
Computers & Graphics 25 (2001) 1025–1039

Coordination components for collaborative virtual
environments

Alberto B. Raposoa,*, Adailton J.A. da Cruza,b, Christian M. Adrianoa,
L!eo P. Magalh*aesa

aDepartment of Computer Engineering and Industrial Automation (DCA), School of Electrical and Computer Engineering (FEEC),

State University of Campinas (UNICAMP), CP 6101, 13083-970, Campinas, SP, Brazil
bUniversity Center of Dourados, Federal University of Mato Grosso do Sul, CP 332, 79804-970, Dourados, MS, Brazil

Abstract

This paper deals with the behavior of virtual environments from the collaboration point-of-view, in which actors
(human or virtual beings) interact and collaborate by means of interdependent tasks. In this sense, actors may realize
tasks that are dependent on tasks performed by other actors, while the interdependencies between tasks (through

resource management and temporal relations) delineate the overall behavior of a virtual environment. Our main goal is
to propose an approach for the coordination of those behaviors. Initially a generic study of possible interdependencies
between collaborative tasks is presented, followed by the formal modeling (using Petri Nets) of coordination

mechanisms for those dependencies. In order to implement such mechanisms, an architecture of reusable and pluggable
coordination components is also introduced. These components are used in an implementation of a multi-user
videogame. The presented approach is a concrete step to create virtual societies of actors that collaborate to
reach common goals without the risk of getting involved in conflicting or repetitive tasks.r 2001 Elsevier Science Ltd.

All rights reserved.

Keywords: Modeling of behavior; Collaborative virtual environment; Coordination; Computer-supported cooperative work; Software

components

1. Introduction

We are currently witnessing the rapid establishment of

virtual societies, in which remote interaction is a feasible
alternative to face-to-face contact, transcending geo-
graphic location and time constraints (‘‘anywhere,

anytime’’) [1]. Two of the technological driving forces
in the virtual societies are computer-supported coopera-
tive work (CSCW) and networked virtual environments

(net-VEs).

CSCW is defined as ‘‘an endeavor to understand the
nature and characteristics of cooperative work with the
objective of designing adequate computer-based tech-

nologies [to support this kind of activity]’’ [2]. In other
words, CSCW is interested in creating systems to
support groups of people engaged in tasks with a

common goal (i.e., collaboration).
A net-VE is a simulation of a real or imaginary

world where multiple users may interact with one

another in ‘‘real-time’’, share information, and manip-
ulate objects in the shared environment [3,4]. Net-VEs
surpass the desktop metaphor of most current applica-

tions, proposing virtual communities where interactions
are modeled according to the interactions in the real
world.
Owing to their great potential as tools for CSCW, net-

VEs have been developed with an eye on CSCW results.

*Corresponding author. Tel.: +55-19-3788-3720; fax: +55-

19-3289-1395.

E-mail addresses: alberto@dca.fee.unicamp.br

(A.B. Raposo), ajcruz@dca.fee.unicamp.br (A.J.A. da Cruz),

medeiros@dca.fee.unicamp.br (C.M. Adriano), leopini@

dca.fee.unicamp.br (L.P. Magalh*aes).

0097-8493/01/$ - see front matter r 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 7 - 8 4 9 3 (0 1) 0 0 1 5 6 - X

This is particularly true for aspects such as user
awareness, user embodiment and spatial models of

interaction, for which results from the CSCW field have
been successfully implemented in net-VEs [5–7]. When
the net-VEs are aimed at collaborative activities, they

are also called collaborative virtual environments
(CVEs).
In spite of CVEs’ suitable characteristics, there is still

a gap between these environments and CSCW regarding

the coordination of their activities. The development of
CVEs has been dominated by leisure activities, basically
enabling navigation through virtual scenarios and

communication with remote users [8]. This kind of
activity is what we call ‘‘loosely coupled collaborative
activity’’ and is well coordinated by a social protocol,

characterized by the absence of any explicit coordination
mechanism, trusting the participants’ abilities to mediate
interactions.

On the other hand, ‘‘tightly coupled collaborative
activities’’ require sophisticated coordination mechan-
isms in order to be efficiently performed in CVEs. In this
kind of activity, tasks depend on one another to start, to

be performed, and/or to end. A very illustrative example
comes from the field of flight control and its tightly
coupled activities of coordinating air traffic. Several

technologies are under test to replace flight controllers’
protocols for fully computer-based coordination solu-
tions [9]. Other examples of tightly coupled activities

may be found in collaborative authoring, workflow
procedures, and multi-user computer games. Interde-
pendencies among tasks in this kind of activity are
normally positive, in the sense that each actor wants the

others to succeed. However, they are not always
harmonious. There must be coordination between
tasks in order to ensure collaboration effectiveness.

Without coordination, there is a risk that actors may get
involved in conflicting or repetitive tasks. Coordination,
in this context, is defined as ‘‘the act of managing

interdependencies between activities performed to
achieve a goal’’ [10] and is enacted by coordination
mechanisms [11] that are software devices that interact

with the application to control the behavior of a virtual
environment.
The work presented in this paper is a step towards

shortening the gap between CVEs and CSCW, by

the introduction of an architecture of coordination
components that may be used to control tightly
coupled collaborative activities performed by means

of CVEs. These components coordinate a set of
interdependencies that often takes place between colla-
borative tasks, ensuring that these dependencies will not

be violated. By using pluggable coordination compo-
nents, different behaviors may be applied to the same
CVE, just by changing components. Moreover, the

components are generic and may be reused in other
CVEs.

The following section overviews some related work. In
Section 3, our coordination approach is presented. The

approach is divided into three parts. Initially a generic
set of interdependencies is defined. Then, the formal
modeling of the coordination mechanisms is presented,

using Petri Net as modeling and simulation tool. Finally,
the coordination components architecture is depicted
and its integration with the virtual environment is
thoroughly discussed. Section 4 exemplifies the ap-

proach by means of implementing a multi-user video-
game. Conclusions and suggestions for future research
are drawn in Section 5.

