
1. Introduction 
The evolution of human-computer interaction has led to 

the development of different interfaces and interaction 
mechanisms. Many of these new interfaces are not yet 
mature, and issues related with the clear definition of an 
application’s  context and technological requirements are 
still under investigation. Most of the tasks performed in a 
conventional desktop computer are related to text editing, 
file organization, use of tables and mathematical 
calculations, etc. However, other areas of application have 
emerged, e.g. 2D image editing, animation, CAD (Computer 
Aided Design), interactive 3D visualization, entertainment, 
and games. The inherent characteristics of these classes of 
applications have created a demand which was not fully met 
by the desktop metaphor as it was originally proposed to 
represent an office through WIMP interfaces. 

The emergence of three-dimensional interactive 
applications showed the limitation of conventional 2D 
desktop devices (mouse, keyboard and monitor). Such 
conventional setup does not meet all the interaction needs 
related to the additional dimension in this new environment. 
The main evidence supporting this fact is the existence of a 
research line focused exclusively on 3D computer graphics 
that is as old as the very development of WIMP interfaces. 
The early efforts were guided by the evolution of scientific 
visualization and flight simulator applications driving the 
development of a new set of interactive hardware, including 
head mounted displays, data gloves and CAVES, as well as 
new interaction techniques for 3D environments. 

The use of virtual reality (VR) as a tool for regular users 
and developers is increasing. For a long time, two major 

obstacles have increased this gap, the first one related to the 
high prices of equipments, and the second one related to the 
lack of standardization of devices and interaction. The high 
cost of equipments is being gradually overcome by new 
technologies that made it possible for many centers to have 
access to immersive systems such as Caves and PowerWalls. 
On the other hand, the diversity of interaction devices and 
3D interaction techniques as well as the lack of standard 
definitions are still problems to in the development of an 
immersive VR application. 

One key issue in immersive VR development is the huge 
amount of time wasted on implementing infrastructure 
aspects like devices/interaction management, output 
synchronization, and rendering distribution, leaving little 
time for  implementation of innovative solutions. The subject 
of toolkits and innovation is widely exploited by Greenberg 
in [13] and is of fundamental importance for the 
development of this research. According to Greenberg,  for a 
new area to develop it is necessary to give everyday 
programmers the ability to test their creativity by means of 
programming tools that remove low level  implementation 
burdens. 

To achieve these goals within a project with complex 
requirements, such as those of VR, there is a great need for 
reuse of code. At this point a toolkit is extremely useful 
because it encapsulates several functionalities and allows the 
developer to focus on what is really desired. 

There are some toolkits available for the development of 
immersive VR applications, such as VrJuggler [7],  Blender-
Cave [12], Eon Studio [20], Avango NG [16], 3DVIA 
Virtools [5] and INVRS [6]. However, the majority of these 
toolkits is coupled to a specific rendering system, making it 
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difficult to adapt an already functional desktop graphical 
application to an immersive VR system. As a consequence, 
applications often need to be completely rewritten for this kind 
of environment. This burden is also an impediment to creative 
development in VR. 

However, all this work is not actually necessary since the 
code needed for the creation of an immersive VR application 
may be developed in a way to be used in existing applications. 
Roughly speaking, an immersive VR application differs from a 
conventional desktop graphical application in two main 
aspects: i) it should support multiple video outputs with 
different points of view, and ii) the user cannot use 
conventional interaction devices, such as mouse and keyboard, 
since that user interacts standing in front of the immersive 
environment (Figure 1). In this paper we propose a non-
intrusive framework to enable the conversion of graphical 
desktop applications into immersive ones, aiming to provide 
programmers that are not experts in VR the ability to produce 
immersive applications. We also perform usability tests that 
show that the interaction provided by the framework is capable 
to be used by users of engineering visualization applications. 

In section 2 we present the common VR tools used today 
and the reasons that hinder the conversion of 3D software from 
desktop to an immersive environment approach. Then in 
section 3 we explain each of the framework’s libraries and also 
show how it’s usage makes the transition from desktop setup to 
immersive setup seamless. In section 4 we show six 
applications which are used as study cases to the application of 
LVRL. In section 5 we discuss the characteristics and 
contributions of the framework, and we present results of 
usability tests related to the interaction techniques provided by 
LVLR. Finally, some conclusions and future work are 
presented in section 6. 

 

2. Related Work 

The existing frameworks for VR often try to support the 
following functionalities: rendering multiple views, device 
management for 3D interaction, and rendering distribution over 
a LAN. As mentioned above, while attempting to support these 
features, they also direct their development process to a 
particular platform. 

