,

in such a way that the area which goes from 0 to 1 stays

exactly in the center of the object.

To repeat the text horizontally it is also necessary to

identify how many characters fit in a unit quad to obtain

a good visual effect. For instance, if it is identified that a

unitary quad fits 6 characters, then a quad of size 5 fits 30

characters. If a label has the text “Quad 0” of 6 characters,

then it is possible to repeat the text 5 times along the s axis.

Therefore, knowing a base for unit quads, it is possible to

create simple equations for quads of any size.

One thing that has also to be considered for the calculation

of the number of repetitions is a relation between the width

and height of the objects. If the scale to be applied to the

texture coordinates is calculated separately for each dimen-

sion, the bigger the geometry, the bigger is the disproportion

between the object’s size and the label’s size. If a quad has

dimensions 1 x 1 or 100 x 100 the screen area occupied by

the label is the same, but it could be larger in the second

case when an equal increase in both dimensions of the

text’s area is desirable, and no label repetition is needed for

either dimension. Repetition of text is only needed when one

dimension of the object is bigger than the other. Therefore,

the ratio between the object’s dimensions must be considered

for a better label display. If the width is 100 times bigger

than the height, the scale that should be applied to s is

341

around 100 times greater than the one that should be applied

to t. By taking into consideration the ratio between the

object’s dimensions, there is no disproportion between the

label and the object’s size (Fig. 4).

Figure 4. Quads of different sizes and automatic positioning of labels.

Other primitives that have their texture coordinates ad-

justed to display labels are boxes, cylinders, spheres and

dishes. In the case of boxes, the calculations are about the

same as the quads, however, different texture coordinates

must be defined for each of the box’s faces.

For cylinders, the texture coordinates of the vertices are

set so that the s-axis of the texture space is parallel to the

y-axis of the object space — axis along the height of the

cylinder — and the t-axis is parallel to the x-axis. With this,

the text is repeated several times along s depending on the

height of the object and, around the cylinder, it was agreed

that the text should be repeated four times, so it could be

easily visualized no matter which side of the cylinder the

user is looking at. The calculation for finding scales, which

must be applied to the texture coordinates, and depends on

the cylinder’s size and the number of characters of the labels,

is all based on the calculations presented for quads.

In the case of spheres, text is displayed only once over t,
on the object’s center, and it can be repeated several times

along s depending on the sphere’s diameter. The primitive

called dish, as found in CAD models, has the shape of a

half-ellipsoid and, with its information of radius and height,

it is possible to parameterize its surface. Fig. 5 shows box,

cylinder, sphere and dish with labels.

The positioning of labels on objects like cones and pyra-

mids could be a bit more complex due to the different dimen-

sions of the bases of those objects. With these, the texture

coordinates must be calculated in a way to compensate that

difference, so that the text won’t be stretched proportionally

to the size increase of one base in relation to the other.

Despite that, the calculation has not been done until the

present moment, and, with the technique explained in this

work, the positioning of labels is possible with a couple more

Figure 5. CAD objects with labels.

primitives than in the related works [3] — which allow the

labels to be displayed on cylinders and boxes only.

V. RESULTS

The results are going to be presented in two parts. Initially,

we are going to show the result of the technique applied to

CAD models. Then, we are going to present performance

tests to show the effectiveness of the proposed technique.

A. Labels in CAD Models

For the rendering of CAD models we built an engine

that uses a primitive instantiation technique, explained in

the previous section. The engine renders all CAD model

objects, placing labels on the previously mentioned objects:

cylinders, boxes, spheres and dishes.

The models used are based in files containing information

for each object to be drawn (position, orientation, scale

and parameters specific to each primitive). Those object

parameters are sent to the GPU as texture coordinates, since

that was the fastest way found, considering the limitations

of OpenGL 2.1 and GLSL 1.2. Besides that instantiation

technique, the engine uses no other optimizations, but, with

the built engine we can render a large number of objects at

interactive rates, as will be shown in the next section.

Fig. 6 shows labels on objects of an oil refinery CAD

model. It’s possible to display labels on a large number of

CAD model objects and, also, that most of the geometries

that exist in that model are boxes or cylinders.

