
1. Introduction
The evolution of human-computer interaction has led to

the development of different interfaces and interaction
mechanisms. Many of these new interfaces are not yet
mature, and issues related with the clear definition of an
application’s context and technological requirements are
still under investigation. Most of the tasks performed in a
conventional desktop computer are related to text editing,
file organization, use of tables and mathematical
calculations, etc. However, other areas of application have
emerged, e.g. 2D image editing, animation, CAD (Computer
Aided Design), interactive 3D visualization, entertainment,
and games. The inherent characteristics of these classes of
applications have created a demand which was not fully met
by the desktop metaphor as it was originally proposed to
represent an office through WIMP interfaces.

The emergence of three-dimensional interactive
applications showed the limitation of conventional 2D
desktop devices (mouse, keyboard and monitor). Such
conventional setup does not meet all the interaction needs
related to the additional dimension in this new environment.
The main evidence supporting this fact is the existence of a
research line focused exclusively on 3D computer graphics
that is as old as the very development of WIMP interfaces.
The early efforts were guided by the evolution of scientific
visualization and flight simulator applications driving the
development of a new set of interactive hardware, including
head mounted displays, data gloves and CAVES, as well as
new interaction techniques for 3D environments.

The use of virtual reality (VR) as a tool for regular users
and developers is increasing. For a long time, two major

obstacles have increased this gap, the first one related to the
high prices of equipments, and the second one related to the
lack of standardization of devices and interaction. The high
cost of equipments is being gradually overcome by new
technologies that made it possible for many centers to have
access to immersive systems such as Caves and PowerWalls.
On the other hand, the diversity of interaction devices and
3D interaction techniques as well as the lack of standard
definitions are still problems to in the development of an
immersive VR application.

One key issue in immersive VR development is the huge
amount of time wasted on implementing infrastructure
aspects like devices/interaction management, output
synchronization, and rendering distribution, leaving little
time for implementation of innovative solutions. The subject
of toolkits and innovation is widely exploited by Greenberg
in [13] and is of fundamental importance for the
development of this research. According to Greenberg, for a
new area to develop it is necessary to give everyday
programmers the ability to test their creativity by means of
programming tools that remove low level implementation
burdens.

To achieve these goals within a project with complex
requirements, such as those of VR, there is a great need for
reuse of code. At this point a toolkit is extremely useful
because it encapsulates several functionalities and allows the
developer to focus on what is really desired.

There are some toolkits available for the development of
immersive VR applications, such as VrJuggler [7], Blender-
Cave [12], Eon Studio [20], Avango NG [16], 3DVIA
Virtools [5] and INVRS [6]. However, the majority of these
toolkits is coupled to a specific rendering system, making it

LVRL: Reducing the Gap between Immersive
VR and Desktop Graphical Applications

Daniel Trindade, Lucas Teixeira, Manuel Loaiza,

Graphics Technology Group Pontifical Catholic University of Rio de Janeiro, Brazil
Lucas Teixeira, Pontifical Catholic University of Rio de Janeiro, Brazil

Manuel Loaiza,
Felipe Carvalho,
Alberto Raposo,
Ismael Santos,

LVRL: Reducing the Gap between Immersive
VR and Desktop Graphical Applications

Daniel Trindade, Lucas Teixeira, Manuel Loaiza,

Graphics Technology Group Pontifical Catholic University of Rio de Janeiro, Brazil
Lucas Teixeira, Pontifical Catholic University of Rio de Janeiro, Brazil

Manuel Loaiza,
Felipe Carvalho,
Alberto Raposo,
Ismael Santos,

LVRL: Reducing the Gap between Immersive
VR and Desktop Graphical Applications

Daniel Trindade, Lucas Teixeira, Manuel Loaiza,
Felipe Carvalho, Alberto Raposo, Ismael Santos

Graphics Technology Group Pontifical Catholic University of Rio de Janeiro, Brazil

Guest Editors: Luciano P. Soares, Liliane S. Machado

ABSTRACT —The emergency of cheaper technologies for immersive environments has considerably increased the interest in Virtual Reality
applications. However, VR frameworks currently available force user applications to be developed specifically for them. This increases the
cost of converting an existing application to virtual reality environments. This paper proposes a new framework, the LVRL (Lightweight Vir-
tual Reality Libraries), which allows the creation or conversion of existing applications to VR without changing the application’s structure.
The LVRL’s main objective is to provide a non-intrusive and transparent programming interface allowing the development of VR applications
by non-VR developers. This paper describes LVRL’s architecture, features, usage and benefits obtained by applications using it.

Index Terms—Virtual Reality; Toolkits; 3D Interaction.

Vol. 12, No. 1 (2013) THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 3

difficult to adapt an already functional desktop graphical
application to an immersive VR system. As a consequence,
applications often need to be completely rewritten for this kind
of environment. This burden is also an impediment to creative
development in VR.