2. Related work

This paper comprises three distinct areas of study,
namely, CVEs, coordination (from the CSCW point-of-
view) and software components. For this reason, we

initially present a separate overview of related aspects of
each of those areas and then explain how they are joined
together in our approach.

2.1. Virtual environments

Net-VEs are not a recent technology. Experimental
systems have been around for decades, but only recently

did they start to gain ground outside academic and
military units. This popularity increase is mainly due to
the rapid development of computing power and

networking technologies, as well as their costs reduction.
In parallel to their growing popularity, a number of

challenges remain to be overcome. Amongst them, we
could mention all the problems related to management

of network resources (concurrency, data loss, network
failure, scalability, etc.); all the problems related to real-
time graphics applications (e.g., CPU allocation for

rendering); and those related to interactive multi-user
applications (real-time data I/O, consistency among
users, etc.) [4]. Additionally, there are also specific

problems related to the application field of the net-VE,
such as integration with large databases (e.g., geo-
graphic information about a terrain for military training

environments); persistent storage (e.g., for engineering
applications); and user authentication (e.g., for com-
merce applications).
When the application field is specifically collabora-

tion, all the challenges related to CSCW should be also
added to the challenges above. Just to name a few of
them, there is the difficulty in relating spatial considera-

tions to social interaction [5]; the difficulty in assisting
individuals in working flexibly with virtual workplace
objects [12]; and the necessity to create realistic avatars

to improve communication among participants and
their sense of presence [13].

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391026

The design of a CVE encompasses three distinct but
interrelated aspects, namely, form, function and behavior

[14]. Form is related to objects appearance, structure
and physical properties, as well as the scene structure of
the virtual world. Function refers to what objects do to

accomplish their behavior (i.e., the actions they execute
in the virtual world). Behavior refers to how objects
define and dynamically change the different functions
that they carry out over a period of time.

In this paper, we have been specifically concerned with
behavioral aspects of CVEs. Although function and
behavior are deeply related, the coordination approach

to be presented clearly separates tasks (function) from
task interdependencies and coordination components
(behavior). One of the advantages of this approach is

the possibility of altering behaviors by simply altering
the coordination components without having to alter the
core of the CVE. For example, when a certain event

takes place, the behavior of an actor might define in
which direction it should walk. This behavior may be
altered to define the direction in which the actor should
run from then on, when the same event occur again. The

executions of the tasks run and walk are independent
from the coordination system, being related only to the
form (e.g., the walk of a biped actor is different from

that of a quadruped one).

2.2. Coordination in CSCW

Only in the second half of the 80s have collaborative
systems with some kinds of coordination mechanisms

started to appear. However, they were restricted to
specific scenarios, because coordination protocols were
rigidly defined, restraining dynamic modifications. The
evidence that collaborative systems should not impose

rigid work or communication patterns led to the
development of systems that allow dynamic redefinitions
and temporary modifications on the coordination

model.
The idea of creating a set of tasks interdependencies

and respective coordination mechanisms was proposed

in the coordination theory of Malone and Crowston
[10]. They defined three types of elementary resource-
based dependencies and worked with the hypothesis that

all other dependencies could be defined as combinations
or specializations of these basic types. One of the
advantages of this approach is the possibility to alter
coordination policies simply by altering the coordi-

nation mechanisms for the interdependencies. Addi-
tionally, interdependencies and their coordination
mechanisms may be reused. It is possible to characterize

different kinds of interdependencies and identify the
coordination mechanisms to manage them, by creating a
set of interdependencies and respective coordination

mechanisms capable of encompassing a wide range of
collaborative applications.

Another use of interdependencies lies in the manage-
ment of workflow activities [15]. In this case, inter-

dependencies are defined as ‘‘constraints on the
occurrence and temporal order of events’’, and are
controlled by coordination mechanisms defined as finite

state automata ensuring that they are not violated. The
objective is to create a global scheduler that satisfies all
dependencies defined for the workflow. A limitation of
this work is that it is restricted to temporal interdepen-

dencies and is specific to workflow applications.
The present paper starts with some of the ideas of

these previous works, and it is refined by defining a

larger set of basic interdependencies that includes both
temporal and resource management dependencies.

2.3. Software components

The first attempt to conceptualize the software

components paradigm was directed by the concern with
reuse and modularization [16]. Components were
idealized based on an analogy with electronic systems,

which are characterized by reusable modules with clear
functions. This paradigm was forgotten for many years
and then reappeared in a new software development
context.

Nowadays, issues such as autonomy, interconnection
and integration complement the component approach,
in addition to reuse and modularization [17]. The

paradigm advocates the idea that a component-based
system should be composed of independent and
autonomous parts compromised with their mutual

decoupling (i.e., they are integrated in order to provide
complete functions, but they do not either keep
references to one another or communicate directlyFthe
communication is achieved by means of messages). The

decoupling compromise satisfies a number of require-
ments, such as the substitution of a component for
another and the immediate insertion of new components

(extensibility).
Regarding its fundamental elements, the component

paradigm is defined by means of a software architecture

[18], in which graph nodes are called components and
the arcs are called connectors. Components are said to
be active because they are responsible for all processing.

Each component has a complete and self-contained
service that is delivered through a specific interface
pattern. By means of this pattern the component
externalizes events and messages while still keeping its

encapsulation. Connectors forward events and mes-
sages, and establish a loosely coupled integration
between software components.

We have been implementing the component-based
coordination architecture as a set of JavaBeans [19],
which is a framework consisting of a Java API that

enables the implementation of software components by
the rules stated for the architectural style mentioned

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1027

above. Software components are named beans, and
connectors are objects of classes that extend appropriate

event listeners.
For all the reasons discussed above, the component

model is a very satisfactory solution for the design of

CVEs, especially those supporting a task/interdepen-
dency model for tightly coupled collaborative activities.
As to the components’ design, our choice for

JavaBeans instead of other frameworks (e.g., DCOM)

is motivated by the facility for integrating the Java
language with Web-based CVEs.