The character atlas can have several variations to facilitate

the reading of labels. For instance, in Fig. 6, white letters

with black borders were used, which can be good to contrast

with different background colors.

B. Performance Tests

The technique presented in this work, for the display of

labels on geometric surfaces, uses two rendering passes, and

the first adds little complexity to the CAD graphics engine

— in the first pass, calculations are added only to generate

342

Figure 6. CAD model of an oil refinery with labels.

the texture coordinates and for the fragment shader to write

information on two buffers instead of one. In the second

pass several per pixel operations are executed and also

some accesses to different textures. Therefore, it’s important

to evaluate the performance of the proposed technique,

especially when the application utilizes higher resolutions.

For that, tests were done and are presented below.

For the first tests, a scene with quads with random

dimensions and positions was created, so that labels occupy

the entire area of the objects and, therefore, calculations

related to labeling were done for all the quads’ pixels.

The object’s labels had different characters and sizes. The

same scene was used to compare the performance of the

versions with and without labels, whereas in the first case

the algorithm does just the first pass and doesn’t perform

any calculation related to labeling, not even the generation

of texture coordinates for the geometries.

For all tests we used a computer with the operational

system Windows 7 64 bits, an Intel Core I7 870 processor

with 2.93 GHz, 8GB of RAM and a GeForce GTX 580

graphics card.

Table I presents the comparison of rates in frames per

second (FPS) obtained for a fixed camera position, for

scenes with different number of objects, at a resolution of

1920x1200. One can note that the difference of FPS is small

in scenes with fewer objects and virtually nonexistent in

scenes with more objects.

Table II shows the result of another random scene of

quads, but this time we measured the average frame rate

in FPS obtained when navigating throughout the scene for

50 seconds. The exact same camera path was used for the

scenes with and without labels. Tests were performed in two

resolutions: 600x400 and 1920x1200 and it is once again

shown that the performance difference tends to be null for

a scene with a larger number of objects. In scenes with

Table I
COMPARATIVE PERFORMANCE TESTS FOR A FIXED CAMERA POSITION

WITHOUT AND WITH THE USE OF LABELS (RESOLUTION: 1920X1200).

Number of FPS FPS
Objects (without labels) (with labels)
10,000 457 439

100,000 54 54
200,000 27 27
500,000 11 11

1,000,000 6 6

fewer objects, the difference reaches 5% but the rates are still

very high. There have been some cases with the 600x400

resolution in which the resultant average was slightly higher

when using labels. Such a difference is insignificant and

can be explained by the interference of events external to

the program, like processes of the operating system.

Table II
COMPARATIVE PERFORMANCE TESTS FOR CAMERA TRAJECTORY

WITHOUT AND WITH THE USE OF LABELS.

Number of Resolution FPS FPS
Objects (without labels) (with labels)

10,000
600 x 400 511.6 485.3

1920 x 1200 488.1 470.1

500,000
600 x 400 10.6 10.6

1920 x 1200 10.6 10.5

1,000,000
600 x 400 4.5 5.3

1920 x 1200 5.4 5.4

1,200,000
600 x 400 4.6 4.5

1920 x 1200 4.5 4.5

The last tests were performed with a CAD model of a

real oil refinery, rendering all the existing primitives in the

model, except for triangle meshes. Cylinders, boxes, spheres

and dishes exhibit labels and the total number of rendered

objects was 300,000, mostly boxes and cylinders, as shown

in Fig. 7. The texture coordinates of the objects were defined

as explained in section IV, being generated automatically

depending on the size of the objects and the number of

characters of the labels. For a fixed camera position we

obtained 17 FPS for a scene with and without labels. The

results of the tests when navigating the scene with the same

camera path for a scene with and without labels can be found

in Table III , which shows that the performance loss was

little or none with the use of labels.

Table III
COMPARATIVE PERFORMANCE TESTS FOR CAMERA TRAJECTORY

WITHOUT AND WITH THE USE OF LABELS IN A CAD MODEL.

