
Technical Section

ANIMATION MODELING WITH PETRI NETS

LEÂ O P. MAGALHAÄ ES{, ALBERTO B. RAPOSO and IVAN L. M. RICARTE

State University of Campinas (UNICAMP), School of Electrical and Computer Engineering (FEEC),
Department of Computer Engineering and Industrial Automation (DCA), CP 6101-13083-970,

Campinas SP, Brazil

AbstractÐThis paper introduces the use of Petri Nets as a modeling and analysis tool for animation en-
vironments. Firstly, the original formulation for Petri Nets is applied in two animation situations, one
modeled as a state machine and another exploring interdependent transitions. Increasing the complexity
level, some modeling extensions are discussed and more sophisticated animation examples are studied.
1999 Published by Elsevier Science Ltd. All rights reserved

Key words: animation planning, computer modeled animation, Petri Nets, behavioral animation, anima-
tion modeling and analysis.

1. INTRODUCTION

Control modeling is one of the most important
aspects in computer animation. It speci®es how

characters acting in an animation should move and
how they interact with the animation environment.
Movements of characters in an animation can be

de®ned using parametrical interpolations, kinematic
and dynamic equations (direct and inverse), genetic
models, etc. [1, 3, 18, 20, 22]. Characters interacting

with the environment can be controlled from an
antecipative point of view (e.g., interpolation) or
detected on the ¯y using for example collision
detection techniques [6, 21].

At a more abstract level one can consider charac-
ters subject to emotions, having a reactive behavior,
or being oriented towards a speci®c task or goal. In

these cases, control can be based on strategies such
as logical description of behaviors [8, 16], or sys-
tems of kinematic or dynamic equations [7].

This paper focuses on the support of animation
modeling at this more abstract level using a formal
framework based on Petri Nets theory. Besides

being useful as a tool for modeling animation en-
vironments, Petri Nets also o�er a powerful contri-
bution for animation analysis.
This paper is structured as follows: Section 2 will

introduce Petri Nets. Section 3 will present some in-
itial examples of their use. Section 4 will address
the use of Petri Nets in more sophisticated anima-

tion problems. The last sections will present the
conclusions, next issues and related bibliography.

2. PETRI NETS: FUNDAMENTALS

Petri Nets [17] (from here on, PN) are a modeling
tool applicable to a variety of ®elds and systems,

specially suited to systems with concurrent events.

Murata [15] presents a very good introduction to

the theme. Formally, a PN can be de®ned as a 5-

tuple (P, T, F, w, M0), where: P = {P1, . . . , Pm} is

a ®nite set of places; T = {t1, . . . ,tn} is a ®nite set of

transitions; FU (P�T)[(T�P) is a set of arcs; w:

F 4 {1,2, . . .} is a weight function; M0:

P 4 {0,1,2, . . .} is the initial marking; with

(P \ T) =b and (P [T)$b.

In a PN model, states are associated to places

and marks, and events to transitions. A transition t

is said to be enabled if each input place Pi of t is

marked with at least w(Pi, t) tokens, where w(Pi, t)

is the weight of the arc between Pi and t. Once

enabled, a transition will ®re when its associated

event occurs. Firing the transition t removes w(Pi,

t) tokens from each input place Pi of t, and adds

w(t, Po) tokens to each output place Po of t.

A very useful notation for PN is the graphic

notation (Fig. 1) which will be used in the examples

throughout this paper. In this notation, circles rep-

resent places, bars represent transitions, dots the

marks (also called tokens), and arrows the arcs,

with weights above. By de®nition, an unlabeled arc

has weight 1.

For example, in the PN of Fig. 1, only transition

t2 is enabled; t1 is not enabled because it would

require two marks in P1 to ®re, since w(P1, t1) = 2.

When t2 is ®red, the marks in P2 and P3 are

removed and P4 receives one mark. It should be

observed that the number of marks in a PN is not

necessarily conserved.

Besides the graphical notation used in this paper,

a matrix is also adequate to indicate the possible

changes of states in a net. This matrix, C, has

dimension m� n, with position Ci,j indicating how

many tokens place Pi will receive (positive value) or

lose (negative value) when transition tj is ®red.