BlenderCave [12], Virtools [5] and EON Studio [20] are 
authoring tools for the development of interactive 3D 
applications. They have rendering systems to which the 
application developer does not have access. The imported 3D 
data is modeled in third-party tools such as 3DStudio Max. In 
this kind of software it is not possible to use custom rendering 
techniques such as those based on points. Regarding the 
interaction, these frameworks are capable of reading VR 
devices, but the developer needs to develop all the support to 
enable interaction techniques for a particular device. 

Low level frameworks, such as VrJuggler [7], Avango NG 
[16] and INVRS [6] are based on third-party scene graphs for 
rendering. If the application to be converted uses one of these 
scene graphs, then it will probably be more easily converted 

using one of these frameworks because they will provide 
the clustering and multi-view features. However, in 
general it will be necessary to keep the two versions of 
same software, one for the conventional desktop and the 
other for immersive environments. This happens because 
these frameworks need to control the main loop of the 

application to do the synchronized rendering across all 
screens. Furthermore, related to 3D interaction, they have 
the same problem as authoring tools, that is, they provide 
raw data from the devices, and the developer is responsible 
for handling data in order to use it in the application. This 
requires the developer to have a deeper knowledge on VR 
devices. 

Cavelib [9] was the first library for immersive 
environments and was created together with the first 
CAVE. It has been maintained and sold to the present 
time. Its only difference to the frameworks mentioned 
above is that it is not tied to a scene graph. Its strategy is to 
assume that all the dynamic information demanded by the 
rendering will be in a protected memory area. This 
memory is shared and can be distributed among 
computers. However, although it is not tied to a specific 
scene graph, it still requires that development be guided to 
it. Additionally, it also needs the camera interaction to be 
implemented at the same way as the other libraries because 
it only provides a layer for input devices with an interface 
similar to VRPN [19]. 

This coupling with scene graphs or strategies of memory 
usage of all the solutions mentioned is closely linked with 
the distribution of rendering across multiple machines. The 
manager of this distribution needs to know what to 
distribute and thus be able to synchronize the drawing on 
different machines. However, despite providing an 
important feature, it adds a very strong constraint to the 
framework. At the same time, there are other solutions for 
generic distributed rendering [11], [14], which do not have 
the native calculation of multiple viewpoints, but provide 
the same functionality to applications that are able to 
internally calculate the multiple points of view.  

Fig. 1. LVRL usage example: CAVE with Flystick2 support. 
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LVRL already provides the support for camera 
manipulation and calculations of multiple points of view. In 
this way we can reduce the efforts in creating applications 
that are used both on desktop and immersive environments. 
Instead of delivering just input devices events, the 
framework provides the required matrices to configure the 
application camera. 

3. LVRL 

The framework provides tools for programmers without 
knowledge of virtual reality algorithms to convert a desktop 
program into a multi-modal program with 3D interface that 
runs on desktop and immersive environments just by 
changing the configuration of the environment at run-time. 
For this we created libraries that perform the following tasks: 
(1) assist the existing rendering system to create the virtual 
cameras for multiple views, (2) provide camera manipulator 
designed to work in both types of environments in the same 
way with some devices and provide an interface to Wand, 
which is a generalization of the mouse to 3D interaction. 
Below is presented the description of the framework’s 
overall architecture and each of its libraries. 

 

3.1  ARCHITECTURE 
The framework consists of six libraries, illustrated in 

Figure 2. A dependency diagram can be seen in Figure 3. 

Two of these are mathematical libraries without any 
dependencies that also can be used alone. They are  
VrFrustum and VrManipulators. The other four are related 
to input data; they read and process input events in order to 
properly interact with the camera. They can be used with 
other frameworks, such as VrJuggler, but it is necessary to 
use the input library, VrInput, rather than the one provided 
by other frameworks. 

VrFrustum is responsible for evaluating the parameters 
of cameras from different viewpoints corresponding to 
each of the screens of an immersive system. It uses the 
physical configuration of screens and the user’s head 

position. In desktop mode, it 
generates a single camera for 
the display. 

VrManipulators contains a 
set of camera manipulators 
that are designed to work with 
input from the mouse and 
keyboard in the same way as 
with input from VR devices. 

The other four libraries 
work to capture and interpret 
input devices: VrInput, 
VrInteractio, VrHeadTracking, 
and VrWand. 

VrInput is responsible for 
managing input devices. 

VrHeadTracking monitors 
the device that evaluates head 
position and feeds VrFrustum 
with this position. 
   VrInteraction is responsible 
for interpreting input events 
and transforming them into 
camera manipulation. This 
library provides a view matrix 
that positions and orients the 
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Fig. 2. Libraries provided by LVRL. 

