
In: Computers and Advanced Technology in Education (CATE’2002), pp. 20-25. G. A. S. Torrellas and V.
Uskov (Eds.), Acta Press, 2002. ISBN 0-88986-332-6.

TASKS INTERDEPENDENCIES IN COLLABORATIVE LEARNING
ACTIVITIES: SPECIFICATION AND MODELING

ABSTRACT
In collaborative environments, coordination is an essential
matter to the specification of activities, which are
described as sets of interdependent tasks. An extensible
framework encompassing coordination mechanisms to
specify tasks interdependencies is initially presented.
These mechanisms are formally modeled using Petri nets
and, along with a Petri net representation for the tasks to
be performed, can be used to create a model to evaluate
the environment. The use of this framework is illustrated
in the context of a learning environment based on
collaborative Web document construction.

KEY WORDS
Collaborative Knowledge Construction and Learning,
Computer Supported Collaborative Learning,
Coordination, Petri Nets.

1. INTRODUCTION

Planning is an essential activity to collaboratively develop
any major task, since it ensures that the desired goal will
result from individual tasks. In Computer Supported
Cooperative Work (CSCW), the notion of planning is
realized by articulation, a “set of activities required to
manage the distributed nature of cooperative work” [1].
Articulation includes activities such as identification of
objectives, establishment of tasks mapped from the
objectives, and selection of participants to perform the
tasks. Result of such activities, once established, rarely is
changed. Coordination is a part of the articulation work
with a distinct, dynamic nature.

Coordination has been defined as “the act of managing
interdependencies between activities performed to achieve
a goal” [2]. Thus, it is essential to assure that the
performed tasks are indeed part of a larger collaborative
effort, avoiding execution of conflicting or repetitive
tasks. Due to its dynamic aspect, it can be considered the

most demanding activity of the articulation work.

Alberto B. Raposo
Computer Graphics Group (Tecgraf)

Catholic University of Rio de Janeiro (PUC-Rio)
R. Marquês de S. Vicente, 225

22453-900 – Rio de Janeiro, RJ, Brazil
abraposo@tecgraf.puc-rio.br

Ivan L. M. Ricarte
State University of Campinas (UNICAMP)

School of Electrical and Computer Engineering (FEEC)
Dept. of Computer Eng. and Industrial Automation (DCA)

CP 6101 – 13083-970 – Campinas, SP, Brazil
ricarte@dca.fee.unicamp.br

Coordination theory was originally related to collaborative
work. Many computer-based environments support
collaboration by providing access to computer-mediated
communication tools, expecting or externally enforcing
that such tools are used to build the learning community.
However, not always communication tools are effective
by themselves, and coordination mechanisms can help to
structure and organize the performance of subtasks.

In this paper, a framework to define generic
interdependencies that occur between tasks in
collaborative activities is presented. Petri nets are
introduced and used to formally present the constructs in
this framework. The use of the framework is illustrated by
the description of the coordination model for the
realization of a collaborative activity, composing a Web
document, in a learning environment.

2. A FRAMEWORK TO DEFINE TASKS
INTERDEPENDENCIES

Interdependency is a key concept in coordination theory:
If there is no dependencies between tasks performed in a
collaborative effort, there is nothing to coordinate [3]. A
particular view of coordination is related to workflow
management, in which interdependencies are related to the
occurrence and temporal order of events. Although
usually related to the general notion of a business process
(see e.g. [4]), the concept of workflow has also been
applied to educational environments [5].

In this work, a collaborative activity is a coordinated set of
tasks realized by multiple actors in order to achieve a
common goal. A task, either atomic or a group of subtasks
without external dependencies, is a “building block” of
collaborative activities. This definition enables the
modeling of collaborative activities using several
abstraction levels for coordination specification and

management. Interdependencies in the framework are
either temporal, when related to the tasks execution order,
or resource management, when related to resource
distribution among tasks [6].

2.1. TEMPORAL INTERDEPENDENCIES

Temporal interdependencies establish the relative order of
execution between a pair of tasks, considering precedence
or concurrency relationships. The set of temporal
interdependencies was inspired by a classical work of J. F.
Aleen on temporal relations over time intervals [7].