Representing a state by a vector marking

Comput. & Graphics, Vol. 22, No. 6, pp. 735±743, 1998
1999 Published by Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0097-8493/98/$ - see front matter

PII: S0097-8493(98)00094-6

{Corresponding author. Tel.: +55-19-788-3706; Fax:
+55-19-289-1395; E-mail: leopini@dca.fee.unicamp.br.

735

Mi=[q1,q2 . . .qm]
T, where qi indicates the quantity

of tokens in place Pi, the next state after ®ring tran-

sition tj is given by Mi+1 =Mi+C� ej, where ej is
the characteristic vector for transition tj, a column

vector with 1 in position j and 0 in the remaining
positions.

Summarizing, the behavior of a system using PN
is described in terms of its states and their changes

[15]. States are modeled by places and marks, which
de®ne the current state of the system. Transitions

(®ring rules) model the dynamic behavior of the
system. Arcs indicate the sequence of possible tran-

sitions between states and they can be weighted
meaning the quantity of marks necessary to ®re a

transition.

Besides the modeling capabilities of PN, their
support for analysis is very important and useful.

This analysis is based on the properties of the
mathematical model of PN. Some of these proper-

ties are:

Reachability: is there a sequence of ®ring that

reaches a given state?

Boundness: will a place be overloaded? A PN
can be de®ned as k-bounded if the number of

tokens in each place does not exceed k.
Liveness: is there any state or sequence of

states which will not be reached anymore, indi-
cating a possible deadlock?

Reversibility: is it possible to return to a
de®ned initial state M0?

Persistence: is the ®ring of any pair of enabled

transitions interdependent, i.e., the ®ring of one
will disable the other?

Synchronic Distance: what is the relationship
between two transitions? This metric is related to

the degree of mutual dependence between tran-
sitions.

3. MODELS FOR SIMPLE ANIMATIONS

The correct modeling and use of PN properties
for analysis allow an animator to preview the beha-

vior of an animation even before starting any shot.
Reachability can be used to detect modeling pro-
blems related to de®ned animation states which will
never be reached. Boundness is related, e.g., to a

number of actors wished in a state. Liveness can be
used to ®nd states which will never happen if an
speci®ed state is reached. Reversibility allows to test

whether an initial state can be reached from
another state. Persistence and synchronic distance
test the interdependence between animation events.

The following two sections introduce the power-
ful characteristics of PN applied to animation pro-
blems by means of simple but clear examples. The

bene®ts that can be achieved in more complex en-
vironments will be discussed in Section 4.

3.1. Single sphere example

The example of Fig. 2 shows two buttons and a
sphere which can follow two di�erent trajectories
depending on which button was chosen. One button

is associated to an internal trajectory of the sphere
and the other with an external one.
For the above example the event of pressing one

button could be associated to a warning signal (e.g.,
button 1 danger, button 2 no problems), signalizing
the trajectory to be followed.
The animation is modeled in PN as follows:

Place 1 (P1) is associated to trajectory A1
Place 2 (P2) is associated to trajectory A2
Transition 1 (t1) is associated to the press of

button 1
Transition 2 (t2) is associated to the press of

button 2.

Formally, the PN for this example is a 5-tuple (P,
T, F, w, M0), where: P = {P1, P2} is the set of
places; T = {t1, t2} is the set of transitions;

F= {(P1, t2), (P2, t1), (t1, P1), (t2, P2)} is the set of
arcs; w(f) = 1 for all f E F; M0=[1 0]T is the initial
marking.

Fig. 1. Petri Nets graphic and mathematical notation

Fig. 2. Basic example

L. P. MagalhaÄ es et al.736

Figure 3 shows the graphical representation of

the PN model for this animation. The main charac-

ter of the animation, the sphere, is represented by

the mark (dot token) in the Fig. 3.