  

Fig. 3. The diagram shows the dependencies  
between the libraries. 



camera in the scene. When Vrinput generates an event of one 
of the input devices supported by VrInteraction, it interprets 
this event according to the previously specified mapping 
between device and a manipulator  Then it calls VrManipulator 
to make the mathematical calculations that update the current 
view matrix. 

Finally, VrWand informs the direction at which the user is 
pointing the device. In VR mode, devices generally provide the 
absolute position within the immersive environment as well as 
the orientation of the device. Using VrInteraction to transform 
the position of the input device’s coordinates within the 
immersive environment (real world) to virtual world 
coordinates, the library is able to evaluate the direction vector 
and the position of the ray. 

Details of each of these libraries are explained below. 

3.2 VRINPUT 
The VrInput library is responsible for accessing input 

devices, like mice, keyboards, joysticks, and trackers. 
Currently, the following devices are supported: 

 
•     Mouse and keyboard; 
•     The wiimote control; 
•     Iphone and Ipad; 
•     Android devices; 
•     The flystick2 control ; 
•     BraTrack tracker; 
•     SpaceBall; 
•     Joysticks (only on Windows); 
•     Kinect (only on Windows); 

 
In addition to the devices listed, there is also support for the 

VRPN library [19]. 
VrInput is based on events, which are created when a new 

input is generated by the device. Through a manager, VrInput 
sends these events to the application, which then decides the 
actions to be performed. 

Integration with the application is done through a single 
interface, responsible for creating the access to devices. To 
ensure stability and correct functionality, the life cycle of the 
devices is internally controlled by the VrInput, and therefore 
direct access to devices is prohibited. 

To prevent concurrent access to multiple devices, only one 
instance of VrInput is allowed per application. At the time 
VrInput is created, it executes a secondary process which will 
directly access the devices. Communication between this 
process and the VrInput is done through inter-process calls 
using shared memory. This architecture ensures that in case of 
errors on the device access, the application will continue 
running, since only the secondary process will be affected. 

Once the devices to be used are defined, an operation is 
performed only when the function ProcessEvents is called. At 
this point VrInput communicates with the secondary process 
and verifies if there are pending events. Also, it certifies that 
the secondary process is still running. If not, it tries to recover 

the previous state by running the secondary process again 
and creating access to the defined devices. If this recovery 
operation is possible, the application will continue to run 
unaware. Only if the recovery fails are the errors reported 
to the application. 

VrInput also supports loading and saving all of its 
configuration. This file can be created for a specific 
environment and can be shared with all applications that 
use LVRL. It is usually created by the maintainer of the 
system, and the developer just needs to load this 
configuration file to activate all devices of a specific 
system. 

3.3 VRFRUSTUM 
The VrFrustum is responsible for configuring multiple 

cameras required for immersive environments based on the 
position and orientation of a main camera. This feature is 
common in VR frameworks.  However, the main 
difference proposed by LVRL is that VrFrustum does not 
need to have access to the camera abstraction in the 
application. For performing calculations it simply needs to 
know the geometry of the projection system and the 
position of the user’s head in each frame. 

In case of a desktop environment with a single monitor 
the calculation is restricted to a single screen. However, in 
the case of a CAVE-like environments, most commonly 
composed of more than 3 screens, “N” points of view will 
have to be calculated corresponding to the “N” system 
screens.  In the case of a stereoscopic system it would be 
“2 x N”. 

The configuration of the projection system is done 
through an XML file that adds the parameters inherent in 
the configuration of a specific immersive environment. 
This file is common to all applications that work in this 
environment and is created by the environment maintainer 
who has the knowledge about the system. Thus the 
developer does not have to know any information about 
the visualization system where the application will run. As 
a main information, this file contains the 3D position of 4 
corners of the screens. A screen can be a monitor, a 
projector, or two projectors (for projection with passive 
stereo support). This information, along with user head 
position provided by the tracker system, is enough for the 
frustum calculation to multiple cameras. 

The configuration file also contains information about 
the mapping between the different video outputs of 
projectors and their regions (or screens) of the projection 
system (i.e. mapping viewports). The viewport to the right 
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eye is optional, and can be used when the system uses active 
stereo projection.  If stereoscopy is not supported, only one 
viewport is necessary. In the case where the immersive system 
needs to work in a distributed way, in addition to viewport a 
unique ID is necessary to allow mapping a machine to a 
specific viewport. 

The last property that a screen can have is the reference 
screen. This property exists because clipping planes near and 
far can only be set for one screen. The other screens need to be 
calculated based on the reference screen.  This allows clipping 
planes to fit together without discontinuities. 

Other important information for creating a 3D scene in 
immersive environments consists of the Pivot and the 
OffsetTracking. Pivot is a 3D position in the scene and has two 
functions. The first is to be used as the standard position of the 
user’s head in case the system does not support head tracking. The 
second is the origin of the coordinate system of the view matrix.  It 
is provided by the library being used for positioning the cameras in 
immersive environments. 

The OffsetTracking is a 3D position that represents the 
origin of the coordinates system of the tracking equipment. We 
consider that the coordinates of all systems have the same 
orientation, and the description of the corners are in the same 
units provided by the equipment tracking.  The meter is a 
measure commonly used. 

For the application, the result of VrFrustum is composed 
only by the projection and view matrices concerning the 
different views defined in configuration file. The application is 
responsible for properly applying these matrices to their 
cameras abstraction. Thus the VrFrustum is not dependent on 
any type of visualization library. This facilitates its use in 
legacy environments, where the whole display engine is 
already defined. Figure 4 shows the final arrangement of 

frustums calculated by VrFrustum based on a 
configuration file for an L-format projection system. 

3.4 VRHEADTRACKING 
VrHeadTracking is the simplest library in LVRL. Its 

sole function is to pass to Vrfrustum the position and 
orientation from the sensor that is tracking the user’s head. 
Vrfrustum then recalculates the frustums based on the new 
position of the head, thereby creating the effect of head 
tracking. To use VrHeadTracking the application needs 
only to communicate what tracking device is being used. 

 

3.5  VRMANIPULATORS 
The VrManipulators library contains the implementation 

of the manipulators.  A manipulator creates and modifies a 
view matrix which if applied to the application’s camera, 
produces a specific interaction behavior. At the time this 
paper is written, four manipulators were implemented: 

 
•     Fly: simulates the flight behavior. Among the 

available manipulators, it provides the least restrictive 
navigation. The user can point the camera in any 
direction to observe the scene. At the same time, 
translations can be done by referencing the direction 
the camera is pointing. It is also possible to change the 
velocity while the navigation is being performed. 

•     Examine: this manipulator is used for object 
inspection. The camera is rotated around a point, 
called the pivot. This is usually set at the center of the 
object, but can also be any point in the scene. How the 
pivot is chosen is a specific application operation. A 
zoom tool is also provided by this manipulator. 

•     Walk: this manipulator has a behavior similar to the 
fly, with the restriction that translation movements are 
only performed in such a way that the camera remains 
on the floor plane. This way, the camera acts like it is 
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walking through the scene. For the cases where different 
geometries are not connected (for example, two floors that 
do not have stairs connecting then), a “jump” tool is 
provided. When the user starts a jump, the camera moves 
vertically. When the jump is stopped, the camera falls back 
to the floor plane. The location of the floor plane is 
determined by the application. Usually, this is done by 
continuous choosing in the down direction. 

•     Rail: In this manipulator the translation movements can 
only be made on a specific path, previously chosen by the 
user. The camera can move in both directions of this path 
and, at the same time, can be pointed to any direction. This 
manipulator was projected for presentations, where 
specific characteristics of a scene have to be showed. At 
any place of the path, another manipulator can be activated 
to perform other operations during the presentation. When 
the rail manipulator is set back, the camera is smoothly 
taken to its last position in the path, so the presentation can 
continue.  

 
The manipulators have configuration parameters that can be 

adjusted by the application. Currently, the following 
parameters are available: 

 
•     Navigation velocity:  the velocity the camera will move. 
•     Rotation velocity: the velocity the camera will perform 

rotations. 
•     Up vector: the up vector of the scene. In our 

implementation, all rotations are constrained in such a way 
that the camera’s up vector is always aligned with the 
scene up vector. This proved to be an important feature as 
it helps users to better perceive camera orientation, 
specially in immersive visualization systems. 

•     Pivot point: the point used by the examine manipulator to 
perform rotations. 

•     Floor point: a point located in the floor plane. In 
conjunction with the up vector, it is used to find the floor 
plane equation that will be used by the Walk manipulator. 

•     Path: a set of points that establish the path used by the Rail 
manipulator. 

•     Unlock/Lock rotation about the right vector: We noticed 
that sometimes it is appropriate to limit the freedom of 
camera rotation in order to facilitate the completion of 
some tasks. Furthermore, in some types of visualization 
environments, some rotations can cause confusion to the 
user. This is the of rotations around the CAVE’s right 
vector. When this occurs, the user has the impression that 
the scene is “bent” on some of the screens.  In order 
prevent these situations, this parameter allows the 
application to lock the rotations about the right axis. 

•     Unlock/Lock rotation about the up vector: it has the same 
effect of the previous parameter, except that it operates in 
the rotations around the up vector. 

The implemented manipulators provide the basic support for 
navigation and inspection in 3D visualization applications and 

were designed to operate in environments ranging from the 
standard desktop to immersive environments like CAVEs. 
Currently, we are working on the creation of new 
manipulators, some of these being just extensions of the 
existing ones. 

3.6  VRINTERACTION 
VrInteraction is a manager for interaction operations. It 

controls how input devices influence the manipulators as 
well as the process of switching between them. It is a 
combination of the libraries VrInput, VrManipulators, and 
a set of mappings in a way to provide a minimal interface 
that applications can use to support basic 3D interaction 
techniques without much effort. A mapping is a relation 
between an input device and a manipulator. For example, 
it can specify that a mouse drag will cause a rotation in the 
examine manipulator. A mapping listens to input events 
via the VrInput library and maps theses events to specific 
actions on the manipulators provided by the 
VrManipulators library. 

Currently, there are pre-defined mappings for mouse 
and keyboard, and the Wiimote and Flystick2 controls 
(Figure 1). They allow basic navigation and inspection on 
3D visualization systems. Specifically, the mouse and 
keyboard devices are used in conjunction in order to define 
the behavior for standard desktop interaction. These pre-
defined mappings were created for all the manipulators of 
VrManipulators and, so there are currently 12 mappings: 4 
for desktop (mouse and keyboard), 4 for the Wiimote 
control and 4 for the Flystick2 control. New mappings 
using Kinect, Android, iPhone, and iPads devices are 
being developed. The resources used by these pre-defined 
mappings should not be accessed directly by applications, 
as this may cause conflicts in which the resources are used 
for two different tasks simultaneously. For this reason, 
each mapping was developed to take advantage of the 
device features as best as possible using a minimal 
resources of it. For example, there are 6 buttons on the 
Flystick2, but no more than 2 are used. The remaining 
buttons are left to the developer, who can use them via the 
VrInput library to perform specific tasks in the application. 

The main advantage of the pre-defined mappings is to 
minimize the work of the developer who wants to create a 
VR applications. S/he doesn’t need to worry about code 
related to VR interaction because it is already embedded in 
VrInteraction. It is also not necessary to think about 
specific treatment for VR environments since the 
manipulators and mappings are designed to work on both 
desktop and immersive environments. This allows 
VrInteraction to have a minimal interface, where the 
application needs only to inform the device and 
manipulator to be used in a given moment. This 
contributes to reduce the cost of creating new 3D 
applications and converting legacy applications into 
immersive ones. Finally, the pre-defined mappings 
provides a standard interaction for applications that use it. 
To the user, this simplifies the process of learning, since s/
he will not to have to learn a new way of interaction when 
starting to use a different application. The use of 
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mappings, however, is also flexible: if developers do not want 
to use one of these pre-defined mappings, they can disable it 
and a register a new one, created by them. 

When the application requests a change of manipulator, 
VrInteraction ensures that this operation does not result in a 
discontinuity in the interaction. This is done through the use of 
transitions. A transition is an interpolation between two 
different poses of camera which aims to ensure a smooth 
interaction. For example, if the rail manipulator is chosen, 
VrInteraction creates a transition to take the camera’s current 
position to the starting position of the path defined on rail 
manipulator. The presence of these transitions is important to 
prevent situations where the user can get disoriented. 

Although depending on the VrInput library, an application 
can have multiple instances of VrInteraction. Each of these 
provides a view matrix which the application applies to his 
camera abstractions. This view matrix is the result of the 
combination of the inputs with the manipulators. This way, 
VrInteraction can be used in collaborative VR applications, 
where each user is able to control a different camera [10]. 

 

3.7 VRWAND 
Actions such as selecting objects or options on menus are 

made by mouse when in desktop environment. Immersive 
environments, however, usually do not have mice, and thus 
different devices should be used. Such devices, called wands, 
are generally adapted controls with sensors whose position and 
orientation can be monitored by a tracking system. 

Through the orientation and position of these devices, 
applications can obtain a ray which can be used as a virtual 3D 
pointer. The VrWand function is used to calculate the position 
and orientation of this ray within of the virtual world defined 
by the application. Via VrInput, VrWand obtains the position 
and orientation of the wand in the tracker system coordinates. 
With the view matrix provided by VrInteraction, these data are 
transformed to world coordinates and passed to the application, 
which can perform actions like selection, as well as the 
rendering of the ray. 
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Algorithm 1 Pos3D render without LVRL calls 

Pos3D.getScreenData( 
prjMatrix, mvMatrix, viewportV ector ) 
 
setViewport( viewportVector ) 
setProjectionMatrix( prjMatrix ) 
setModelviewMatrixPos3D( mvMatrix ) 
 
scene.render() 

Algorithm 2 Pos3D render with LVRL calls 

VrInput.processEvents() 
VrInteraction.update() 
VrWand.update() 
VrHeadtracking.update() 
VrInteraction.getViewMatrix( interactionMatrix ) 
 
for i = 1 to VrFrustrum:getNumberOfScreens() do 
 
      VrFrustrum.getScreenData( 
      i, prjMatrix, mvMatrix, viewportVector  ) 
 
      setViewport( viewportVector ) 
      setProjectionMatrix( prjMatrix ) 
      setModelviewMatrixPos3D( 
      mvMatrix * interactionMatrix ) 
 
      scene.render() 
 

end for 

 

Fig. 5. Pos3D in use on a CAVE 

Fig. 6. SimUEP in use on a CAVE. 



4.2   SIMUEP 

SimUEP is a solution that uses simulators for industrial 
training. The user controls an avatar that performs tasks on an 
oil platform. This software was developed using Unity3D as 
game engine and some plug-ins developed in C++. In order to 
add capabilities that VR software require, it was necessary to 
use only VrInput, VrFrustum and VrHeadTracking libraries. 
Because Unity3D is a game engine, it already implement avatar 
manipulation with joysticks.  Thus, the use of VrInteraction 
was not necessary.  Figure 6 shows the software in use. 
 

4.3   SIVIEP 
SiVIEP is a project under development during the last six 

years. SiVIEP supports a comprehensive visualization of 
several types of models comprising an oil exploration and 
production enterprise. For example, it is possible to load from 
oil platforms to wells and reservoirs in a single scene (Figure 
7). This software is based on the OpenSG [3] which is a scene 
graph with distribution features. OpenSG support native VR 
rendering in multiples nodes and multiples screens. In this case 
it was used by just the VrInput and the VrInteraction in order to 
provide the navigation and the support of VR device events, 
such as ART Flystick. 
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Fig. 7. SiViEP in use on an L-Shape environment. 

4.4  LVRL Viewer 
The LVRL Viewer was created to test all the features of 

LVRL. It was build upon OpenSceneGraph [2] with Qt 
[4]. The navigation user tests was performed on it. A 
Screen shot of the LVRL Viewer is shown in Figure 8. 
 
4.5 Cay Viewer 

Cay Viewer is a component-based viewer for offshore 
data that is under development.  It will support all kinds of 
offshore visualization,  including simulations. It is written 
with a mix of C++ and Lua scripts. It also uses a new 
component framework, Coral Lib. Then LVRL was used 
with a binding for Coral. As a result, LVRL can also be 
used in Lua scripts. Cay uses OpenSceneGraph [2] and a 
embedded solution to multi- node render based in RPC and 
ZeroMQ. Cay uses all  LVRL. 
 
4.6  Environ 
Environ [17] is a visualization software for massive 
engineering models. This software was originally 
developed for desktop and a few years ago there was a 
need to add VR features on it. Our group has developed 
several versions of third-party VR libraries for it that 
converged into LVRL. 



To prove that the manipulators in LVRL are suitable to 
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5. Results and Discussion 
 
In this section we discuss the main features and 

contributions of the LVRL framework. 

5.1   Architecture Analysis 
1) Transparent programming interface: Using the entire 

frame-work, the application has contact with the libraries 
VrInteraction, VrWand, VrInput, VrHeadTracking and 
VrFrustum. In the previous sections it was shown that they all 
have the same results in both desktop mode and VR. Thus 
developers can program their applications without worrying 
about details relating to the type of visualization environment. 
The best examples of this feature was the use of LVRL in the 
Pos3D by a non-VR programmer. 

2) Change desktop to immersive mode at runtime: With the 
design of VrInteraction and VrFrustum it is possible to change 
from desktop to immersive format and vice versa during 
execution by just making a method call. To reconfigure the 
screens, it is enough to just load a new configuration file in 
VrFrustum. To use a VR device instead of the traditional 
mouse and keyboard, you need only tell VrInteraction which 
device to use. This feature proved to be very important in the 
Cay Viewer, LVRL Viewer, and Environ because a single 
software version needs to be maintained, saving hours of 
development.. 

3) Non-intrusive: The execution control still belongs to the 
application and not to LVRL, which can be consulted 
whenever the application needs it. Developers can use 
whichever graphics engine they want, and it is not necessary 
for the application to be rewritten to work with LVRL. In 

Fig. 8. Screen shot of oil platform in the LVRL Viewer. 

Pos3D and SiViEP, for which the development started 
before the existence of LVRL, this feature was shown. 
Just a few parts of software were replaced and the idle 
control of the application did not change the ownership. 

4) Multiplatform: All the libraries have no system 
dependences and were developed to run on multiple 
operating systems. Currently Windows and Linux 
platforms are supported. The exception lies only in 
VrInput, which depends on the drivers for various 
devices. Thus some devices are not supported on all 
platforms. Despite this dependence, the design based on a 
central manager and several device readers whose 
engagement are events based only on text messaging, 
allows VrInput to be used on multiple platforms, even 
when a device has no driver for the platform. 

5) Hardware independence: With the use of VrInput 
the presence or absence of a device driver does not 
influence the use of the library. Only the reader related to 
that device is unavailable. 

6) Portable: The implementation of the framework uses 
only native types of C++. In this way, we can easily port 
it to C, Unity3D, and Lua, thereby showing that the 
architecture of the framework does not impose any 
restriction on portability between languages. The 
SimUEP and the Cay Viewer show this feature. 

7) Compatible with distributed rendering: Although the 
library does not have distributed rendering primitives, 
VrFrustum configuration provides the necessary tools to 
achieve this goal. The Cay Viewer shows this feature 
using an embedded distribution solution. The master node 
runs the VrInput instance and the VrFrustum instance. 
Then it sends to each slave node that camera pose ready 
to be rendered. 

Fig. 8. Screen shot of oil platform in the LVRL Viewer. 
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Furthermore, the constraint of maintaining the camera 
aligned with the world up vector is applied to all 
manipulators. Another benefit pointed out by users is the 
fact that the manipulators of LVRL are similar with 
known camera control techniques offered in 3D games. 
This was pointed out not only by younger users.  Even 
older users said they already had some contact with 3D 
games, either by themselves or by way of their children. 
Thus the initial learning phase to understand the 
functioning of the manipulators of LVRL became faster 
as it was facilitated by previous experience that most 
users already had. 

In addition to the above tests, other tests were also per-
formed during development of LVRL to determine how to 
use the available input devices to control the manipulators. 
These tests were made with the participation of a group of 
users with mixed profiles, including advanced users (with 
prior experience in using 3D applications) and beginner 
users (with little or no prior experience in using 3D 
applications). These tests consisted of presenting, for a 
specific input device, different ways to control the 
manipulators. At the end each user was asked which was 
better. Users were also encouraged to give their opinion 
during the test execution, and may also indicate different 
ways to control the camera from those presented. From 
these results, the standard mapping in the module 
VrInteraction was determined. 

5.2   Users Tests 
The LVRL already provides implementations for some 

camera manipulators through the VrManipulators and 
VrInteraction modules. The fly examine and walk 
manipulators are commonly used by several 3D applications, 
and most of the users have experience with at least one of 
these tools. 

To prove that the manipulators in LVRL are suitable to 
perform common navigation and interaction tasks, we 
compared our solution with a commercial one. For this, we 
used Autodesk’s NavisWorks as a commercial solution and 
the LVRL Viewer as described in the previous section. The 
main reasons for choosing NavisWorks are its broad use in 
engineering design review, the contributions of Autodesk in 
the 3D interaction research area, and the positive feedback 
provided by some of our users about NavisWorks. 

Our tests consisted in asking the user to perform specific 
navigation tasks using both applications. As an example, we 
asked the user to “go to a place A”, or even “find object B, 
examine it, and count how many objects of type C that object 
B has”. The tasks were composed in a way that the user had to 
use the fly as well as examine and walk manipulators in 
combination to complete the tasks. A group of 8 people 
participated, identified as P1 to P8. These people frequently 
use 3D visualization software and were familiar with 3D 
interaction tools. 

Before starting the test, both options were presented to the 
user and time was given to him/her to become familiar with 
both applications. Then the user received the tasks to be 
executed, and the time was measured for each of the two 
applications. To reduce the impact of the learning effect, the 
order in which the applications were used was different for 
different users: if the user P1 starts the test with the LVRL 
Viewer, then the next user P2 would starting the test using the 
NavisWorks. 

The results are shown in Table I.  It shows for each  user  
the times spent on the execution of the tasks for the LVRL 
Viewer and NavisWorks respectively. The last column shows 
the relationship between the time using NavisWorks relative 
to the time using LVRL Viewer. As can be seen, the time 
required to perform the tasks was lower using the 
manipulators provided by LVRL for all users and, in some 
cases, it was almost half of the time spent when using 
NavisWorks 

As main factors for these results, we identified some 
differences between the LVRL manipulators and NavisWorks 
ones. The fly provided by NavisWorks, for example, does not 
maintain the camera aligned with the world up vector. Thus, 
as the user changes the camera orientation, the view tends to 
be tumbled in NavisWorks, which caused discomfort for all 
users. Furthermore, to change the navigation speed the users 
had to use a menu interface. In desktop mode the LVRL 
allows change in the navigation speed using the mouse scroll, 
so the user does not have to stop the navigation to do this. 

User LVRL 
time 

Navis Works 
time 

Navis Works/
LVRL 

P1 116 212 1.83 

P2 182 232 1.27 

P3 136 218 1.60 

P4 223 251 1.12 

P5 145 254 1.75 

P6 122 165 1.35 

P7 172 333 1.93 

P8 173 253 1.46 

 TABLE  1 

Comparison of LVRL with commercial Solution 

6. Conclusions and Future Work 



 

                                                         THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY                                                13   

Computer Graphics and Image Processing 
(SIBGRAPI’97) (1997), IEEE Computer Society. 

[9] Cruz-Neira, C., Sandin, D. J., Defanti, T. A., Kenyon, 
R. V.,and hart, J. C. The cave: audio visual experience 
automatic virtual environment. Commun. ACM 35, 6 
(June 1992), 64–72. 

[10] Dos Santos, I. H. F., Soares, L. P., Carvalho, F., and 
Raposo, A. A collaborative virtual reality oil & gas 
workflow. IJVR 11, 1 (2012), 1–13. 

[11] Eilemann, S., Makhinya, M., and Pajarola, R. Equal-
izer: A scal-able parallel rendering framework. IEEE 
Transactions on Visualization and Computer Graphics 
15, 3 (May 2009), 436–452. 

[12] Gascon, J., Bayona, J. M., Espadero, J. M., and 
Otaduy, M. A. Blendercave: Easy VR authoring for 
multi-screen displays. SIACG 2011: V IBERO-
AMERICAN SYMPOSIUM IN COMPUTER 
GRAPHICS (2011). 

[13] Greenberg, S. Toolkits and interface creativity. Multi-
media Tools and Applications 32 (2007), 139–159. 

[14] Humphreys, G., and Hanrahan, P. A distributed graph-
ics system for large tiled displays. In Proceedings of 
the conference on Visualization ’99: celebrating ten 
years (Los Alamitos, CA, USA, 1999), VIS ’99, IEEE 
Computer Society Press, pp. 215–223. 

[15] Humphreys, G., Houston, M., N G, R., Frank, R., 
Ahern, S., Kirchner, P. D., AND Klosowski, J. T. 
Chromium: a stream-processing framework for interac-
tive rendering on clusters. In Proceedings of the 29th 
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2002), SIG-
GRAPH ’02, ACM, pp. 693–702s 

[16] Kuck, R., Wind, J., Riege, K., and Bogen, M. Improv-
ing the avango vr/ar framework: Lessons learned. 
Workshop VR/AR 2008 (2008). 

[17] Raposo, A., Santos, I., Soares, L., Wagner, G., 
Corseuil, E., and Gattass, M. Environ: Integrating vr 
and cad in engineering projects. IEEE Comput. Graph. 
Appl. 29, 6 (Nov. 2009), 91–95. 

[18] Soares, L. P., Raffin, B., and Jorge, J. A. Pc clusters 
for virtual reality. IJVR 7, 1 (2008), 67–80. 

[19] Taylor, II, R. M., Hudson, T. C., Seeger, A., Weber, 
H., Juliano, J., and Helser, A. T. Vrpn: a device-
independent, network-transparent vr peripheral system. 
In Proceedings of the ACM symposium on Virtual real-
ity software and technology (New York, NY, USA, 
2001), VRST ’01, ACM, pp. 55–61. 

[20] Wang, F. Research on virtual reality based on eon stu-
dio. In Proceedings of the 2010 Fourth International 
Conference on Genetic and Evolutionary Computing 
(Washington, DC, USA, 2010), IEEE Computer Soci-
ety, pp. 558–561. 

6. Conclusions and Future Work 
 
LVRL demonstrated to be a framework with the necessary 

characteristics to be used in most scientific visualization appli-
cations from our group. 

The non-intrusive architecture and transparent interface pro-
gramming are the main features that allow non-VR program-
mers to convert or develop new applications for immersive en-
vironments. We believe LVRL helps to decrease the time spent 
on this process. Thus, developers can focus on other aspects 
instead of spending time on implementing infrastructural as-
pects. According to Greenberg [13], this time saving encour-
ages more people to evaluate their application on VR environ-
ments. As a result, more new and innovative immersive appli-
cations may appear. Consequently the VR area may grow 
faster. 

The main future work to be done is a study of ergonomics 
and usability to achieve the best form of interaction for the 
mappings present in VrInteraction. In addition, there are ongo-
ing studies on new forms of interaction involving devices like 
kinect, smartphones and pads. 
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