A time interval is characterized by two events, associated
with time instants. The first event is the starting time of an
interval x, denoted here tix. The other event is the ending
time of the same interval, tfx, always with tix < tfx.
According to Allen, a set of seven primitive and mutually
exclusive relations maintains temporal information
considering any pair of time intervals X and Y:

X equals Y when tix = tiy and tfx = tfy;

X meets Y when tfx = tiy;

X starts Y when tix = tiy and tfx < tfy;

X finishes Y when tix > tiy and tfx = tfy;

X before Y when tfx < tiy;

X during Y when tix > tiy and tfx < tfy.

X overlaps Y when tix< tiy and tiy< tfx and tfx < tfy;

Adaptation of these primitives to the context of
collaborative activities takes into account that any task T
will take time from ti to tf to be performed. However, in
specifying temporal interdependencies between two tasks
not always one should be concerned with both start and
finish events, and some relaxed relationships are
introduced, thus comprising thirteen coordination
mechanisms between two tasks T1 and T2.

T1 equals T2 establishes that two tasks must be executed
simultaneously, which can be interpreted in two ways.
The active interpretation of this coordination mechanism
expresses that the beginning of T1 fires T2; similarly,
finishing T1 concludes T2. Consider a situation in which
T1 denotes a discussion session and T2 its “recording”.
From the coordination point of view, this “active-equals”
relationship between these tasks would simply indicate
that the T2 should follow the execution of T1. However, a
problem to proceed with session recording would not
invalidate the session itself, which could proceed to its
conclusion. The passive interpretation expresses a set of
conditions that should be obeyed to proceed with tasks
execution. In the same example, this would be the case in
which the session recording must be ready before the start

of the discussion. A problem in recording would delay the
beginning of the discussion session until the problem is
solved.

T1 meets T2 expresses that T2 should start immediately
after the end of T1. This relation could be used to restrict a
question-and-answering session (T2) to occur only and
immediately after an exposition session (T1).

T1 startsA T2 and T1 startsB T2 express that two tasks
should start at the same time. T1 startsA T2 preserves
Allen's semantic, i.e., T1 and T2 start at the same time but
T1 should finish before T2. In a laboratory activity, T1
might represent an experiment that should be concluded
before its report (T2). The dependency T1 startsB T2 is a
relaxed coordination construct, useful to model that two
tasks should start at the same time but the relationship
between their finishing times is not relevant. For example,
a group coordinator may want to assign tasks with the
same starting time to group members without regard to
their finishing order.

Dependencies finishes express that tasks should conclude
at the same time. T1 finishesA T2, as Allen's relation,
indicates that T1 starts after T2 and both should finish
together. T1 finishesB T2 relaxes any restriction regarding
starting times. This would be the case when T2 represents
the controller task of an online lecture, with T1
representing any supporting activity opened during the
lecture, such as a videoconference or a chat session; the
supporting task should be finished upon conclusion of the
lecture.

Allen's during relation has also been adapted to the
specification of two dependencies, but in this case related
to how many times a task can be executed while the other
is being executed. T1 duringA T2 indicates that just one
single execution of T1 can be performed during T2 period.
T1 duringB T2 indicates that T1 can be executed several
times during T2. Consider T2 to be an online evaluation
and T1 the student interaction. Dependency duringA
models that student's answers cannot be reviewed,
whereas duringB would allow any number of revisions
during the evaluation period.

T1 overlapsA T2, as Allen's overlaps relation, expresses
that T1 is a task starting before T2, with T2 starting before
T1 conclusion and T1 finishing before T2 conclusion.
Dependency T1 overlapsB T2 relaxes the specification of
which task should finish first.

From Allen's before relation, first interval finishes before
the beginning of second interval, three different
dependencies have been derived. From the coordination
point of view, there are two possible interpretations. The
first, expressed as T1 beforeA T2, has the meaning that
task T1 can only be executed whether before task T2, i.e.,
upon the start of T2 execution of T1 is disabled. This
might be the case in which T1 represents a student taking

a test and T2 the presentation of the answers. The other
possible interpretation captures the concept of a
prerequisite. In this case, the start of the second task is
only enabled after the conclusion of the first task. This
expresses the situation in which the beginning of T2
depends on resources that will be available only upon
conclusion of T1. In terms of the dependencies in this
framework, this is expressed by two constructs, depending
on the multiplicity of the second task. The first is T2
afterA T1, in which each execution of T1 enables one
execution of T2. T2 afterB T1 means that the conclusion
of one execution of task T1 enables multiple executions of
task T2.

2.2. RESOURCE MANAGEMENT
INTERDEPENDENCIES

Sharing, simultaneity, and volatility are the three basic
constructs defined to complement the specification of
collaborative tasks regarding the availability of resources.

Sharing represents the situation in which the use of a
limited number of resources, expressed as a parameter, is
required for the execution of several tasks. The
dependency sharing 1 denotes mutual exclusion, since any
task using the resource blocks all other tasks requiring that
resource. Consider an online lecture in which students
want to ask questions: There might be many students
“raising their hands”, but only one would be able to ask
the question at a time since only one resource (an audio
connection to the lecturer) is available.

Simultaneity represents the situation in which the specified
resource is only available when at least the number of
tasks specified in the dependency request the resource. For
example, dependency simultaneity 2 could be used to
represent that a chat session should not be opened if
requested by only a single user.

Volatility indicates whether a resource, after is use, is still
available for other tasks or is consumed by the task that
has taken it. A parameter specifies how many times the
resource can be used before it becomes unavailable to the
system. For example, to specify that each group of
students should work on a distinct assignment, the
resource “pool of assignments” would have volatility 1.

These dependencies can be combined in order to express
more complex relationships between tasks and resources.
For example, sharing 2 volatility 3 express that a given
resource can be used by up to two tasks simultaneously,
but after its third use the resource becomes unavailable.

2.3. TIMEOUT MECHANISMS

Analysis of the framework constructs shows that they may

be used in the coordination of collaborative tasks in two
distinct situations. In the first form, interdependencies are
used to specify activation of related tasks; e.g., T1 startsB
T2 indicates that T2 is activated as soon as T1 starts. This
is characterized as an active interdependency. In the other
form, a passive interdependency characterizes the
situation in which the relationship between tasks is not of
a task starting or forcing the execution of another, but that
of restricting the collaborative activity to be performed
only when involved tasks satisfy the dependencies. In this
case, the same dependency T1 startsB T2 indicates that
even though T1 is ready to start its execution, its
beginning has to be delayed until T2 is also ready.

Another possible usage of passive interdependencies is in
the validation of an activity, similar to the concept of a
database transaction. It enables to express that an activity
is complete only when all involved tasks, satisfying the
specified dependencies, are finished.

Even though the interdependencies passive interpretation
may lead to deadlocks, it represents conditions that cannot
be disregarded. To deal with this situation, the framework
defines two timeout constructs. The first type of timeout
establishes alternative tasks to be performed when the
specified waiting time expires. The second type brings the
waiting tasks back to their initial states upon expiration of
the waiting time. The usage of these constructs is
illustrated in Raposo et al. [8].

3. PETRI NET MODELS FOR THE
COORDINATION MECHANISMS

Mechanisms were developed to coordinate the above set
of interdependencies using Petri nets [8]. The formal
modeling enables a designer to anticipate and test the
environment behavior, thus avoiding the usual trial-and-
error approach. Petri nets have a well-established theory
and can capture the main features of a collaborative
environment, such as non-determinism, concurrency and
synchronization of asynchronous processes. They also
accommodate models at different abstraction levels and
are amenable both to simulation and formal verification.

In this proposal, the design of a collaborative learning
environment is divided into three hierarchical levels:
Workflow, coordination, and execution (Fig. 1). In the
workflow level, each participant's behavior is modeled
separately, establishing the interdependencies between
tasks assigned to the environment actors. The coordination
level is built under the workflow level by expansion of
interdependent tasks and insertion of the correspondent
coordination mechanisms between them. The environment
model is simulated and analyzed at this level. The
execution level deals with the actual execution of tasks in
the environment.

During the passage from workflow to coordination level,
each task that has a dependency with another is modeled
by a net with five transitions (ta, tb, ti, tf and tc) and four
places (P1, P2, P3 and P4), as proposed by van der Aalst
et al. [9]. Attached to each expanded task there are five
places representing the interaction with external entities.
The places request_resource, assigned_resource and
release_ resource connect the task with the resource
manager. The places start_task and finish_task connect the
task with the temporal coordination mechanism and the
agent that performs it, respectively indicating beginning
and end of task execution.