2.4. Components as coordination mechanisms for CVEs

Our main goal is to create facilities for the design and

implementation of CVEs. As already mentioned, co-
ordination mechanisms are important in the use of
CVEs for executing tightly coupled collaborative activ-

ities. The implementation of these mechanisms as
components allows for the creation of an application-
independent library of coordination components that
permits incremental modifications to virtual environ-

ments. The application of component-based architec-
tures in CSCW is a recent approach. One of the few
works on this topic [20] extends the JavaBeans

architecture to create a framework for building colla-
borative infrastructures.
Another important aspect of our approach is the

development of a formal modeling of collaborative
environments [21]. We used a Petri Net (PN) based
modeling that enables the designer to anticipate and test

the behavior of CVEs before their implementation,
avoiding the trail and error approach. The choice for
PNs as the modeling tool is justified because they are a
well-established theory (there are numerous applications

and techniques available) and can capture the main
features of CVEs, such as non-determinism, concurrency
and synchronization of asynchronous processes. More-

over, PNs accommodate models at different abstraction
levels and are amenable both to simulation and formal
verification. There are work results that also use PNs for

modeling, analysis and simulation of net-VEs [22,23],
however, they are more related to physical aspects of
CVEs implementation, such as tracking user’s position
and displaying the walls in an immersive environment.

To our knowledge, there is no other work that uses PNs
for simulation and analysis of actor’s behaviors in CVEs
(this idea has originated from a previous approach that

uses PNs to model computer animations [24]).

3. The coordination approach

Before presenting our coordination model, it is

necessary to clarify the definition of task used in this
paper. In the present context, tasks are the ‘‘building

blocks’’ of a collaborative activity, which is defined as
a coordinated set of tasks performed by multiple actors

to achieve a common goal. Tasks may be atomic or
composed of subtasks and are connected to one another
through interdependencies, and the management of such

interdependencies is effected by coordination mechan-
isms. The granularity of a task reflects the interdepen-
dencies the current task has with other tasks. A group of
subtasks with no external interdependencies (i.e., inter-

dependencies with another task that does not belong to
this group) may be nestled as a single task. For example,
in a lower abstraction level, the walk of a bipedal

structure may be considered a collaborative activity. In
this activity, each limb may be considered an actor
whose tasks are the desired movements that have

interdependencies with the movements of other limbs
(e.g., both legs may not be out of the ground at the same
time). On the other hand, in a higher abstraction level,

the walk may be considered a single task of a bipedal
actor engaged in a more complex collaborative activity
(e.g., a videogame).
Using this flexible definition of task, it is possible to

model collaborative activities in several abstraction
levels, which improves both the understandability and
the feasibility of the interacting rules that characterizes

the whole process.
The present section has three parts, namely, the

definition of a set of frequent interdependencies between

cooperative tasks; the formal modeling of coordination
mechanisms to control these interdependencies; and the
development of a library of coordination components to
implement the modeled mechanisms.

3.1. Interdependencies

Interdependencies are divided into two types, tempor-
al and resource management. This separation agrees with
the coordination model proposed by Ellis and Wainer

[25]. According to their model, the coordination in
collaborative systems could occur in two levels, activity
level and object level. At the activity level, the

coordination model refers to temporal dependencies,
describing ‘‘the sequencing of activities [tasks] that make
up a procedure [collaborative activity]’’. At the object
level, the coordination model refers to resource manage-

ment dependencies, describing ‘‘how the system deals
with multiple participants’ sequential or simultaneous
access to some set of objects’’.

3.1.1. Temporal interdependencies
Temporal interdependencies establish the execution

order for tasks. The set of temporal interdependencies of
our coordination model is based on temporal relations
defined by Allen [26]. According to him, there is a set of

primitive and mutually exclusive relations that could be
applied over time intervals (and not over time instants).

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391028

This characteristic made these relations suited to task
coordination purposes, because tasks are generally non-

instantaneous operations.
The temporal logic of Allen is defined in a context

where it is essential to have properties such as; the

definition of a minimal set of basic relations; the mutual
exclusion among these relations; and the possibility of
making inferences over them. Temporal interdependen-
cies between collaborative tasks, on the other hand, are

inserted in a different context. For this reason, it was
necessary to make some adaptations to Allen’s basic
relations, adding a couple of new relations and creating

some variations of those originally proposed. The main
difference in the context of collaborative activities is that
it is possible to relax some restrictions imposed by the

original relations. This introduces a degree of redun-
dancy from a temporal logic’s point-of-view, but makes
the coordination model more manageable. The result of

the adaptation of Allen’s relations to the context of
collaborative activities is the set of 13 temporal
interdependencies presented below [27].
Considering two tasks T1 and T2 that occur,

respectively, in time intervals [t1i; t1f) and [t2i; t2f),

T1 equals T2 (t1i ¼ t2i and t1f ¼ t2f): This depen-
dency establishes that two tasks must occur simulta-
neously.

T1 starts T2: This relation has been divided into two.
T1 startsA T2 (t1i ¼ t2i and t1fot2f): Both tasks
must start together and the first must end before.

This is the original relation proposed by Allen.
T1 startsB T2 (t1i ¼ t2i): Variation of the original
relation, relaxing the obligation of the first task

having to end first. This variation makes sense
because in some situations, it is required that both
tasks start together, but it does not matter when
they end.

T1 finishes T2: Similarly to the previous one, it is

possible to define two relations based on it.
T1 finishesA T2 (t1i > t2i and t1f ¼ t2f): Both
tasks end together, but the first must start after

the second. This is the original relation.
T1 finishesB T2 (t1f ¼ t2f): Similarly to startsB,
this dependency is obtained from the original,

relaxing the restriction that T1 must start after T2.
This dependency is important for situations in
which it does not matter when tasks have begun,
as long as they end simultaneously.