However, all this work is not actually necessary since the
code needed for the creation of an immersive VR application
may be developed in a way to be used in existing applications.
Roughly speaking, an immersive VR application differs from a
conventional desktop graphical application in two main
aspects: i) it should support multiple video outputs with
different points of view, and ii) the user cannot use
conventional interaction devices, such as mouse and keyboard,
since that user interacts standing in front of the immersive
environment (Figure 1). In this paper we propose a non-
intrusive framework to enable the conversion of graphical
desktop applications into immersive ones, aiming to provide
programmers that are not experts in VR the ability to produce
immersive applications. We also perform usability tests that
show that the interaction provided by the framework is capable
to be used by users of engineering visualization applications.

In section 2 we present the common VR tools used today
and the reasons that hinder the conversion of 3D software from
desktop to an immersive environment approach. Then in
section 3 we explain each of the framework’s libraries and also
show how it’s usage makes the transition from desktop setup to
immersive setup seamless. In section 4 we show six
applications which are used as study cases to the application of
LVRL. In section 5 we discuss the characteristics and
contributions of the framework, and we present results of
usability tests related to the interaction techniques provided by
LVLR. Finally, some conclusions and future work are
presented in section 6.

2. Related Work

The existing frameworks for VR often try to support the
following functionalities: rendering multiple views, device
management for 3D interaction, and rendering distribution over
a LAN. As mentioned above, while attempting to support these
features, they also direct their development process to a
particular platform.

BlenderCave [12], Virtools [5] and EON Studio [20] are
authoring tools for the development of interactive 3D
applications. They have rendering systems to which the
application developer does not have access. The imported 3D
data is modeled in third-party tools such as 3DStudio Max. In
this kind of software it is not possible to use custom rendering
techniques such as those based on points. Regarding the
interaction, these frameworks are capable of reading VR
devices, but the developer needs to develop all the support to
enable interaction techniques for a particular device.

Low level frameworks, such as VrJuggler [7], Avango NG
[16] and INVRS [6] are based on third-party scene graphs for
rendering. If the application to be converted uses one of these
scene graphs, then it will probably be more easily converted

using one of these frameworks because they will provide
the clustering and multi-view features. However, in
general it will be necessary to keep the two versions of
same software, one for the conventional desktop and the
other for immersive environments. This happens because
these frameworks need to control the main loop of the

application to do the synchronized rendering across all
screens. Furthermore, related to 3D interaction, they have
the same problem as authoring tools, that is, they provide
raw data from the devices, and the developer is responsible
for handling data in order to use it in the application. This
requires the developer to have a deeper knowledge on VR
devices.

Cavelib [9] was the first library for immersive
environments and was created together with the first
CAVE. It has been maintained and sold to the present
time. Its only difference to the frameworks mentioned
above is that it is not tied to a scene graph. Its strategy is to
assume that all the dynamic information demanded by the
rendering will be in a protected memory area. This
memory is shared and can be distributed among
computers. However, although it is not tied to a specific
scene graph, it still requires that development be guided to
it. Additionally, it also needs the camera interaction to be
implemented at the same way as the other libraries because
it only provides a layer for input devices with an interface
similar to VRPN [19].

This coupling with scene graphs or strategies of memory
usage of all the solutions mentioned is closely linked with
the distribution of rendering across multiple machines. The
manager of this distribution needs to know what to
distribute and thus be able to synchronize the drawing on
different machines. However, despite providing an
important feature, it adds a very strong constraint to the
framework. At the same time, there are other solutions for
generic distributed rendering [11], [14], which do not have
the native calculation of multiple viewpoints, but provide
the same functionality to applications that are able to
internally calculate the multiple points of view.

Fig. 1. LVRL usage example: CAVE with Flystick2 support.

4 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY

LVRL already provides the support for camera
manipulation and calculations of multiple points of view. In
this way we can reduce the efforts in creating applications
that are used both on desktop and immersive environments.
Instead of delivering just input devices events, the
framework provides the required matrices to configure the
application camera.

3. LVRL

The framework provides tools for programmers without
knowledge of virtual reality algorithms to convert a desktop
program into a multi-modal program with 3D interface that
runs on desktop and immersive environments just by
changing the configuration of the environment at run-time.
For this we created libraries that perform the following tasks:
(1) assist the existing rendering system to create the virtual
cameras for multiple views, (2) provide camera manipulator
designed to work in both types of environments in the same
way with some devices and provide an interface to Wand,
which is a generalization of the mouse to 3D interaction.
Below is presented the description of the framework’s
overall architecture and each of its libraries.

3.1 ARCHITECTURE
The framework consists of six libraries, illustrated in

Figure 2. A dependency diagram can be seen in Figure 3.

Two of these are mathematical libraries without any
dependencies that also can be used alone. They are
VrFrustum and VrManipulators. The other four are related
to input data; they read and process input events in order to
properly interact with the camera. They can be used with
other frameworks, such as VrJuggler, but it is necessary to
use the input library, VrInput, rather than the one provided
by other frameworks.

VrFrustum is responsible for evaluating the parameters
of cameras from different viewpoints corresponding to
each of the screens of an immersive system. It uses the
physical configuration of screens and the user’s head

position. In desktop mode, it
generates a single camera for
the display.

VrManipulators contains a
set of camera manipulators
that are designed to work with
input from the mouse and
keyboard in the same way as
with input from VR devices.

The other four libraries
work to capture and interpret
input devices: VrInput,
VrInteractio, VrHeadTracking,
and VrWand.