The graph gives the reader the following direct

information. First, there are two stationary states in

the environment. When the mark is in place P1, the

sphere follows trajectory A1. Otherwise, when the

mark is in place P2, the sphere follows trajectory

A2. Second, the e�ect of pressing a button is depen-

dent on the current trajectory. For example, if the

sphere is following A1 (token in P1) the press of

button 1 has no e�ect, since t1 is not enabled.

Finally, the movement will remain forever, since the

graph does not present any state where the sphere

is not moving.

Information can also be obtained by means of an

informal analysis of the graph based on the proper-

ties of PN:

. All possible states can be reached. The initial

state M0=[1 0]T after the ®ring of t2 will be

transformed into M1=[0 1]T, which after the ®r-

ing of t1 will return to M0, and so on.

. There are no deadlocks, i.e., the graph is alive.

All the possible states (M0 and M1) can be

reached.

. Whichever the initial state is, it is possible to

return to it.

. The transitions are mutually dependent, i.e., it is

not possible to ®re one of them twice without ®r-

ing the other. Even though one can press the

same button two times sequentially, the second

time has no e�ect in the animation.

This very simple example illustrates the basic

mapping between situations in an animation and a

corresponding PN model. In the following section

the complexity of the presented example will be

increased in order to stress the use of PN for the

analysis of an animation behavior.

3.2. Two spheres example

This section will detail some additional modeling

and analysis aspects of PN taking a more complex

environment.

The basic example, Fig. 2, will be modi®ed as

shown in Fig. 4. Now there are two spheres, each

one travelling in one of the two possible trajectories

(internal or external) controlled by a button. The

animation has a behavioral restriction de®ned by

the rule that only one of the spheres can be at its

external trajectory at a time in order to avoid col-

lisions.

Figure 5 introduces the PN model for this

example. The following characteristics are modeled:

. There are four places de®ning the two possible

trajectories for each sphere, P = {A1, A2, B1, B2}.

. There are four transitions de®ning button press

events, T = {t1, t2, t3, t4} ,where t1 and t4 are as-

sociated to the press of the buttons that put the

spheres A and B, respectively, in their internal

trajectories, and transitions t2 and t3 are associ-

ated to the press of the buttons that put the

spheres A and B, respectively, in their external

trajectories.

. All arcs have unit weight.

Let the initial marking be M0=[1 0 1 0]T. It can

easily be seen that in this state only transitions t2
and t3 are enabled, and that ®ring t2 will lead to a

state M1=[0 1 1 0]T whereas ®ring t3 will lead to

M2=[1 0 0 1]T. From M1, the only possible tran-

sition, t1, takes the net back to M0. The same hap-

pens from M2, for which the only possible

transition is t4, which also takes the net back to the

initial marking when ®red. Therefore, the complete

set of states for this net is M = {M0, M1, M2}.

A powerful tool for the analysis of PN is the cov-

erability graph which o�ers a vision of the complete

sequence of transitions and states in a PN. Figure 6

illustrates the coverability graph for this example,

considering the initial state M0.

Based on the coverability graph and taking into

account the PN properties, the following can be sta-

ted:

Reachability: Starting at one of the states of M

the system never goes to the forbidden state [0 1

0 1]T, which might cause a collision, or to the im-

possible states [1 1 0 0]T and [0 0 1 1]T, in which

one sphere would follow two or no trajectories.

Fig. 3. PN representation of the basic example

Fig. 4. Two spheres example

Animation modeling with Petri Nets 737

All other states can be obtained by a given ®ring

sequence.

Boundness: the PN is 1-bounded, i.e., no place

will have more than one mark at a time. A PN

with this property is called safe.

Liveness: each valid state has a following valid

state for a ®ring sequence, i.e., there are no dead-

locks. In addition, all transitions appear in the

coverability graph, meaning there are no dead

transitions.

Reversibility: it is always possible to return to

an initial state by a ®ring sequence.

Persistence: This PN is not persistent. The ®r-

ing of t2 will inhibit t3 and vice versa. This

expresses the mutual exclusion relationship

between both events.