T1 before T2: This relation clearly illustrates the
difference between Allen’s temporal logic and task
interdependencies. It can be divided into three

distinct interdependencies.
T2 after T1 (t1f ;not2i;n; 8n > 0; where n means the
nth execution of the task): T2 may only be

executed if T1 has already ended (the restriction
occurs in the execution of T2; T1 can be freely

executed). This dependency is the prerequisite
relation, which is very common in collaborative

applications. In this case, T2 may be executed
only once after each execution of T1.
T2 afterB T1 (t1f ;1ot2i;n; 8n > 0): Variation of the
previous dependency, in which T2 may be
executed several times after a single execution of
T1.
T1 beforeA T2 (t1fot2i): From a temporal logic

point-of-view, this relation is the opposite to after
(the formal definition is the same). However, they
generate totally different coordination mechan-

isms. Essentially, the difference is that in this case
the restriction occurs in the execution of T1,
which may not be further executed if T2 has

already started its execution. There is no restric-
tion to the execution of T2 (T2 does not have to
wait for the execution of T1, as it would happen to

the dependency T2 afterA T1).
T1 meets T2 (t1f ¼ t2i): T2 must start immediately
after the end of T1.
T1 overlaps T2: This relation is divided into two

types.
T1 overlapsA T2 (t1iot2iot1fot2f): T1 starts
before T2, and T2 must start before the end of T1,

which must end before T2. It is the original
relation.
T1 overlapsB T2 (t1iot2iot1f): Variation of the

original relation, in which it does not matter
which task ends first. The only obligations are that
T1 starts before T2, and T2 starts before the end
of T1.

T1 during T2: This relation is also adapted to
generate two new interdependencies.

T1 duringA T2 (t1i;n > t2i;n and t1f ;not2f ;n; 8n > 0):
T1 must be totally executed during the execution
of T2. In this case, a single execution of T1 is
allowed during an execution of T2.

T1 duringB T2 (t1i;n > t2i;m and t1f ;not2f ;m; 8m > 0
and 8ðnXmÞ): Variation of the previous depen-
dency, in which T1 may be executed more than

once during a single execution of T2.

A consequence of the included redundancies in Allen’s

logic is that there is not a unique way to represent
interdependencies among tasks, but these redundancies
give a more understandable and manageable perspective
to the model.

3.1.2. Resource management interdependencies
Resource management interdependencies are comple-

mentary to temporal ones and may be used in parallel
to them. This kind of interdependency deals with
the distribution of resources among tasks. Three

basic resource management dependencies are de-
fined.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1029

Sharing: A limited number of resources may be
shared among several tasks. It represents a common

situation that occurs, for example, when several users
want to edit a document.
Simultaneity: A resource is available only if a certain

number of tasks request it simultaneously. It
represents, for instance, a machine that may only
be used with more than one operator.
Volatility: Indicates whether, after its use, the

resource is available again. For example, a printer
is a non-volatile resource, which a sheet of paper is
volatile.

From the basic interdependencies above, it is also
possible to define composite interdependencies. For

example, sharing M+volatility N indicates that up to
M tasks may share a resource, which may be used N
times only.

Different from temporal dependencies, resource man-
agement dependencies are not binary relations. It is
possible, for example, that more than two tasks share a

resource. Moreover, each of the above interdependen-
cies requires parameters indicating the number of
resources to be shared; the number of tasks that must
request a resource simultaneously; and/or the number of

times a resource may be used (volatility).

3.2. Modeling coordination mechanisms

The mechanisms to coordinate the above set of
interdependencies were modeled by using PNs. The

formal modeling of the mechanisms not only does
enable a previous verification and validation of the
CVE’s behavior, but also constitutes the internal logic of
the coordination components (which will be presented in

the next section).
In the proposed scheme, the design of a collaborative

environment is divided into three distinct hierarchical

levels, workflow, coordination and execution (Fig. 1).
At the workflow level, a global sketch of the

environment’s behavior is delineated, establishing which

elements of the scene will be considered actors and
which tasks are assigned to them. Each actor’s behavior
is modeled separately, establishing the interdependencies

between tasks of the same actor or those of different
actors.
The coordination level is built under the workflow level

by the expansion of interdependent tasks according to a

PN-based model defined in [28] and the insertion of
correspondent coordination mechanisms between them.
At this level, we have a complete PN model of the actors’

behaviors, allowing anticipation of undesired situations
(such as deadlocks) through simulation, verification,
validation and performance analysis of the model.

The execution level deals with the actual execution of
tasks in the CVE. This level is the interface between the

coordination infrastructure and the CVE. It will be

treated in the next section.
During the passage from the workflow to the

coordination level, each task that has a dependency on

another is modeled by a system with five transitions
(ta, tb, ti, tf, and tc) and four places (P1; P2; P3 and P4),
as proposed by van der Aalst et al. [28]. As shown in

Fig. 2, attached to each expanded task, there are also
five places that represent the interaction with the
resource manager, the temporal coordination mechan-
ism, and the agent that executes the task. The places

request resource, assigned resource and release resource
connect the task with the resource manager. The places
start task and finish task connect the task with the

temporal coordination mechanism and the agent that
performs it, respectively, indicating the beginning and
the end of the task execution.

In order to illustrate a temporal coordination
mechanism, Fig. 3. presents the model of the mechanism
for relation Task 1 startsA Task 2. In this figure, t1 is a
control transition that ensures the simultaneous begin-

ning of both tasks, and t2 ensures that Task 2 will finish
only after the end of the other task. The transitions
called task 1 and task 2 represent the real execution of

the tasks. They are modeled by means of transitions with
token reservation (represented with the letter ‘‘R’’),
which are non-instantaneous transitions (tokens are

removed from their input places when they fire and only
some time later are they added to their output places,
representing the duration of the tasks’ execution).

Another mechanism presented here is the one for
managing the resource dependency sharing N. The
coordination mechanism for this dependency consists
of a place Pn with N tokens representing the available

resources. This place is the input place for a transition
connecting request resource to assigned resource, defin-
ing whether there are available resources. At the end of

the task, the token returns to Pn via release resource.
Fig. 4. shows the model for N ¼ 3:
A detailed explanation of the coordination mechan-

ism models has been presented elsewhere [21,27]. The
full set of models is available at http://www.dca.fee.u-
nicamp.br/Balberto/pubs/IJCSSE/mechanisms.