VrInput is responsible for
managing input devices.

VrHeadTracking monitors
the device that evaluates head
position and feeds VrFrustum
with this position.
 VrInteraction is responsible
for interpreting input events
and transforming them into
camera manipulation. This
library provides a view matrix
that positions and orients the

 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 5

Fig. 2. Libraries provided by LVRL.

Fig. 3. The diagram shows the dependencies
between the libraries.

camera in the scene. When Vrinput generates an event of one
of the input devices supported by VrInteraction, it interprets
this event according to the previously specified mapping
between device and a manipulator Then it calls VrManipulator
to make the mathematical calculations that update the current
view matrix.

Finally, VrWand informs the direction at which the user is
pointing the device. In VR mode, devices generally provide the
absolute position within the immersive environment as well as
the orientation of the device. Using VrInteraction to transform
the position of the input device’s coordinates within the
immersive environment (real world) to virtual world
coordinates, the library is able to evaluate the direction vector
and the position of the ray.

Details of each of these libraries are explained below.

3.2 VRINPUT
The VrInput library is responsible for accessing input

devices, like mice, keyboards, joysticks, and trackers.
Currently, the following devices are supported:

• Mouse and keyboard;
• The wiimote control;
• Iphone and Ipad;
• Android devices;
• The flystick2 control ;
• BraTrack tracker;
• SpaceBall;
• Joysticks (only on Windows);
• Kinect (only on Windows);

In addition to the devices listed, there is also support for the

VRPN library [19].
VrInput is based on events, which are created when a new

input is generated by the device. Through a manager, VrInput
sends these events to the application, which then decides the
actions to be performed.

Integration with the application is done through a single
interface, responsible for creating the access to devices. To
ensure stability and correct functionality, the life cycle of the
devices is internally controlled by the VrInput, and therefore
direct access to devices is prohibited.

To prevent concurrent access to multiple devices, only one
instance of VrInput is allowed per application. At the time
VrInput is created, it executes a secondary process which will
directly access the devices. Communication between this
process and the VrInput is done through inter-process calls
using shared memory. This architecture ensures that in case of
errors on the device access, the application will continue
running, since only the secondary process will be affected.

Once the devices to be used are defined, an operation is
performed only when the function ProcessEvents is called. At
this point VrInput communicates with the secondary process
and verifies if there are pending events. Also, it certifies that
the secondary process is still running. If not, it tries to recover

the previous state by running the secondary process again
and creating access to the defined devices. If this recovery
operation is possible, the application will continue to run
unaware. Only if the recovery fails are the errors reported
to the application.

VrInput also supports loading and saving all of its
configuration. This file can be created for a specific
environment and can be shared with all applications that
use LVRL. It is usually created by the maintainer of the
system, and the developer just needs to load this
configuration file to activate all devices of a specific
system.

3.3 VRFRUSTUM
The VrFrustum is responsible for configuring multiple

cameras required for immersive environments based on the
position and orientation of a main camera. This feature is
common in VR frameworks. However, the main
difference proposed by LVRL is that VrFrustum does not
need to have access to the camera abstraction in the
application. For performing calculations it simply needs to
know the geometry of the projection system and the
position of the user’s head in each frame.

In case of a desktop environment with a single monitor
the calculation is restricted to a single screen. However, in
the case of a CAVE-like environments, most commonly
composed of more than 3 screens, “N” points of view will
have to be calculated corresponding to the “N” system
screens. In the case of a stereoscopic system it would be
“2 x N”.

The configuration of the projection system is done
through an XML file that adds the parameters inherent in
the configuration of a specific immersive environment.
This file is common to all applications that work in this
environment and is created by the environment maintainer
who has the knowledge about the system. Thus the
developer does not have to know any information about
the visualization system where the application will run. As
a main information, this file contains the 3D position of 4
corners of the screens. A screen can be a monitor, a
projector, or two projectors (for projection with passive
stereo support). This information, along with user head
position provided by the tracker system, is enough for the
frustum calculation to multiple cameras.

The configuration file also contains information about
the mapping between the different video outputs of
projectors and their regions (or screens) of the projection
system (i.e. mapping viewports). The viewport to the right

6 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY

eye is optional, and can be used when the system uses active
stereo projection. If stereoscopy is not supported, only one
viewport is necessary. In the case where the immersive system
needs to work in a distributed way, in addition to viewport a
unique ID is necessary to allow mapping a machine to a
specific viewport.

The last property that a screen can have is the reference
screen. This property exists because clipping planes near and
far can only be set for one screen. The other screens need to be
calculated based on the reference screen. This allows clipping
planes to fit together without discontinuities.

Other important information for creating a 3D scene in
immersive environments consists of the Pivot and the
OffsetTracking. Pivot is a 3D position in the scene and has two
functions. The first is to be used as the standard position of the
user’s head in case the system does not support head tracking. The
second is the origin of the coordinate system of the view matrix. It
is provided by the library being used for positioning the cameras in
immersive environments.

The OffsetTracking is a 3D position that represents the
origin of the coordinates system of the tracking equipment. We
consider that the coordinates of all systems have the same
orientation, and the description of the corners are in the same
units provided by the equipment tracking. The meter is a
measure commonly used.