Synchronic distance: this characteristic

expresses the level of mutual dependence between

two transitions. Considering s a ®ring sequence

at any marking in M and s(ti) the number of

times ti ®res in s, di,j=max|s(ti)ÿ s(tj)|.

Regarding the synchronic distance, d1,2=d3,4=1

shows that these pairs of transitions are interdepen-

dentÐin fact, the transitions of each of these pairs

are associated to events of the same sphere. On the

other hand, d1,4=d2,3=1 shows that these pairs of

transitions are associated to independent events,

which should be true since they are associated to

events of di�erent spheres.

It can be concluded from the above points that:

1. The developed model has no undesired states. It

conforms with the initial animation description.

2. There are no deadlocks, since the control state-
ments will always put the animation in a valid

state.
3. The animation will run forever, since there is no

®nal state.

4. There are two mutually excludent transitions,
con®rming the behavioral restriction.

5. The only mutually dependent transitions, with

di,j=1, are associated to events of the same
object, either sphere 1 or sphere 2.

The PN model for these animations associates

transitions with user intervention (pressing buttons).
If autonomous behavior were required, PN exten-
sions would have to be used, as described in the

next section.

4. PN EXTENSIONS FOR COMPLEX ANIMATION
ENVIRONMENTS

The previous section introduced the use of PN in
animation environments. The ®rst example pre-
sented a state-machine PN which is a subclass of

PN for which each transition has exactly one input
and one output. The second example introduced
interdependent transitions in a more complex en-

vironment.
In this section, the reuse of PN models will be

emphasized by means of an example where the

simple model of Section 3.1 is reused in a typical
computer animation situation. After that, the
notion of time is introduced in PN by the use of a

PN extension.

4.1. Dancer example
A classical example in the computer animation

®eld is the control of the walking movement of a
biped structure such as a human being. The walking
movement must satisfy the constraint that both legs

cannot be out of the ground at the same time. This
movement can be modeled by the PN of Fig. 5 con-
sidering that each ball now represents a leg, the in-

ternal trajectory represents the leg on the ground,
and the external trajectory represents the leg o� the
ground. However, the walking movement also
requires the legs to be raised alternately. (It does

not make sense to raise the same leg two times
sequentially.) Due to this additional restriction, the
walking movement of a biped can be now easily

modeled by a state machine similar to that of Fig. 3,
with four states: left leg up, left leg down, right leg
up, and right leg down.

A more challenging example is to de®ne the
movements of a ballet dancer. In this model, the
dance consists of two basic and nonsequential

movements: walking and jumping. In addition, the
dancer can tiptoe or have the feet in the normal
position. The supposed choreography requires that
the dancer jumps only when tiptoeing.

Fig. 5. PN for the example with 2 spheres

Fig. 6. Coverability graph for the example

L. P. MagalhaÄ es et al.738

The above situation can be modeled using two
PN similar to that of Fig. 3, one modeling the feet
position and another modeling the dancer's move-

ment. The PN are interconnected by inhibitor arcs,
a tool to synchronize interdependent events [10, 13].
In Fig. 7, inhibitor arcs are represented by dashed

lines with a circle at the end. This kind of arc
enables the inhibited transition only when its input
place becomes empty. The inhibitor arcs connecting

the PN guarantee that the dancer will jump only
when tiptoeing.
This example illustrates not only the reuse of a

basic PN model, but also the capacity of encapsula-
tion o�ered by PN. The graph of Fig. 7 hides the
details of the walking and jumping movements,
enforcing a hierarchical description model. The

movement of walking, for example, is modeled by a
PN state machine as commented before. A further
step in this hierarchical description could be the

de®nition of the relationship among the various
dancers in a ballet performance, hiding the control
of each dancer, as discussed in the next section.

The models presented up to this point do not use
the notion of time, e.g., it is not possible to control
the duration of the walking or jumping movements.
The notion of time is introduced by a PN extension

presented in the next section.

4.2. On stage example
Generalized Stochastic Petri Nets are derived

from PN by associating ®re rates to transitions and
partitioning the set of transitions into two subsets
[13]. This technique enlarges the class of animations

that can be modeled by PN introducing the notion
of time associated to a transition ®re, as will be
seen next.

4.2.1. Generalized stochastic PN. First of all the
PN de®nition of Section 2 is extended by introdu-
cing the set of ®ring rates, possibly marking-depen-
dent, associated with the PN transitions. For a PN

with s transitions the set R= {r1, . . . ,rs} is de®ned,

where ri is the rate associated with the ®ring of

transition ti. This formulation de®nes the Stochastic

Petri Nets (SPN) [2, 5, 14].

Generalized Stochastic Petri Nets (GSPN) [13]

are obtained by generalizing SPN, subdividing the

set T (see Section 2) into timed and immediate tran-

sitions, reducing R to s' elements, where s' is the

number of timed transitions. Immediate transitions

®re in zero time after enabled, while timed tran-

sitions ®re after a random exponentially distributed

enabling time, introducing an additional and power-

ful tool for modeling animation environments.

The following statements apply to GSPN:

. If the set of simultaneously enabled transitions H

comprises only timed transitions, the enabled

timed transition ti ®res with probability

ri/akEHrk.

. If the set of simultaneously enabled transitions

comprises both kind of transitions only the im-

mediate ones can ®re. In that case if there are

more than one immediate transition enabled, it is

necessary to associate a probability function to

de®ne which one will ®re.

In this paper double bars represent timed tran-

sitions and immediate transitions are represented by

a single bar as in the basic PN graphical represen-

tation.

4.2.2. Modeling. This section explores some of the

additional modeling features o�ered by GSPN to

animation environments.

The following example presents a dance perform-

ance with several dancers, each one modeled as

described in Section 4.1, sharing a limited number

of costumes. Dancers enter and leave the stage at

random rates. Two dancers cannot share a costume

at the same time and, if all costumes are in use, a

dancer has to wait until one of the dancers cur-

rently performing ®nishes in order to get a costume.

Figure 8 is the PN graph modeling the described

behavior. The model presents the following states

and transitions:

P1 dancers that are going to perform

P2 dancers ready to perform

P3 costumes that are currently available

P4 dancers on stage, each one with a di�erent
costume

P5 dancers ready to perform but waiting for a
costume

t1 enables dancer

t2 dancer starts performing

Fig. 7. PN graph for the dancer example

Animation modeling with Petri Nets 739

t3 dancer has to wait for a costume

t4 dancer has ®nished performing

t5 dancer has ®nished and is substituted by
another one that was waiting for his/her cos-
tume.

It is important to note that t2 and t3 are immedi-
ate transitions ®ring when their preconditions are

ful®lled. On the other hand t1, t4, and t5 are timed
transitions with associated random exponentially
distributed ®ring rates.

The initial state is M0=[5 0 2 0 0]T de®ning an
environment composed by ®ve dancers and two cos-
tumes.

Complementing the ideas discussed by the
examples of Section 2, the current example will be
analysed by means of a simulation, studying the
e�ect of varying the ®ring rates in the animation

behavior.
4.2.3. Simulation analysis. The presented example

will be simulated to verify a condition to be

avoided: P3>0 and P5>0. This condition rep-
resents what can be considered a bad system beha-
vior, because there is at least one dancer waiting for

performing (P5>0), although there is (are) available
costume(s) (P3>0).

For this simulation the following parameters will

be considered. l1 is the average value of an expo-
nentially distributed random variable that deter-

mines the interval between ®rings of t1, weighted by
q1 (the number of tokens in P1). l4 and l5 are the

average values of exponentially distributed random
variables that control the interval between succes-

sive ®rings of t4 and t5, respectively. The value li
de®nes an average ®ring rate 1/li.
In the simulation, when both immediate tran-

sitions (t2 and t3) are enabled, it is de®ned that t2
will ®re.
In order to demonstrate one of the possible ana-

lyses to predict the system behavior, some simu-
lation data will be graphically shown.

Figure 9 shows the behavior of the system for l1,
l4, and l5 varying between 0.25 and 2.0 time units.

The best system behavior of the current simulation
is obtained for l4=2.0 and l5=0.25. This ®gure

suggests that the rate l4/l5 de®nes part of the sys-
tem behavior. However, the system is also sensitive

to the variation of l1 as shown by the dashed
curves.

This lead up to a further simulation presented in

Fig. 10, now including the in¯uence of the rate
l1/l5. For this simulation, the values of l4/l5 and

l1/l5 are between 0.125 and 8.0. This ®gure allows
a more precise analysis of the system behavior. It
can be seen that the system has a worst behavior

peak in the region where l4/l5 and l1/l5 are smal-
ler than oneÐfor l4/l5=0.125 and l1/l5=0.5Ð

and good behavior in the regions where at least one
of these rates is high.

Looking closely the obtained simulation data for

the peak region, the following relationships were
obtained: l4/l5<1, l1/l5<1, and l5>l4>l1/q1
(the ®ring rate of t1 is weighted by q1). This means
that, in the region of interest, the rate which causes

dancers to become ready to perform (q1/l1) is
higher than the one which causes dancers to leave
the stage (1/l4). This contributes to put dancers in

P5 (waiting to start performing). Furthermore, the

Fig. 8. PN graph for the dancers and costumes example

Fig. 9. Percentage of time where P3>0 and P5>0. In the
®gure li symbolizes li Fig. 10. 3D view of simulation results

L. P. MagalhaÄ es et al.740

®ring rate of t4 is higher than that of t5. This causes
dancers in P5 to remain there although costumes
became available, because t5 substitutes a dancer

for another in the performance, while t4 simply
removes dancers.
This example illustrates the use of PN to model

situations involving concurrency, synchronization
and con¯ict resolution. These characteristics are
also present in many other situations commonly

analysed through PN, such as in multiprocessor sys-
tems [13].

4.3. Other PN extensions
In order to show other modeling tools, the

example of the previous section will be enhanced by

establishing that the beginning of the dance has to
simultaneously start a sound track. This can be
done by using inhibitors arcs, as shown in Fig. 11.

In the example, after t1 sends its ®rst token (indicat-
ing that the ®rst dancer is ready) and the sound PN
signalizes sound is ready (i.e., tS1 ®res), then P0 has
three tokens and t0 ®res. After that, both sound

(tS2) and movement (t2) are allowed to proceed.
A second example also derived from that of the

previous section is de®ned by redirecting the arcs

from t4 and t5 (previously going to P1) to a new
node and then synchronizing the beginning of the
next dance with the arrival of the ®fth token (or

dancer). In this case, the next performance may
begin only when all the dancers of the previous one
have ®nished dancing. Figure 12 shows the rep-

resentation of this sequencing mechanism.

This second example may exhibit a deadlock situ-
ation if a last mark remains in P5, because there
will not be another mark in P4 to enable t5. A simu-

lation similar to that of the previous section would
be essential to avoid such situation.
A third example using once more the example of

the previous section presents the use of Predicate/
Transition Nets [11] which allows the di�erentiation
of tokens, de®ning a type for them. The arcs have

labels de®ning variables that dictate how many and
which kind of tokens will be removed from or
added to the places. The same variable appearing in
the incoming and outgoing arcs of a transition

denotes the same token type. A transition is enabled
if there is at least one possibility of consistent sub-
stitution of variables into typed tokens.

So, in the example (Fig. 13) it is possible to dis-
tinguish male from female dancers, respectively
tokens labeled m and w. The same is valid for the

costumes, that can be masculine (m) or feminine
(w). It is important to note that transition t2 is
enabled only if there is an adequate costume for the

waiting dancer, which is indicated by the same
value for label x2, m or w, in both incoming arcs.
The same is valid for t5, that can substitute a dan-
cer only for another of the same sex. The di�erent

indexes used for arcs leaving or entering a tran-
sition express that the token type is de®ned each
time a transition ®res. For instance, after t1 ®res

twice (m and w), the ®ring of t2 can get from P2 m
or w depending exclusively on t2.
Another way to include the notion of time in PN,

besides SPN and GSPN, is by the use of timed PN
[19]. This PN extension de®nes a holding time for
tokens in a place before the enabling of its output
transition(s). It can be considered a simpli®cation

of SPN where the ®ring rates are constants and not
exponentially distributed random variables.

5. CONCLUSION

This paper introduced the use of PN and some of

its extensions for animation modeling and analysis.
Another of the few attempts to apply PN in
Computer Graphics uses them in an interface en-
vironment [4].

Fig. 11. Sound synchronization example

Fig. 12. Sequencing example

Fig. 13. Example using a Predicate/Transition Net

Animation modeling with Petri Nets 741

As other modeling techniques, PN ®ts very well

when modeling the di�erent aspects of an anima-

tion behavior. The problems faced when modeling

an animation environment are quite similar to those

where PN techniques are broadly used, they present

common characteristics such as concurrency, syn-

chronization, and con¯ict resolution.

PN also o�ers some additional mechanisms not

present in most computer animation modeling tech-

niques which enhance the process of animation

development:

. The graphic representation encapsulates non-

desired details, o�ering a very clear hierarchical

description model.

. PN o�ers a very strong theoretical support for

process analysis. Section 2 has shown some of the

possible analysis that can be performed based on

a graph model. Additional techniques not dis-

cussed in this paper are also available, such as

state equations and priority net [15].

. Simulation techniques as presented in Section 4

complement the system analysis.

Several other tools and extensions related to PN

have been developed. Some of them are:

Decomposition and Aggregation (to treat the ex-

plosion of states in a SPN and GSPN) [23], colored

PN [12], and other strategies allowing ®ring time of

transitions to be speci®ed by an arbitrary time dis-

tribution function [9].

As seen by the presented examples, PN favours

the reuse of animation models. For instance, the

®rst example (Fig. 3) represents the class of all ani-

mations in which the animated object can assume

one of two possible statesÐas in the case of the

two-orbit sphere or the feet position of a walking

biped. Furthermore, the use of hierarchical PN sup-

ports encapsulation, hiding animation control

details of lower level models.

Such features of animation model by PN motiv-

ates the creation of libraries with primitive PN

blocks (graphs) that may be used by the animators

to build the scripts that control the behavior of the

animation. By using these primitives, animation

modelers would not have to build the PN model for

each animation from scratch, but rather they would

identify animation patterns and interconnect them

to de®ne the desired behavior, as done in the case

of a single dancer (Fig. 7). Furthermore, the use of

PN simulators could help the animator to analyse

and probe the animation model.

More interestingly, PN o�ers the possibility to

anticipate and test animation behavior even before

a single frame is shot.

For all of that, the authors believe that the intro-

duction of PN and its extensions can bring to the

®eld of Computer Graphics a large and well estab-

lished set of techniques for animation modeling and

analysis.

AcknowledgementsÐPart of this research was developed
during the stay of the ®rst two authors in the University
of WaterlooÐComputer Graphics Laboratory, Computer
Science Department. The authors would like to thank the
following institutions for the expressive support granted to
this research: UNICAMP (State University of Campinas),
FAPESP (Foundation for Research Support of the State
of SaÄ o Paulo) and the University of Waterloo. Thanks
also to J. T. F. de Camargo and J. L. E. Campos for their
valuable comments and contributions.

REFERENCES

1. Badler, N. I., Computer Animation Techniques. In
Introduction to Computer Graphics, Course Notes for
SIGGRAPH 95, Vol. 21. ACM-SIGGRAPH, 1995.

2. Balbo, G., On the Success of Stochastic Petri Nets. In
Proc. 6th Int. Workshop on Petri Nets and
Performance Models. IEEE, 1995. ISBN 0-8186-7210-
2, pp. 2±9.

3. Barzel, R., Physically-Based Modeling for Computer
Graphics: a Structured Approach. Academic Press,
Inc., 1992. ISBN 0-12-079880-8.

4. Bastide, R. and Palanque, P., A Petri-Net based en-
vironment for the design of event-driven interfaces.
Lecture Notes in Computer Science, 1995, 935, 66±83.

5. Bause, F. and Kritzinger, P.S., Stochastic Petri nets:
an introduction to the theory. Advanced Studies in
Computer Science. Verlag Vieweg, 1996. ISBN 3-528-
05535-9.

6. Camargo, J. T. F., MagalhaÄ es, L. P. and Raposo, A.
B., Modeling motion simulation with DEDS. In
Proceedings of IFIP 94Ð13th: Congress of the
International Federation of Information Processing,
1994. http: //www.dca.fee.unicamp.br/ projects/pro-
sim/publiPS.html, pp. 162±167.

7. Camargo, J. T. F., MagalhaÄ es, L. P. and Raposo,
A. B., Foundations of Computer Modeled
Animation. In SIBGRAPI 95ÐBrazilian Symposium
of Computer Graphics and Image Processing,
1995. http://www.dca.fee.unicamp.br/ projects/prosim/
publiPS.html (in Portuguese).

8. Costa, M. and FeijoÂ , B., Agents with emotions in
behavioral animation. Computer & Graphics, 1996,
20(3), 377±386.

9. Dugan, J.B., Extended Stochastic Petri Nets:
Applications and Analysis. Ph.D. Thesis, Dept. of
Electrical Engineering, Duke University, 1984.

10. Dugan, J. B., Trivedi, K. S., Geist, R. M. and Nicola,
V.F., Extended Stochastic Petri Nets: Application and
Analysis. In Proc. PERFORMANCE `84, Paris,
France, 1984.

11. Genrich, H. J., Predicate/Transition Nets. In High-
level Petri-Nets: Theory and Application. Springer-
Verlag, 1991. ISBN 3-540-54125X, pp. 3±43.

12. Jensen, K., Coloured Petri Nets: a High Level
Language for System Design and Analysis. In High-
level Petri-Nets: Theory and Application. Springer-
Verlag, 1991. ISBN 3-540-54125X, pp. 44±119.

13. Marsan, M. A., Conte, G. and Balbo, G., A class of
generalized stochastic Petri Nets for the performance
evaluation of multiprocessor systems. ACM
Transactions on Computer Systems, 1984, 2(2), 93±
122.

14. Molloy, M. K., Performance analysis using stochastic
Petri Nets. IEEE Transactions on Computers, 1982,
31(9), 913±917.

15. Murata, T., Petri Nets: properties, analysis and appli-
cations. Proceedings of the IEEE, 1989, 77(4), 541±
580.

L. P. MagalhaÄ es et al.742

16. Perlin, K. and Goldberg, A., Improv: a System for
Scripting Interactive Actors in Virtual Worlds. In
Proceedings of SIGGRAPH `96, 205±216, 1996.

17. Petri, C. A., Kommunikation mit Automaten. Schriften
des IIM Nr. 3, Bonn: Institut fuer Instrumentelle
Mathematik, 1962.

18. Preston, M. and Hewitt, W. T., Animation using
NURBS. Computer Graphics Forum, 1994, 4(13), 229±
241.

19. Ramamoorthy, C. V. and Ho, G. S., Performance
evaluation of asynchronous concurrent systems using
Petri Nets. IEEE Transactions on Software
Engineering, 1980, 6(5), 440±449.

20. Sims, K., Evolving Virtual Criatures, In Proceedings
of SIGGRAPH `94, 15±22, 1994.

21. Thalmann, N. M. and Thalmann, D., Complex
models for animating synthetic actors. IEEE
Computer Graphics and Applications, 1991, 11(5), 32±
44.

22. Wyvill, B., A Computer Animation Tutorial. In
Computer Graphics Techniques: Theory and Practice
(eds D.F. Rogers and R.A. Earnshaw), pp. 235±282.
Springer-Verlag, 1990.

23. Ziegler, P. and Szczerbicka, H., A Structured Based
Decomposition Approach for GSPN. In Proc. 6th Int.
Workshop on Petri Nets and Performance Models, pp.
261±270. IEEE, 1995. ISBN 0-8186-7210-2.

Animation modeling with Petri Nets 743