The next step is to create software components that
implement the modeled coordination mechanisms as

Fig. 1. Hierarchical levels for the design of CVEs.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391030

‘‘black boxes’’ connecting the collaborative tasks. The

coordination components are capable of receiving and
generating events from/to tasks in the CVE, controlling
their execution. Thus, events related to tasks (e.g., the
beginning of a task) may generate output events that

affect the execution of interdependent tasks (e.g.,
blocking the execution of another task).

3.3. Coordination components

We have idealized the coordination level as a software
layer loosely coupled to the scene. The advantages of

this approach are two-fold. It isolates the scene from

changes made exclusively on the coordination architec-
ture, and also provides a clear test bench to investigate
coordination issues. The list of requirements that should
be supported by the loosely coupled coordination layer

is as follows:

1. Implementation separated from the scene.
2. Accommodation of changes at the scene, such as

removal or inclusion of a task.

3. Changes in the coordination logic should be possible
and be restricted to a few software elements.

Fig. 2. Task model in the coordination level.

Fig. 3. Model of the coordination mechanism for Task 1 startsA Task 2.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1031

4. Mixing of different coordination logics within the
same coordination control.

5. Attachment of monitoring tools to gather perfor-

mance related to the coordination control strategy.
Potential evaluation indices are throughput, dead-
lock situations, and load balance.

The architectural decoupling between components
and the three-level architecture are solutions for

requirements 1–3. The encapsulated implementation of
complete services within each component is the solution
for requirement 4. The event-oriented communication is

the basis for attaching external tools (requirement 5).

3.3.1. Coordination level

Fig. 5 illustrates a high level vision of the components
involved in the coordination of interdependencies
between two tasks. At the coordination level the figure
shows three components, a coordinator and two tasks.

The coordinator component implements the coordina-
tion mechanisms, both for temporal and resource
management dependencies. The task component, in-

stantiated for each task, is responsible for maintaining
the task’s schedule.
The components of our architecture were designed to

communicate by means of the following sequence of
events:

REQUEST START (ReqS): When a task is
demanded, for example due to a user’s action, it
must first contact the coordinator to request an

authorization for execution. At this time, the
coordinator checks if there is any resource manage-
ment interdependency and, if so, it consults

the resource management mechanism to verify if
the resource is available (if not, it has to wait until the
resource becomes available). Once the resource is

available or in the case of having no resource
dependency, the coordinator checks if there is any
temporal interdependency. If so, it consults the

temporal coordination mechanism to verify if the
conditions for the task to start have been satisfied (if
not, it has to wait until these conditions are satisfied).
Once all conditions are satisfied, the signal AutS is

sent to the task component.
AUTHORIZE START (AutS): The signal is the
authorization given by the coordinator that enables

the beginning of a task’s execution.
REQUEST FINISH (ReqF): Once the task wants to
end its execution, it sends this signal to the

coordinator, which verifies if the temporal inter-
dependency (whether it exists) enables the end of
the task. If so, it sends the signal AutF to the task
and, if there is a resource management dependency, it

releases the assigned resource. Otherwise, the co-

Fig. 4. Model of the coordination mechanism for two tasks sharing three resources.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391032

ordinator waits until the temporal coordination
mechanism authorizes the end of the task.
AUTHORIZE FINISH (AutF): This signal indicates

to the task that it may end.

In the model of the coordinator component, a task
has to wait until the temporal and the resource
management coordination mechanisms authorize its

execution. A possible consequence of this fact is that
the task may wait indefinitely if either of these
conditions is not satisfied. In order to avoid such

situations, the coordinator also sends timeout signals to
the tasks.

RESOURCE TIMEOUT (RTout): If the resource is
not assigned to the task after a certain waiting time,

the coordinator sends this signal.
TEMPORAL TIMEOUT (TTout): If another task
does not offer the conditions for the beginning of the

task that has requested it, the coordinator sends this
signal after a certain waiting time. In this case, if the
resource has already been assigned to the task, the

coordinator also releases it.

The treatment of timeouts is left to the task
components. This gives more flexibility to the architec-
ture, because it does not risk the coordinator component

reusability.
The task that had its start unauthorized due to a

timeout may execute an alternative task when it receives

that signal. This kind of timeout can be thought as an
‘‘emergency procedure’’ to prevent other tasks from

being blocked. For example, in a virtual laboratory, the
students must follow a sequence of experiments in order
to achieve the expected skills. However, if a student

cannot conclude a certain experiment after a pre-defined
time, a virtual helping agent could be activated in order
to guide the user through all the steps of the experiment.
Another possible timeout treatment is to return the

task to its initial state. This approach only works when
the collaborative activity has an alternative path that
avoids the blocked task. In a virtual chat room, for

example, if a user cannot start a conversation because
there is nobody available, he/she could return to the
virtual hall and choose another room.

Another possible consequence of timeouts is that the
non-execution of an expected task may invalidate
interdependent tasks previously executed. For this

reason, the coordinator component sends the timeout
signals to all interdependent tasks, and not only to that
one which had its execution unauthorized. An example
occurs in relation Task2 afterA Task1. Task1 may be

executed without restrictions, but in some cases it
expects the execution of Task2 to be ‘‘validated’’. This
situation occurs, for example, in e-commerce, where the

processing of an order must be followed by the payment.
If the payment is not effectuated, after a certain period
the order should be canceled. In the example to be

presented in the next section, this situation occurs if the
monster’s wounds are not cauterized after a certain time
its head has been severed. In this case, the head is
regenerated and the hero must sever it again to kill the

monster.