For the application, the result of VrFrustum is composed
only by the projection and view matrices concerning the
different views defined in configuration file. The application is
responsible for properly applying these matrices to their
cameras abstraction. Thus the VrFrustum is not dependent on
any type of visualization library. This facilitates its use in
legacy environments, where the whole display engine is
already defined. Figure 4 shows the final arrangement of

frustums calculated by VrFrustum based on a
configuration file for an L-format projection system.

3.4 VRHEADTRACKING
VrHeadTracking is the simplest library in LVRL. Its

sole function is to pass to Vrfrustum the position and
orientation from the sensor that is tracking the user’s head.
Vrfrustum then recalculates the frustums based on the new
position of the head, thereby creating the effect of head
tracking. To use VrHeadTracking the application needs
only to communicate what tracking device is being used.

3.5 VRMANIPULATORS
The VrManipulators library contains the implementation

of the manipulators. A manipulator creates and modifies a
view matrix which if applied to the application’s camera,
produces a specific interaction behavior. At the time this
paper is written, four manipulators were implemented:

• Fly: simulates the flight behavior. Among the

available manipulators, it provides the least restrictive
navigation. The user can point the camera in any
direction to observe the scene. At the same time,
translations can be done by referencing the direction
the camera is pointing. It is also possible to change the
velocity while the navigation is being performed.

• Examine: this manipulator is used for object
inspection. The camera is rotated around a point,
called the pivot. This is usually set at the center of the
object, but can also be any point in the scene. How the
pivot is chosen is a specific application operation. A
zoom tool is also provided by this manipulator.

• Walk: this manipulator has a behavior similar to the
fly, with the restriction that translation movements are
only performed in such a way that the camera remains
on the floor plane. This way, the camera acts like it is

 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 7

Fig. 4. Visualization of a immersive system defined

walking through the scene. For the cases where different
geometries are not connected (for example, two floors that
do not have stairs connecting then), a “jump” tool is
provided. When the user starts a jump, the camera moves
vertically. When the jump is stopped, the camera falls back
to the floor plane. The location of the floor plane is
determined by the application. Usually, this is done by
continuous choosing in the down direction.

• Rail: In this manipulator the translation movements can
only be made on a specific path, previously chosen by the
user. The camera can move in both directions of this path
and, at the same time, can be pointed to any direction. This
manipulator was projected for presentations, where
specific characteristics of a scene have to be showed. At
any place of the path, another manipulator can be activated
to perform other operations during the presentation. When
the rail manipulator is set back, the camera is smoothly
taken to its last position in the path, so the presentation can
continue.

The manipulators have configuration parameters that can be

adjusted by the application. Currently, the following
parameters are available:

• Navigation velocity: the velocity the camera will move.
• Rotation velocity: the velocity the camera will perform

rotations.
• Up vector: the up vector of the scene. In our

implementation, all rotations are constrained in such a way
that the camera’s up vector is always aligned with the
scene up vector. This proved to be an important feature as
it helps users to better perceive camera orientation,
specially in immersive visualization systems.

• Pivot point: the point used by the examine manipulator to
perform rotations.

• Floor point: a point located in the floor plane. In
conjunction with the up vector, it is used to find the floor
plane equation that will be used by the Walk manipulator.

• Path: a set of points that establish the path used by the Rail
manipulator.

• Unlock/Lock rotation about the right vector: We noticed
that sometimes it is appropriate to limit the freedom of
camera rotation in order to facilitate the completion of
some tasks. Furthermore, in some types of visualization
environments, some rotations can cause confusion to the
user. This is the of rotations around the CAVE’s right
vector. When this occurs, the user has the impression that
the scene is “bent” on some of the screens. In order
prevent these situations, this parameter allows the
application to lock the rotations about the right axis.

• Unlock/Lock rotation about the up vector: it has the same
effect of the previous parameter, except that it operates in
the rotations around the up vector.

The implemented manipulators provide the basic support for
navigation and inspection in 3D visualization applications and

were designed to operate in environments ranging from the
standard desktop to immersive environments like CAVEs.
Currently, we are working on the creation of new
manipulators, some of these being just extensions of the
existing ones.

3.6 VRINTERACTION
VrInteraction is a manager for interaction operations. It

controls how input devices influence the manipulators as
well as the process of switching between them. It is a
combination of the libraries VrInput, VrManipulators, and
a set of mappings in a way to provide a minimal interface
that applications can use to support basic 3D interaction
techniques without much effort. A mapping is a relation
between an input device and a manipulator. For example,
it can specify that a mouse drag will cause a rotation in the
examine manipulator. A mapping listens to input events
via the VrInput library and maps theses events to specific
actions on the manipulators provided by the
VrManipulators library.