Fig. 2 presents the model of the mechanism for relation
Task 1 startsA Task 2. (The full set of models is available
at http://www.dca.fee.unicamp.br/~alberto/pubs/IJCSSE
/mechanisms.). Transition t1 ensures the simultaneous
beginning of both tasks, and t2 ensures that Task 2 will
finish only after the end of the other task. The transitions
task1 and task2 represent the execution of the tasks. They

are modeled by transitions with token reservation
(indicated by R), which are non-instantaneous transitions;
tokens are taken from their input places when they fire
and only some time later, representing the duration of the
tasks execution, they are added to their output places.

4. MODELING ACTIVITIES IN A
COLLABORATIVE LEARNING
ENVIRONMENT Figure 1: Coordination design levels

The Sapiens Project aims to provide technological support
for collaborative learning. The project brings together
educators, engineers, and computer scientists, working in
the definition of an environment framework that can be
used according to an instructor or mentor needs.

One of the Sapiens applications is an environment to
collaboratively construct Web documents. This activity
can be summarized as follows. Instructors in a course
define the subject and related issues to be discussed by the
class. To provide background for the discussions, they
also suggest recommended readings. The students work
on the subject to produce a document contemplating the
issues. This document production is performed in a cyclic
process, with initial rounds generating preliminary
versions and the last round producing the final document.
In the workflow level, considering the case in which only
one review is permitted, this relationship could be freely
expressed as: Document production happens afterA
Problem definition; and Document production uses

Figure 2: Coordination mechanism for Task 1 startsA Task 2.

http://www.dca.fee.unicamp.br/~alberto/pubs/IJCSSE /mechanisms
http://www.dca.fee.unicamp.br/~alberto/pubs/IJCSSE /mechanisms

resource Versions with volatility 2.

Fig. 3 presents the corresponding coordination constructs
with tasks expanded, omitting labels for individual places
and transitions. Between the task problem definition, on
top, and the task document production, below, the model
for mechanism afterA is introduced. It guarantees that
document production does not happen before the subject
is defined. Below the document production task, the
resource management mechanism to limit the number of
generated versions is introduced. An inhibitor arc (with a
circle at the arrowhead) indicates when the final version is
produced, that is, when a document is produced and no
more versions are allowed.

This figure presents only the top-level coordination view.
Obviously, any task could be further refined in terms of
subtasks, which in turn could be related by other
coordination constructs. Consider the execution of the
document production task (T1). Students have a period to
individually read the assigned texts and build their
personal standings about the proposed discussion issues.
After this period, they work together in small groups,
which have one member assigned as the group moderator.
The moderator presents the group conclusions to the
remaining of the class and integrates the group of editors
for the document. Moderators also lead discussion
sessions to settle common points and to detect
controversial issues. Then they compose and publish a
draft document contemplating the selected subject and
issues. This draft becomes the assigned reading for the
next round, again with individual reading, small groups
discussion, and general sessions. The final document is
the result of the editors' work after the final general
session. From this overall presentation, a possible
expansion for task T1 is derived:

T2: Read assigned text. As above, several subtasks
compose this task: Get the text assigned in the problem

definition task, read it, and take notes related to text parts
(sections, paragraphs, phrases). Result of this task is a set
of notes expressing doubts or the individual position on
the subject.

T3: Discuss issues in small group. Present results of T2
and proceed to settle common points of agreement and
detect controversial points. Result of this task is a list of
issues to be taken to the general session.

T4: Discuss issues in general session. Moderators present
summary of T3 results. From the lists of issues of T3, the
class elects relevant discussion points, which are debated
in general sessions to define the overall document
structure, and points out relevant content to be present in
the produced text.

T5: Edit document. The moderators/editors work in order
to produce a document following the guidelines
established during T4. The result is a hyperdocument
published in the Web.

Several computer-based components were integrated to
support these tasks. AnnotTool, a Web-based annotation
tool, supports T2 [10]. T3 and T4 start in presential
meetings and continue using AnnotTool and UseNet
discussion lists. WebDAV and CVS supports execution of
T5.

The set of coordination mechanisms can be again used
here to define how these tasks should be performed. One
possible approach would be to sequence these tasks
execution: T3 afterA T2, T4 afterA T3, T5 afterA T4.
Another less restrictive approach would allow text reading
to continue during discussions, thus enabling the students
to review their positions, until the moment that the
document is produced (end of T5). Another possible
variation is to express that the document starts to be
produced with the small groups discussions (T3), thus

Figure 3: Relating problem definition and document production

yielding to T5 finishesA T2, T3 meets T4, and T3 startsA
T5.

Once these interdependencies are established, the designer
is able to evaluate the environment usage and define
which tools should be enabled at any given moment.

5. CONCLUSIONS

The design of collaborative learning systems used to
emphasize computer mediated communication tools, such
as e-mail, bulletin boards, whiteboards, chat rooms,
audioconferences, and videoconferences. Eventually,
some of these tools were integrated to some content
delivery mechanism. With the expansion of the Web,
many systems have adopted the delivery of content
codified in HTML through the HTTP. However, the
coordinated usage of such tools were usually considered
to be an activity performed outside the system, under
some external supervision or by social agreement.

Recent work in CSCW considers coordination as integral
part of the design of collaborative systems, and this issue
cannot be disregarded in the design of computer supported
collaborative learning systems. Different pedagogical
approaches shall lead to the design of different CSCL
systems, but each system should not be designed from
scratch. Coordination mechanisms are going to be part of
the glue that put software components together to
assemble collaborative learning environments.

This paper presented a set of coordination mechanisms to
express relationships between tasks. Considering that any
activity can be decomposed as a set of interdependent
tasks, such mechanisms provide a framework to design
environments in a CSCW or CSCL system devoted to
support that type of activity. The use of these mechanisms
was illustrated in the specification of an environment to
collaboratively construct Web documents.

Modeling tasks and their coordination dependencies with
Petri nets enables to simulate and analyze the system
before it is built. A simple translator from coordination
constructs to Petri nets was developed, thus enabling the
automatic generation of complete Petri nets modeling for
an environment. Using Petri net simulators, it was
possible to perform reachability and deadlock analyses for
the system.

6. ACKNOWLEDGEMENT

FAPESP supported the Sapiens Project (97/128071) and
Dr. Raposo stay at Unicamp.

REFERENCES

[1] K. Schmidt and L. J. Bannon, Taking CSCW seriously
- Supporting articulation work. Computer Supported
Cooperative Work, 1(2), 1992, 7-40.

[2] T. W. Malone and K. Crowston, What is coordination
theory and how can it help design cooperative work
systems? Proc. Int. Conf. on Computer Supported
Cooperative Work (CSCW), Los Angeles, USA, 1990,
357-370.

[3] T. W. Malone and K. Crowston, The interdisciplinary
study of coordination. ACM Computing Surveys, 26(1),
1994, 97-119.

[4] W. Deiters, T. Goesmann and T. Löffeler, Flexibility
in workflow management dimensions and solutions, Int. J.
Computer Systems Science and Engineering, 15(5), 2000,
303-313.

[5] M. A. Vouk, D. L. Bitzer and R. L. Klevans,
Workflow and end-user quality of service issues in Web-
based education. IEEE Trans. on Knowledge and Data
Engineering, 11(4), 1999, 673-687.

[6] A. B. Raposo, L. P. Magalhães, I. L. M. Ricarte and H.
Fuks, Coordination of collaborative activities: A
framework for the definition of tasks interdependencies.
Proc. 7th Int. Workshop on Groupware (CRIWG),
Darmstadt, Germany, 2001, 170-179.

[7] J. F. Allen, Maintaining knowledge about temporal
intervals, Communications of the ACM, 26(11), 1983,
832-843.

[8] A. B. Raposo, L. P. Magalhães and I. L. M. Ricarte,
Petri nets based coordination mechanisms for multi-
workflow environments, Int. J. Computer Systems Science
and Engineering, 15(5), 2000, 315-326.

[9] W. M. P. van der Aalst, K. M. van Hee and G. J.
Houben, Modelling and analysing workflow using a Petri-
net based approach, Proc. 2nd Workshop on Computer-
Supported Cooperative Work, Petri nets and related
formalisms, Zaragoza, Spain, 1994, 31-50.

[10] C. M. Adriano, A. B. Raposo, I. L. M. Ricarte and L.
P. Magalhães, Changing interaction paradigms in
annotation environments, Proc. World Conf. on
Educational Multimedia, Hypermedia &
Telecommunications (EDMEDIA), Montreal, Canada,
2000, 28-33.