Number of Resolution FPS FPS
Objects (without labels) (with labels)

300,000
600 x 400 15.8 15.5

1920 x 1200 16.1 16.1

VI. CONCLUSION

In this paper we developed an algorithm entirely in the

GPU to display, in real time, labels on the surfaces of

343

Figure 7. Test scene with CAD model.

geometric primitives of massive models, and found that it

presents good performance and visual results. One of the

challenges identified was that, when dealing with massive

models, each of its objects could have a different textual con-

tent needing distinct labels. Therefore, if we used a different

texture for each label, multiple texture context switches

would be needed by frame, which would compromise the

performance of the application. Likewise, the use of one

texture per object would imply a high memory cost and the

development of strategies to maintain, in video memory, a

limited number of textures per frame.

With the developed algorithm, only the labels that need

to be shown on screen are built per frame, in the GPU, and

the label mapping is done for each fragment by sampling an

atlas with the graphical representation of the characters and a

buffer with the ASCII codes that contain textual information

of the labels. Therefore, we don’t need to deal with problems

related to texture context switches and also the problem of

building and storing textures with the images of each label

in video memory. We need only to store the atlas and the

buffer with ASCII codes. The storage of ASCII codes uses

much less memory than storing the images of labels.

The problem of positioning labels on objects of CAD

models with different sizes and shapes was solved for

cylinders, boxes, dishes and spheres. As a future work we

want to add labels to other kinds of objects from CAD

models, such as cones and pyramids, and also to improve

the visual quality of labels with the use of anti-aliasing

techniques. We intend to study the use of dynamic labeling,

to display operational data such as temperature and pressure

directly on the objects’ surfaces. We also want to explore the

use of labels in domains other than CAD, once the technique

presented here for the generation of virtual labels is not

restricted to the CAD domain.

ACKNOWLEDGMENT

Tecgraf is a laboratory mainly supported by Petrobras.

Alberto Raposo thanks also CNPq for the support granted

to this research (470009/2011-0).

REFERENCES

[1] S. Yoon, E. Gobbetti, D. Kasik, and D. Manocha, Real-
time Massive Model Rendering, ser. Synthesis Lectures on
Computer Graphics and Animation. Morgan and Claypool,
August 2008, vol. 2, no. 1.

[2] NVIDIA Corporation, “Improve batching using texture at-
lases,” https://developer.nvidia.com/sites/default/files/akamai/
tools/files/Texture\ Atlas\ Whitepaper.pdf, 2004.

[3] Aveva Review Home Page, http://www.aveva.com, 2010.

[4] Z. Qin, M. D. McCool, and C. S. Kaplan, “Real-time texture-
mapped vector glyphs,” in Proceedings of the 2006 sympo-
sium on Interactive 3D graphics and games, ser. I3D ’06,
2006, pp. 125–132.

[5] S. Lefebvre, S. Hornus, and F. Neyret, “Texture sprites:
Texture elements splatted on surfaces,” ACM SIGGRAPH,
April 2005.

[6] G. Cipriano and M. Gleicher, “Text scaffolds for effective
surface labeling,” IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1675–1682, Nov.
2008.

[7] T. Ropinski, J. Prassni, J. Roters, and K. Hinrichs, “Internal
labels as shape cues for medical illustration,” in In Interna-
tional Fall Workshop on Vision, Modeling, and Visualization
(VMV, 2007, pp. 203–212.

[8] L. Cmolik and J. Bittner, “Layout-aware optimization for
interactive labeling of 3d models,” Computers & Graphics,
vol. 34, no. 4, pp. 378 – 387, 2010.

[9] S. Barret, “Sparse virtual textures,” http://silverspaceship.
com/src/svt, 2008.

[10] M. Mittring, “Advanced virtual texture topics,” in ACM SIG-
GRAPH 2008 Games, ser. SIGGRAPH ’08, 2008, pp. 23–51.

[11] OpenGL 2.1 Reference Pages, http://www.opengl.org/sdk/
docs/man2/, 2006.

[12] The OpenGL Shading Language 1.2, http://www.opengl.org/
registry/doc/GLSLangSpec.Full.1.20.8.pdf, 2006.

344