Currently, there are pre-defined mappings for mouse
and keyboard, and the Wiimote and Flystick2 controls
(Figure 1). They allow basic navigation and inspection on
3D visualization systems. Specifically, the mouse and
keyboard devices are used in conjunction in order to define
the behavior for standard desktop interaction. These pre-
defined mappings were created for all the manipulators of
VrManipulators and, so there are currently 12 mappings: 4
for desktop (mouse and keyboard), 4 for the Wiimote
control and 4 for the Flystick2 control. New mappings
using Kinect, Android, iPhone, and iPads devices are
being developed. The resources used by these pre-defined
mappings should not be accessed directly by applications,
as this may cause conflicts in which the resources are used
for two different tasks simultaneously. For this reason,
each mapping was developed to take advantage of the
device features as best as possible using a minimal
resources of it. For example, there are 6 buttons on the
Flystick2, but no more than 2 are used. The remaining
buttons are left to the developer, who can use them via the
VrInput library to perform specific tasks in the application.

The main advantage of the pre-defined mappings is to
minimize the work of the developer who wants to create a
VR applications. S/he doesn’t need to worry about code
related to VR interaction because it is already embedded in
VrInteraction. It is also not necessary to think about
specific treatment for VR environments since the
manipulators and mappings are designed to work on both
desktop and immersive environments. This allows
VrInteraction to have a minimal interface, where the
application needs only to inform the device and
manipulator to be used in a given moment. This
contributes to reduce the cost of creating new 3D
applications and converting legacy applications into
immersive ones. Finally, the pre-defined mappings
provides a standard interaction for applications that use it.
To the user, this simplifies the process of learning, since s/
he will not to have to learn a new way of interaction when
starting to use a different application. The use of

 8 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY

mappings, however, is also flexible: if developers do not want
to use one of these pre-defined mappings, they can disable it
and a register a new one, created by them.

When the application requests a change of manipulator,
VrInteraction ensures that this operation does not result in a
discontinuity in the interaction. This is done through the use of
transitions. A transition is an interpolation between two
different poses of camera which aims to ensure a smooth
interaction. For example, if the rail manipulator is chosen,
VrInteraction creates a transition to take the camera’s current
position to the starting position of the path defined on rail
manipulator. The presence of these transitions is important to
prevent situations where the user can get disoriented.

Although depending on the VrInput library, an application
can have multiple instances of VrInteraction. Each of these
provides a view matrix which the application applies to his
camera abstractions. This view matrix is the result of the
combination of the inputs with the manipulators. This way,
VrInteraction can be used in collaborative VR applications,
where each user is able to control a different camera [10].

3.7 VRWAND
Actions such as selecting objects or options on menus are

made by mouse when in desktop environment. Immersive
environments, however, usually do not have mice, and thus
different devices should be used. Such devices, called wands,
are generally adapted controls with sensors whose position and
orientation can be monitored by a tracking system.

Through the orientation and position of these devices,
applications can obtain a ray which can be used as a virtual 3D
pointer. The VrWand function is used to calculate the position
and orientation of this ray within of the virtual world defined
by the application. Via VrInput, VrWand obtains the position
and orientation of the wand in the tracker system coordinates.
With the view matrix provided by VrInteraction, these data are
transformed to world coordinates and passed to the application,
which can perform actions like selection, as well as the
rendering of the ray.

 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 9 5
 6 66 5
 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 9

Algorithm 1 Pos3D render without LVRL calls

Pos3D.getScreenData(
prjMatrix, mvMatrix, viewportV ector)

setViewport(viewportVector)
setProjectionMatrix(prjMatrix)
setModelviewMatrixPos3D(mvMatrix)

scene.render()

Algorithm 2 Pos3D render with LVRL calls

VrInput.processEvents()
VrInteraction.update()
VrWand.update()
VrHeadtracking.update()
VrInteraction.getViewMatrix(interactionMatrix)

for i = 1 to VrFrustrum:getNumberOfScreens() do

 VrFrustrum.getScreenData(
 i, prjMatrix, mvMatrix, viewportVector)

 setViewport(viewportVector)
 setProjectionMatrix(prjMatrix)
 setModelviewMatrixPos3D(
 mvMatrix * interactionMatrix)

 scene.render()

end for

Fig. 5. Pos3D in use on a CAVE

Fig. 6. SimUEP in use on a CAVE.

4.2 SIMUEP

SimUEP is a solution that uses simulators for industrial
training. The user controls an avatar that performs tasks on an
oil platform. This software was developed using Unity3D as
game engine and some plug-ins developed in C++. In order to
add capabilities that VR software require, it was necessary to
use only VrInput, VrFrustum and VrHeadTracking libraries.
Because Unity3D is a game engine, it already implement avatar
manipulation with joysticks. Thus, the use of VrInteraction
was not necessary. Figure 6 shows the software in use.

4.3 SIVIEP
SiVIEP is a project under development during the last six

years. SiVIEP supports a comprehensive visualization of
several types of models comprising an oil exploration and
production enterprise. For example, it is possible to load from
oil platforms to wells and reservoirs in a single scene (Figure
7). This software is based on the OpenSG [3] which is a scene
graph with distribution features. OpenSG support native VR
rendering in multiples nodes and multiples screens. In this case
it was used by just the VrInput and the VrInteraction in order to
provide the navigation and the support of VR device events,
such as ART Flystick.

 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 9 5
 6 66 5
10 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY

Fig. 7. SiViEP in use on an L-Shape environment.