Fig. 5. High level vision of the coordination component between two tasks.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1033

The coordination component encapsulates two PN
simulators, one for the temporal and another for the

resource management coordination mechanism. Each of
these simulators interacts with their associated events,
received or sent by the component. Events arriving at
the coordinator alter the state of the simulator, while

certain states of the simulator may generate output
events. Fig. 6 sketches the coordinator functioning.
When the coordinator receives a ReqS signal, it puts a

token in the respective request resource place, starting
the resource management mechanism. When the re-
source is available, the resource management mechan-

ism puts a token in the respective assigned resource
place, which sends it to start task. The start task place
starts the temporal coordination mechanism, which

sends the respective AutS signal indicating the time the
task may being. When the temporal mechanism receives
the ReqF signal, it checks whether the logical end of the
task is authorized and, if so, sends a token to finish task,

which is then passed on to release resource, indicating to
the resource management mechanism that the resource
is free again. Finally, the coordinator sends the AutF

signal, indicating the logical end of the task.
Although belonging to the same component, each

internal coordination mechanism has independent be-

havior, running a different PN simulator. A natural
design choice would have been to consider each
mechanism a component itself. However, this would
cause a communication overhead between both compo-

nents when a pair of tasks had both kinds of

interdependencies (i.e., temporal and resource manage-
ment), harming the decoupling characteristic of the

components. The choice for considering a component as
composed of two coordination mechanisms does not
reduce the flexibility of the model, because the compo-
nent is customizable, i.e., the kind of interdependency to

be treated by each of the mechanisms is a parameter of
the component. In the particular situation where there is
only one kind of interdependency, the other internal

mechanism may be considered ‘‘empty’’ with no effects
in the coordination of tasks.

3.3.2. Execution level
In the previous section we have centered the discus-

sion on the coordination level, where only the logical
execution of tasks is considered. The implementation of

the coordination components must also consider the
execution level, which represents the ‘‘physical’’ execu-
tion of the tasks in the CVEs. As shown in Fig. 5, the

connection between coordination and execution levels is
left to the task components, reducing the responsibilities
of the coordinator components, a feature that contri-

butes to their reuse.
The physical tasks communicate with their respective

task components by means of the following events:

REQUEST TASK (RTask): This signal is sent from
the physical task to the respective component when

an event in the CVE (user action, solicitation of
another task, elapsed time, etc.) requests its start. The

Fig. 6. The coordinator component functioning.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391034

task component forwards this information to the

coordinator at the coordination level via ReqS signal.
START TASK (STask): When the coordinator
authorizes the start of a task (AutS), the task

component forwards this authorization to the phy-
sical task via this signal. At this moment, the task
really starts its execution in the CVE.
FINISH TASK (FTask): The end of the task’s

execution in the CVE generates this signal that is sent
to the respective component at the coordination level.
This information is forwarded to the coordinator via

ReqF signal. It is important to clarify that the logical
end of the task (i.e., the end from the coordination
level point-of-view) occurs only when the task

component receives the AutF signal from the
coordinator. The logical end of a task guarantees
that the temporal interdependencies will not be

violated, but may be delayed in relation to its
physical end in specific situations.

An advantage of this multiple-level approach is the
modularization of the architecture. The coordination
model of the CVE may be developed independently
from its implementation and vice versa.

Although the only commitment between the coordi-
nation and execution levels is the communication by
means of the three signals discussed above, the integra-

tion issue is not an easy task. This is worsened by the
tight relation between scene semantics and its coordina-
tion, which directly impacts the communication pattern

within both levels. The choice for a communication
pattern imposes different kinds of externalization of

scene internal elements (i.e., actors, resources, tasks,

etc.). In the following we discuss three possibilities of
externalization (Fig. 7).
The first possibility is to implement the CVE under

the software component paradigm (i.e., scene objects,
actors, tasks, and resources implemented as compo-
nents), which would lead to a straightforward integ-
ration with the coordination control. Each task compo-

nent at the coordination level would be connected to a
set of components within the scene. In this approach
connections are loosely coupled because the task

component (TaskBeanFFig. 7a) does not need to
import any scene library/package. This fully compo-
nent-based integration approach is the ideal one from

the software component architecture point-of-view, but
it requires a component-based CVE.
A second alternative would be to encapsulate the

whole scene into a single IntegratorBean, which would
be basically responsible for forwarding coordination
commands to the appropriate scene elements and
returning scene events to the respective TaskBeans at

the coordination level (Fig. 7b). This single point
integration approach solution has the advantage of not
imposing a reorganization of scene elements, enabling

different scene technological implementations. Its draw-
back is a less decoupled and robust solution, since even
a slight change made to the scene would impact the

IntergratorBean.
A third approach is to have each TaskBean accessing

their respective scene elements (Fig. 7c). The advantage
of this direct integration approach is that there is not a

unique integration point and, therefore, no need to

Fig. 7. Approaches for the integration scene-coordination components.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1035

translate JavaBeans events to method calls in scene
elements. Moreover, there is no need to restrict or adapt

the scene to the component model. Scene elements may
even be implemented as simple structured (non-object-
oriented) code. The drawbacks, however, are numerous.

The sense of layer is wicked, because coordination
components need to import scene libraries. Further-
more, even a single alteration to the scene could impact
the coordination components in a less uniform and

localized manner than in previous integration ap-
proaches.
Since the implementation of a fully component-based

CVE is out of the scope of this paper, and our initial
goal is to use the coordination approach in existent
CVEs without further modifications, we use the direct

integration in the videogame implementation presented
in the following.

4. Prototype implementation: a multi-user videogame

In this section a case study of a CVE is presented,
where a user interacts with an autonomous agent that
represents a second user. The example implements a
kind of videogame based on the second ‘‘task’’ (activity)

of Heracles, from the Greek mythology. According to
the legend, Heracles had to kill the Hydra of Lerna, a

monster with nine heads that are regenerated after being
severed. In order to achieve his goal, Heracles needs the
collaboration of this nephew Iolaus, who cauterizes the

monster’s wounds after Heracles cuts each head off.
However, the last head may not be severed by any
weapon. The solution is to bury the monster in a deep
hole and cover it with a huge stone.

Fig. 8 illustrates the PN model of the videogame
(open rectangles indicate interdependent tasks). There
are two identical nets, one representing the user’s and

the other representing the agent’s sequence of tasks.
Each net has two alternative paths, indicating that each
‘‘actor’’ (user or agent) may assume either role (Heracles

or Iolaus). The upper part of the nets represents
Heracles’ sequence of tasks and the lower part, Iolaus’
sequence of tasks. Heracles must get the sword, sever

eight of the Hydra’s heads, throw the beast into the hole
and cover it with a stone. Iolaus, on the other hand,
must get the torch, cauterize the wounds after Heracles
has severed the heads and dig the hole.

At the coordination level, the boxes with interdepen-
dency names are replaced by the respective coordination
mechanism models for simulation and analysis

Fig. 8. PN model of Heracles videogame.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391036

purposes. At the execution level, these boxes represent
the internal mechanisms of the coordination compo-

nents to be used.
The definition of which actor will assume which role is

given by the interdependencies volatility 1 between the

tasks get sword and get torch. Since there are only one
sword and one torch available, the choice of weapon
determines the role to be played by each actor. There is
also an equals interdependency between get sword and

get torch of different actors. This interdependency
forces the agent to choose the other weapon when the
user chooses his/hers.

The interdependency sharing 1 among the tasks
get sword, sever head and cauterize is the ‘‘core’’ of
the game. When Heracles gets the sword, he is also

assigned eight resources that may be thought as
‘‘abstract authorizations’’ to cut Hydra’s heads. After
he has severed each head, a resource is released,

indicating to Iolaus that he may cauterize that wound.
If the head wound is not cauterized within a certain
period after it has occurred, the timeout signal sent by
the coordination mechanism causes the task to return to

its initial state and also reassigns the resource to
Heracles, indicating that he must once again sever that
head (now regenerated).

There is also an interdependency afterA, indicating
that Heracles may only throw the monster in the hole if
Iolaus has already dug it.

The PN model was simulated and analyzed with the
aid of a developed tool [21] (actually, the model shown
in Fig. 8 is an enhancement of previous models whose
simulation has detected problems).

The videogame was implemented by using the
Blaxxun Contact [29], a client for multimedia commu-
nication that provides resources for virtual reality

modeling language (VRML) visualization, chats, mes-
sage boards, avatars, etc. In this implementation we
have used the VRML visualization and the avatars with

predefined movements.
The interaction with the user occurs by means of

buttons defined in a Java applet that interacts with the

VRML world via external authoring interface (EAI), an
interface that enables external programs to interact with
objects of a VRML scene. By clicking on the applet’s
buttons, the user orders the execution of a task in the

virtual world (the physical execution of the tasks is
decoupled from their coordination). At the implementa-
tion, task components are connected to the interface’s

buttons, enabling or disabling them whether their
respective tasks are enabled or not. The integration of
the components with the VRML scene is direct (Fig. 7c)

because the components call methods of the applet
graphical interface elements, and vice versa. The applet,
however, could be redesigned as an integrator bean

(Fig. 7b), which would enhance the decoupling of the
architecture.

In order to give more dynamism to the game, the
agent has an aleatory behavior, taking a variable time to

start the execution of the tasks imputed to it. For
example, when the user assumes the role of Heracles, the
agent (Iolaus) may not cauterize a head cut by Heracles

before it is reborn. Fig. 9 shows some frames of the
videogame (the nine heads of Hydra are represented by
nine monsters). Frames a and b show Heracles’ inter-
face, while frames c and d show Iolaus’ interface.

5. Conclusion

This paper has presented an approach for behavior
coordination in CVEs, which is a step towards short-

ening the gap between virtual environments and CSCW
practices regarding the carrying-out of tightly coupled
collaborative activities. The approach started with the

basic idea of defining a set of interdependencies that
frequently occur between collaborative tasks. For each
interdependency, a coordination mechanism was for-

mally defined as a PN model. At this level, the whole
environment may be expanded as a PN for simulation
and analysis, enabling the anticipation of possible
problems. Finally, we have also developed a compo-

nent-based architecture to implement the coordination
control in CVEs in a modular and pluggable way.
Our coordination approach follows a three-abstrac-

tion levels hierarchy, which has the advantage of
isolating the parts of coordination design. For instance,
if the CVE designer wants to implement a videogame

such as the one presented in Section 4, it is not necessary
to consider the PN model of the system. Designers may
simply use predefined coordination components, which
encapsulate the PN logic of the coordination mechan-

isms, hiding this logic from designers. Thus, it is not
necessary to attach a PN model to a CVE. On the other
hand, in initial phases of the design, only the model may

be used, dismissing implementation details.
Another important aspect of the presented coordina-

tion approach is that is treats the CVE’s behavior

independently from its form and function. In other
words, the behavior does not depend on animation and
modeling techniques. For example, the videogame

presented in Section 4 may be redesigned to include
more sophisticated scenario, avatars and movements
without affecting the coordination infrastructure. More-
over, a whole task execution may be redefined without

affecting the global behavior (for instance, instead of
using the sword to sever the heads, Heracles could get a
gun to shoot them).

As future research, we plan to formalize the presented
approach (from the coordination logic to components
implementation) in order to create a generic coordina-

tion framework that can be used not only in CVEs, but
also in other kinds of collaborative applications.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1037

Concerning the CVE application, we have developed

here a basis for further research on the assumption that
virtual environment behavior reflects collaboration
patterns that are the outcome of coordination control

strategies. Isolating the three dimensions is a funda-
mental step to understand how they intertwine in CVE.
Following this reasoning, we suggest that an ample

research on infrastructure for CVE is already necessary.
The coordination apparatus demonstrated here is one of
the many aspects of such complex framework.

Finally, we would like to reinforce our belief that the
upcoming virtual society will be strongly based on
CSCW and net-VE technologies. For this reason,
research ventures towards shortening the gaps between

both technologies, such as that of coordination focused
here, are important steps towards the settlement of this
society.

Acknowledgements

The first author is sponsored by FAPESP (Founda-
tion for Research Support of the State of S*ao Paulo,
Brazil), grant number 00/10247-3. The second author is

sponsored by CAPES/PICD. Thanks also to DCA/

FEEC/Unicamp and CEUD/UFMS for the expressive

support granted to this research.

References

[1] Igbaria M. The driving forces in the virtual society.

Communications of the ACM 1999;42(12):64–70.

[2] Bannon LJ, Schmidt K. CSCW: Four characters in search

of a context. In: Bowers JM, Benford SD, editors. Studies

in Computer Supported Cooperative Work. Amsterdam:

North-Holland, 1991. p. 3–16.

[3] Hagsand O. Interactive multiuser VEs in the DIVE system.

IEEE Multimedia 1996;3(1):30–9.

[4] Singhal S, Zyda M. Networked virtual environments:

design and implementation. Reading, MA: Addison-

Wesley, 1999.

[5] Benford S, Bowers J, Fahlen L, Mariani J, Rodden T.

Supporting cooperative work in virtual environments. The

Computer Journal 1994;37(8):653–68.

[6] Gutwin C, Greenberg S. Workspace awareness for group-

ware. Proceedings ACM Conference on Human Factors in

Computing Systems (CHI), Vancouver, BC, Canada, 1996.

p. 208–9.

[7] Rodden T. Populating the application: a model of

awareness for cooperative applications. Proceedings

Fig. 9. Frames of Heracles videogame.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–10391038

ACM Conference on Computer-Supported Cooperative

Work (CSCW), Boston, MA, USA, 1996. p. 87–96.

[8] Fr!econ E, N .ou AA. Building distributed virtual environ-

ments to support collaborative work. Proceedings ACM

Symposium on Virtual Reality Software and Technology

(VRST), Taipei, Taiwan, 1998. p. 105–19.

[9] Perry TS. In search of the future of air traffic control.

IEEE Spectrum 1997;34(8):18–35.

[10] Malone TW, Crowston K. What is coordination theory

and how can it help design cooperative work systems?

Proceedings ACM Conference on Computer-Supported

Cooperative Work (CSCW), Los Angeles, CA, USA, 1990.

p. 357–70.

[11] Schmidt K, Simone C. Coordination mechanisms: To-

wards a conceptual foundation of CSCW systems design.

Computer Supported Cooperative Work: The Journal of

Collaborative Computing 1996;5(2–3):155–200.

[12] Hindmarsh J, Fraser M, Heath C, Benford S, Greenhalgh

C. Object-focused interaction in collaborative virtual

environments. ACM Transactions on Computer–Human

Interaction 2000;7(4):477–509.

[13] Joslin C, Molet T, Magnenat-Thalmann N, Esmerado J,

Thalmann D, Palmer I, et al. Sharing attractions on the net

with VPark. IEEE Computer Graphics and Applications

2001;21(1):61–71.

[14] Kim GJ, Kang KC, Kim H, Lee J. Software engineering of

virtual worlds. Proceedings ACM Symposium on Virtual

Reality Software and Technology (VRST), Taipei, Taiwan,

1998. p. 131–8.

[15] Attie PC, Singh MP, Emerson E, Sheth A, Rusinkiewicz

M. Scheduling workflows by enforcing intertask depen-

dencies. Distributed Systems Engineering Journal 1996;

3(4):222–38.

[16] McIlroy MD. Mass produced software components. In:

Naur P, Randell B, editors. Software Engineering. Report

on a conference sponsored by the NATO Science

Committee, Scientific Affairs Division, NATO-Brussels,

1968. p. 138–55.

[17] Szyperski C. Component software: beyond object-oriented

programming. Reading, MA: Addison-Wesley, 1998.

[18] Garlan D, Shaw M. Introduction to software architecture.

In: Ambriola V, Tortola G, editors. Advances in Software

Engineering and Knowledge Engineering, vol. I. Singa-

pore: World Scientific Publishing Co., 1993.

[19] Sun Microsystems. JavaBeans. /http://java.sun.com/pro-
ducts/javabeansS, May 2001.

[20] Roussev V, Dewan P, Jain V. Composable collaboration

infrastructures based on programming patterns. Proceed-

ings ACM Conference on Computer Supported Coopera-

tive Work (CSCW), Philadelphia, PA, USA, 2000. p. 117–

26.

[21] Raposo AB, Magalh*aes LP, Ricarte ILM. Petri Nets

based coordination mechanisms for multi-workflow en-

vironments. International Journal of Computer Systems

Science & Engineering 2000;15(5):315–26. Special Issue on

Flexible Workflow Technology Driving the Networked

Economy.

[22] Mascarenhas R, Karumuri D, Buy U, Kenyon R.

Modeling and analysis of a virtual reality system with

time Petri Nets. Proceedings International Conference on

Software Engineering (ICSE), Kyoto, Japan, 1998. p. 33–

42.

[23] Zhou Y, Murata T, DeFanti T, Zhang H. Fuzzy-timing

Petri Net modeling and simulation of a networked virtual

environmentFNICE, IEICE Transactions on Funda-

mentals of Electronics, Communication and Computer

Science, PART A, 2000;E83-A(11):2166–76.

[24] Magalh*aes LP. Raposo AB, Ricarte ILM. Animation

modeling with Petri Nets. Computers & Graphics

1998;22(6):735–43.

[25] Ellis CA, Wainer J. A conceptual model of groupware.

Proceedings ACM Conference on Computer Supported

Cooperative Work (CSCW), Chapel Hill, NC, USA, 1994.

p. 79–88.

[26] Allen JF. Towards a general theory of action and time.

Artificial Intelligence 1984;23:123–54.

[27] Raposo AB. Coordination in collaborative environments

using Petri Nets. Doctorate thesis, DCAFFEECFUNI-

CAMP, October 2000 [in Portuguese].

[28] van der Aalst WMP, van Hee KM, Houben GJ.

Modelling and analysing workflow using a Petri-net

based approach. Proceedings of the Second Workshop

on Computer-Supported Cooperative Work, Petri

Nets and Related Formalisms, Zaragoza, Spain, 1994.

p. 31–50.

[29] blaxxun interactive. blaxxun Contact 4.4. /http://
www.blaxxun.com/products/contactS, August 2000.

A.B. Raposo et al. / Computers & Graphics 25 (2001) 1025–1039 1039