4.4 LVRL Viewer
The LVRL Viewer was created to test all the features of

LVRL. It was build upon OpenSceneGraph [2] with Qt
[4]. The navigation user tests was performed on it. A
Screen shot of the LVRL Viewer is shown in Figure 8.

4.5 Cay Viewer

Cay Viewer is a component-based viewer for offshore
data that is under development. It will support all kinds of
offshore visualization, including simulations. It is written
with a mix of C++ and Lua scripts. It also uses a new
component framework, Coral Lib. Then LVRL was used
with a binding for Coral. As a result, LVRL can also be
used in Lua scripts. Cay uses OpenSceneGraph [2] and a
embedded solution to multi- node render based in RPC and
ZeroMQ. Cay uses all LVRL.

4.6 Environ
Environ [17] is a visualization software for massive
engineering models. This software was originally
developed for desktop and a few years ago there was a
need to add VR features on it. Our group has developed
several versions of third-party VR libraries for it that
converged into LVRL.

To prove that the manipulators in LVRL are suitable to

 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 11

5. Results and Discussion

In this section we discuss the main features and

contributions of the LVRL framework.

5.1 Architecture Analysis
1) Transparent programming interface: Using the entire

frame-work, the application has contact with the libraries
VrInteraction, VrWand, VrInput, VrHeadTracking and
VrFrustum. In the previous sections it was shown that they all
have the same results in both desktop mode and VR. Thus
developers can program their applications without worrying
about details relating to the type of visualization environment.
The best examples of this feature was the use of LVRL in the
Pos3D by a non-VR programmer.

2) Change desktop to immersive mode at runtime: With the
design of VrInteraction and VrFrustum it is possible to change
from desktop to immersive format and vice versa during
execution by just making a method call. To reconfigure the
screens, it is enough to just load a new configuration file in
VrFrustum. To use a VR device instead of the traditional
mouse and keyboard, you need only tell VrInteraction which
device to use. This feature proved to be very important in the
Cay Viewer, LVRL Viewer, and Environ because a single
software version needs to be maintained, saving hours of
development..

3) Non-intrusive: The execution control still belongs to the
application and not to LVRL, which can be consulted
whenever the application needs it. Developers can use
whichever graphics engine they want, and it is not necessary
for the application to be rewritten to work with LVRL. In

Fig. 8. Screen shot of oil platform in the LVRL Viewer.

Pos3D and SiViEP, for which the development started
before the existence of LVRL, this feature was shown.
Just a few parts of software were replaced and the idle
control of the application did not change the ownership.

4) Multiplatform: All the libraries have no system
dependences and were developed to run on multiple
operating systems. Currently Windows and Linux
platforms are supported. The exception lies only in
VrInput, which depends on the drivers for various
devices. Thus some devices are not supported on all
platforms. Despite this dependence, the design based on a
central manager and several device readers whose
engagement are events based only on text messaging,
allows VrInput to be used on multiple platforms, even
when a device has no driver for the platform.

5) Hardware independence: With the use of VrInput
the presence or absence of a device driver does not
influence the use of the library. Only the reader related to
that device is unavailable.

6) Portable: The implementation of the framework uses
only native types of C++. In this way, we can easily port
it to C, Unity3D, and Lua, thereby showing that the
architecture of the framework does not impose any
restriction on portability between languages. The
SimUEP and the Cay Viewer show this feature.

7) Compatible with distributed rendering: Although the
library does not have distributed rendering primitives,
VrFrustum configuration provides the necessary tools to
achieve this goal. The Cay Viewer shows this feature
using an embedded distribution solution. The master node
runs the VrInput instance and the VrFrustum instance.
Then it sends to each slave node that camera pose ready
to be rendered.

Fig. 8. Screen shot of oil platform in the LVRL Viewer.

12 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY

Furthermore, the constraint of maintaining the camera
aligned with the world up vector is applied to all
manipulators. Another benefit pointed out by users is the
fact that the manipulators of LVRL are similar with
known camera control techniques offered in 3D games.
This was pointed out not only by younger users. Even
older users said they already had some contact with 3D
games, either by themselves or by way of their children.
Thus the initial learning phase to understand the
functioning of the manipulators of LVRL became faster
as it was facilitated by previous experience that most
users already had.

In addition to the above tests, other tests were also per-
formed during development of LVRL to determine how to
use the available input devices to control the manipulators.
These tests were made with the participation of a group of
users with mixed profiles, including advanced users (with
prior experience in using 3D applications) and beginner
users (with little or no prior experience in using 3D
applications). These tests consisted of presenting, for a
specific input device, different ways to control the
manipulators. At the end each user was asked which was
better. Users were also encouraged to give their opinion
during the test execution, and may also indicate different
ways to control the camera from those presented. From
these results, the standard mapping in the module
VrInteraction was determined.

5.2 Users Tests
The LVRL already provides implementations for some

camera manipulators through the VrManipulators and
VrInteraction modules. The fly examine and walk
manipulators are commonly used by several 3D applications,
and most of the users have experience with at least one of
these tools.

To prove that the manipulators in LVRL are suitable to
perform common navigation and interaction tasks, we
compared our solution with a commercial one. For this, we
used Autodesk’s NavisWorks as a commercial solution and
the LVRL Viewer as described in the previous section. The
main reasons for choosing NavisWorks are its broad use in
engineering design review, the contributions of Autodesk in
the 3D interaction research area, and the positive feedback
provided by some of our users about NavisWorks.

Our tests consisted in asking the user to perform specific
navigation tasks using both applications. As an example, we
asked the user to “go to a place A”, or even “find object B,
examine it, and count how many objects of type C that object
B has”. The tasks were composed in a way that the user had to
use the fly as well as examine and walk manipulators in
combination to complete the tasks. A group of 8 people
participated, identified as P1 to P8. These people frequently
use 3D visualization software and were familiar with 3D
interaction tools.

Before starting the test, both options were presented to the
user and time was given to him/her to become familiar with
both applications. Then the user received the tasks to be
executed, and the time was measured for each of the two
applications. To reduce the impact of the learning effect, the
order in which the applications were used was different for
different users: if the user P1 starts the test with the LVRL
Viewer, then the next user P2 would starting the test using the
NavisWorks.

The results are shown in Table I. It shows for each user
the times spent on the execution of the tasks for the LVRL
Viewer and NavisWorks respectively. The last column shows
the relationship between the time using NavisWorks relative
to the time using LVRL Viewer. As can be seen, the time
required to perform the tasks was lower using the
manipulators provided by LVRL for all users and, in some
cases, it was almost half of the time spent when using
NavisWorks

As main factors for these results, we identified some
differences between the LVRL manipulators and NavisWorks
ones. The fly provided by NavisWorks, for example, does not
maintain the camera aligned with the world up vector. Thus,
as the user changes the camera orientation, the view tends to
be tumbled in NavisWorks, which caused discomfort for all
users. Furthermore, to change the navigation speed the users
had to use a menu interface. In desktop mode the LVRL
allows change in the navigation speed using the mouse scroll,
so the user does not have to stop the navigation to do this.

User LVRL
time

Navis Works
time

Navis Works/
LVRL

P1 116 212 1.83

P2 182 232 1.27

P3 136 218 1.60

P4 223 251 1.12

P5 145 254 1.75

P6 122 165 1.35

P7 172 333 1.93

P8 173 253 1.46

 TABLE 1

Comparison of LVRL with commercial Solution

6. Conclusions and Future Work

 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 13

Computer Graphics and Image Processing
(SIBGRAPI’97) (1997), IEEE Computer Society.

[9] Cruz-Neira, C., Sandin, D. J., Defanti, T. A., Kenyon,
R. V.,and hart, J. C. The cave: audio visual experience
automatic virtual environment. Commun. ACM 35, 6
(June 1992), 64–72.

[10] Dos Santos, I. H. F., Soares, L. P., Carvalho, F., and
Raposo, A. A collaborative virtual reality oil & gas
workflow. IJVR 11, 1 (2012), 1–13.

[11] Eilemann, S., Makhinya, M., and Pajarola, R. Equal-
izer: A scal-able parallel rendering framework. IEEE
Transactions on Visualization and Computer Graphics
15, 3 (May 2009), 436–452.

[12] Gascon, J., Bayona, J. M., Espadero, J. M., and
Otaduy, M. A. Blendercave: Easy VR authoring for
multi-screen displays. SIACG 2011: V IBERO-
AMERICAN SYMPOSIUM IN COMPUTER
GRAPHICS (2011).

[13] Greenberg, S. Toolkits and interface creativity. Multi-
media Tools and Applications 32 (2007), 139–159.

[14] Humphreys, G., and Hanrahan, P. A distributed graph-
ics system for large tiled displays. In Proceedings of
the conference on Visualization ’99: celebrating ten
years (Los Alamitos, CA, USA, 1999), VIS ’99, IEEE
Computer Society Press, pp. 215–223.

[15] Humphreys, G., Houston, M., N G, R., Frank, R.,
Ahern, S., Kirchner, P. D., AND Klosowski, J. T.
Chromium: a stream-processing framework for interac-
tive rendering on clusters. In Proceedings of the 29th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2002), SIG-
GRAPH ’02, ACM, pp. 693–702s

[16] Kuck, R., Wind, J., Riege, K., and Bogen, M. Improv-
ing the avango vr/ar framework: Lessons learned.
Workshop VR/AR 2008 (2008).

[17] Raposo, A., Santos, I., Soares, L., Wagner, G.,
Corseuil, E., and Gattass, M. Environ: Integrating vr
and cad in engineering projects. IEEE Comput. Graph.
Appl. 29, 6 (Nov. 2009), 91–95.

[18] Soares, L. P., Raffin, B., and Jorge, J. A. Pc clusters
for virtual reality. IJVR 7, 1 (2008), 67–80.

[19] Taylor, II, R. M., Hudson, T. C., Seeger, A., Weber,
H., Juliano, J., and Helser, A. T. Vrpn: a device-
independent, network-transparent vr peripheral system.
In Proceedings of the ACM symposium on Virtual real-
ity software and technology (New York, NY, USA,
2001), VRST ’01, ACM, pp. 55–61.

[20] Wang, F. Research on virtual reality based on eon stu-
dio. In Proceedings of the 2010 Fourth International
Conference on Genetic and Evolutionary Computing
(Washington, DC, USA, 2010), IEEE Computer Soci-
ety, pp. 558–561.

6. Conclusions and Future Work

LVRL demonstrated to be a framework with the necessary

characteristics to be used in most scientific visualization appli-
cations from our group.

The non-intrusive architecture and transparent interface pro-
gramming are the main features that allow non-VR program-
mers to convert or develop new applications for immersive en-
vironments. We believe LVRL helps to decrease the time spent
on this process. Thus, developers can focus on other aspects
instead of spending time on implementing infrastructural as-
pects. According to Greenberg [13], this time saving encour-
ages more people to evaluate their application on VR environ-
ments. As a result, more new and innovative immersive appli-
cations may appear. Consequently the VR area may grow
faster.

The main future work to be done is a study of ergonomics
and usability to achieve the best form of interaction for the
mappings present in VrInteraction. In addition, there are ongo-
ing studies on new forms of interaction involving devices like
kinect, smartphones and pads.

ACKNOWLEDGEMENT

Tecgraf is a laboratory mainly funded by Petrobras. Alberto
Raposo receives a grant from CNPq.

REFERENCES

[1] Barco. http://www.barco.com/.
[2] Openscenegraph. http://www.openscenegraph.org.
[3] Opensg. http://www.opensg.org/.
[4] Qt - cross-platform application and ui framework. http://

www.qt.nokia.com/.
[5] DASSAULT SYSTEMES. 3DVIA Virtools. http://www.

virtools.com, April 2012.
[6] Anthes, C., Satomi, M., Wilhelm, A., Sommerer, C., and

Volkert, J. Space trash : An interactive networked virtual
reality installation. In 11th Virtual Reality International
Conference (VRIC 09) (Laval, France, April 2009), pp.
107–118.

[7] Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker,
A., and Cruz-Neira, C. Vr juggler: A virtual platform for
virtual reality application development. In Proceedings of
the Virtual Reality 2001 Conference (VR’01)
(Washington, DC, USA, 2001), IEEE Computer Society.

[8] Carvalho, M. T., Martha, L. F., and Celes, W. Pos3d: A
generic post-processor to 3d finite-volume models (um
pos-processador generico para modelos 3d de elementos
finitos). In Proceedings of the Brazilian Symposium on

BIOGRAPHIES

Daniel Trindade Researcher at Computer Graphics Technology Group - Tecgraf/PUCRio. MSc in
Computer Science at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio). Graduated in
Computer Engineering at the Federal University of Espírito Santo, Brazil. Current interests: Virtual
Reality, 3D interaction, and computer graphics.

E-Mail: danielrt@tecgraf.puc-rio.br

Lucas Teixeira holds a Master's degree in Computer Graphics and a Computer Engineering
degree from Pontifical Catholic University of Rio de Janeiro(2010/2007). He is currently a
researcher at the Computer Graphics Group - Tecgraf in this university. He has experience in
Computer Vision, Augmented and Virtual Reality.

EMail: lucas@tecgraf.puc-rio.br

Manuel Loaiza holds a Phd. in Computer Science from Pontifical Catholic University of Rio de Janeiro,
Brazil. He is currently a researcher at the Tecgraf, Computer Graphics Technology Group in PUC-Rio,
working in several projects at Petrobras. Current interests areas: Computer Vision, Virtual and
Augmented Reality, 3D Reconstruction and Computer Graphics.

E-Mail: manuel@tecgraf.puc-rio.br

Felipe Carvalho holds PhD in Computer Science from Pontifical Catholic University of Rio de Janeiro,
Brazil. He is currently a researcher at the Computer Graphics Technology Group (Tecgraf) working in
several projects at Petrobras. His research interests include 3D Interaction techniques, Virtual and
Augmented Reality, and Development of Nonconventional Devices.

E-Mail: kamel@tecgraf.puc-rio.br

Alberto Barbosa Raposo is Assistant Professor at the Dept. of Informatics / PUC-Rio, project coordinator
at Tecgraf/PUC-Rio and FAPERJ researcher. DSc in Electrical/Computer Engineering at the State
University of Campinas, Brazil. Current interests: Virtual Reality, 3D interaction, groupware, HCI, and
computer graphics, with more than 120 publications in these areas. Projects supported by: Petrobras,
CNPq, FINEP, FAPERJ and RNP. Distinguished young scholar, PUC-Rio and NVIDIA Academic
Partner.

E-Mail: abraposo@tecgraf.puc-rio.br

Ismael H. F. dos Santos works for Petrobras (Brazilian Oil company) since 1987. He holds a PhD in
Computer Graphics, specialized in Virtual Reality, from Pontificial Catholic University of Rio de Janeiro
and collaborates with the Computer Graphics Technolgy Group - TecGraf since 2000. He also has a
master's degree in Applied Mathematics from the Federal University of Rio de Janeiro and he also
lectures in many software development courses both internal and external to Petrobras.

E-Mail: ismael@tecgraf.puc-rio.br

Copyright © 2013 by IPI Press Special permissions granted authors at www.ijvr.org/Copyrights.html

 14 THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY

