
Modular distributed visualization and collaboration
for a real-time 3D visualizer

Alexandre Valdetaro∗, Alberto Raposo∗ and Pablo Elias∗
∗Technical-Scientific Software Development Institute (Tecgraf)

Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro, Brazil

Email: xvaldetaro@gmail.com, abraposo@tecgraf.com.br, pelias@tecgraf.puc-rio.br

Abstract—In this work, we present the design and implemen-
tation of distributed visualization and collaboration for an immer-
sive 3D visualizer in a component-oriented fashion. The design
follows an MVC approach, isolating all the business objects in the
lowest level of the application, making it modular and extensible,
therefore providing an easier prototyping of functionality and
the isolation of complex business logic algorithms. This design
as a solution came from the necessity of an existing visualizer
with a monolithic implementation, whose maintainability and
improvement are impaired due to the coupling between the
business logic and the diverse visualization and distribution
algorithms. Our design may be reused as an inspiration for other
visualizers that wish to reduce the complexity and cost of the
development of new business functionality. We implemented the
designed visualizer, where we verified both the synchronism of the
distributed visualization and the consistency of the collaboration
among multiple nodes. We also evaluated the performance impact
caused by the distributed visualization.

I. INTRODUCTION

Immersive applications seek to provide an experience to
the user as close to real life as possible. Such experience must
re-create sensorial stimuli and perception of space in order
to induce the user’s brain into believing that the immersive
experience is real life. Although an immersive experience can
be delivered by any kind of system, Real-Time 3D visualizers
may stand out as the key player in the field. A visualizer
is an application that enables the user to visually explore a
virtual scene. The success of such applications is consequence
of many features combined, such as, credible visual input to
the user by usage of modern computer graphics techniques,
enhanced illusion of visual depth due to stereoscopy, pre-
cise and immediate control thanks to real-time reading and
processing of user input. Therefore, the development of an
application that provides an immersive experience to the user
can be very complex because of these many requirements and
their implementation in a real-time reactive system.

A. Distributed Visualization

Distributed visualization is the process of displaying a
single virtual scene from multiple views. Such process faces
the technical problem of how to render and synchronize so
many views and output to different screens. A traditional
approach to achieve distributed visualization is through the
usage of out-of-the box systems that make use of dedicated
hardware. The hardware controls all the visualization devices.
Such solution presents, usually, a high cost of deployment and
maintenance.

The rendering speed depends roughly on the amount of
geometry—the number of vertices of every object in the view-
able scene—being processed and the size of the output image.
Therefore, rendering multiple views of the same scene gets
very expensive in terms of processing, specially if the output
images have to be very big for display walls. Consequently,
distributing the scene to multiple nodes can be a feasible
solution—despite the distribution difficulties. There are many
possible designs of a visualizer that provide scene distribution
as well as many tools available for it. In the related work
section we make a review of the main available tools and their
usefulness for our scenario.

B. Collaboration

Collaborative software is a software that enables multiple
users to collaborate to achieve a common goal [1]. A collab-
orative visualizer lets the users explore a common scene, and
possibly make changes and view other users avatars in the
scene. The most common case of a collaborative visualizer is
a multi-player game, where the players interact with each other
in a shared virtual world. The players can talk to each other,
engage non player characters and change the persistent world
in many ways.

C. Real-time Visualizer

Any real-time application must be reactive, i.e., it must
process input from external devices with a delay small enough
not to break user immersion. Moreover, the interactive vi-
sualization requires that at least a given amount of frames
be rendered every second. Thus, efficiency is the utmost
requirement when developing a feature in a real time 3D
visualizer.

In order to achieve maximum efficiency in a visualizer’s
many routines, e.g., rendering, input processing, distribution,
data loading and so on, there is a natural tendency of the
developers to trade abstractions for low-level APIs in order to
have access to every available optimization setting. However,
the exposure of every low level API to the business logic
developer can greatly increase the complexity, which may lead
to an increase in the lifecycle cost [2] and effort [3] required
to maintain and extend a visualizer with new functionalities.

To the best of our knowledge, the majority of the 3D
visualizers, where efficiency is paramount, are implemented
in a monolithic way. There is no clear separation between
business, distribution, rendering, architectural elements and

2014 IEEE 17th International Symposium on Object/Component-Oriented Real-Time Distributed Computing

1555-0885/14 $31.00 © 2014 IEEE

DOI 10.1109/ISORC.2014.44

32

so on. This approach can have some advantages because
the development of every functionality has access to every
low level system, therefore the developer can highly optimize
the rendering, distribution and other techniques used in the
developed feature. However, from our experience (see section
II), the constant increase in complexity for the development of
simple business/application features, and the tight coupling be-
tween the logic layers can seriously impair the maintainability
and extensibility of the application. This can lead to a stall in
productivity, where developers suffer with the high complexity
they need to understand in order to develop a simple feature.

We believe that the application programmer, who develops
the features that aggregate real knowledge value in a software,
should be focused on the domain of the application, the
business logic, transactions, user interface and any other front
end concern. Therefore the application programmer should
work with as much high level abstractions as possible, such
as frameworks, tools and middleware [4]. However, one must
always consider the trade-offs when abstracting low level
systems, as the usage of low level optimizations may be
necessary in many cases as explained above

This work is organized as follows: In section II we show
our background and motivation for this work. In section III
we walk through the available solutions for our distributed
visualization and collaboration requirements for an immersive
visualizer. In section IV we explain our design for a visualizer
oriented towards modularity and extensibility. In section V we
explain our design for the module that provides distributed
visualization and collaboration for the visualizer. In section VI
we show the performance of the implemented example system.
In section VII we present our conclusions and thoughts about
this work and in the last section we indicate some ideas for
future work.

II. BACKGROUND AND MOTIVATION

This work is developed as a part of SiVIEP (Integrated
Visualization System of Exploration and Production) project.
SiVIEP is an immersive scientific visualizer, which supports
visualization of reservoirs, geological surfaces, wells, risers,
platforms and many other objects from the oil field domain. All
of these objects can be visualized together inside one project
in a 3D multi-screen stereoscopic setup, controlled by several
manipulators and tracking devices. Many supported objects
pose already a challenge to be rendered in a single screen
due to the number of polygons, simulation data and property
visualization. Therefore, complex distribution algorithms must
be employed for the system to be able to render all the required
objects in a multi-screen stereoscopic setup.

SiVIEP’s current production version is a monolithic C++
application using Qt for user interface and OpenSG [5] for
distributed rendering. There are some bottlenecks with the
distribution provided by OpenSG [5] for our scenario, and
these are discussed in the related work section. Also, the
complexity of adding new business objects to the current C++
version is too high due to the tight coupling between many non
cohesive parts of the application.

We started this work to provide a solution for these SiVIEP
issues with a new design that could isolate the rendering and
distribution complexity from the business logic.

III. RELATED WORK

A number of generic solutions for distributed visualization
have been developed, and are available commercially or open
source, e.g., Equalizer [6], Chromium [7], [5] and VRJuggler
[8]. Some of those are completely transparent, some require
a certain level of adaptation from the programmers and some
force its own programming model. In the collaboration field,
most of the state of art solutions are far more complex and
generalist than desired for this work. However, some of these
works contributed to model our solution and are going to be
detailed here.

OpenSG [5] is a scene graph as much as any non-
distributed scene graph. A user can develop using OpenSG
without distributed visualization in mind despite being one
of the scene graph’s major features. The distribution strategy
of OpenSG works by distributing the scene graph with all
the graphical nodes containing vertices, textures, matrices and
other graphical primitives. Therefore all the graphical nodes
must be serializable. Making a serializable graphical-node
is simple if it is a regular triangle mesh that requires no
processing during runtime because the node will be serialized
once during pre-processing only. However, many nodes have
a constantly varying set of primitives such as: large on-
demand loaded files such as terrains, photo-realistic detailed
meshes with continuous level-of-detail techniques, simulation
data visualization. These variable nodes are very expensive
to distribute, as their data is constantly varying and can be
of very large size. Taking our oil field visualizer scenario as
an example, most of our domain is composed of simulation
data, that requires different visualization modes with generated
graphical data on demand. Therefore, this graphical distribu-
tion approach is not suitable for us.

Chromium [7] works by creating a powerful abstraction of
the OpenGL API, that is, it intercepts every call to the API and
executes a scalable rendering algorithm to distribute the call
among multiple nodes. Such approach is very clean and non-
intrusive, but requires the constant distribution of graphical
data, which can be a bottleneck if the scene is very diverse
so that the GPU memory will need to be updated frequently.
Also, this approach does not consider collaboration. In order
to provide collaboration with Chromium, a whole separate
solution must be implemented.

Equalizer [6], Chromium [7] and VRJuggler [8] are tailored
for parallel and scalable rendering, that is, using multiple nodes
for rendering the same scene independently of the number
of screens. They all support outputting the rendered scene
to multiple screens making distributed visualization feasible.
One of these tools stands out as the most complete and non-
invasive, the Equalizer [6]. It is a very powerful and complete
tool that forces the programmer to abstract the rendering
code from the rest of the application. Thus, it distributes
this rendering client for the slave nodes. Such nodes perform
rendering tasks controlled by a master node, which is config-
ured by configuration files describing the available resources
in the cluster as well as the desired compositing strategies.
The application is unchanged for any kind of scalable setup.
The rendering in the slave nodes can be configured for many
different compositing strategies [9], such as sort-first or tile
based, DB based or sort-last, among others [10]. After one
of these strategies is used, the output image is copied to

33

the configured output walls/screens. Such strategy of scalable
rendering is very powerful, but unnecessary for a typical case
of multi-screen rendering setup (our whole range of cluster
examples fit the common case) where every screen is driven
by an individual node of the cluster. Also, if the application is
going to be used in single computer workstations to visualize
the same projects, then using the scalable rendering system
to achieve better system results can be pointless, as the scene
needs to be processed by a single machine as well.

All of the aforementioned solutions provide the distribution
on the graphical layer of the application, that is, they distribute
graphical code, graphic controlling commands, graphical prim-
itives and so on. However, for a collaborative visualization to
be achieved, a distribution of the business domain (not just
its graphical representation) is necessary. Therefore, in the
mentioned approaches, the collaborative visualization would
have to be solved by other means. In this work’s solution,
we provide a DSO (distributed shared objects) system for our
domain data. That is, our domain data is a single shared graph
among the nodes. This way, our solution provide collaboration
through two-way updates of local changes for every node.
Moreover, this same solution will serve as the ground for
our multi-screen rendering algorithm to work with, as all the
graphical representation can be loaded locally based on the
received domain information.

IV. DESIGN OF A MODULAR VISUALIZER

A. Domains and Entities

The domain of an application represents business knowl-
edge—as the model—in a Model View Controller—MVC—
paradigm. What we have referenced in the previous sections
as business data or the business objects layer, is technically the
application domain. It is a mirror of the real world, composed
of all the real world objects that the application wants to
represent. Ideally, there should be a one-to-one correspondence
between the domain objects and their real world counterparts.
These domain objects are represented by Entities. Examples of
entities in an oil field visualizer application are risers, wells,
reservoirs and so on. We designed the domain structure as
a graph and the entities as collections of attributes with no
relational structure associated. Furthermore the graph and its
entities can be versioned, shared and persisted if needed.

B. Scenes

We define a scene as a visualizable collection of entities
with behaviors and tags. This definition however, may be
considered incorrect because of our definition of domain,
as the scene clearly has different properties and elements
than a real world object. Moreover a more purist definition
could consider the domain itself a scene, which is the case
in many visualizers. Nevertheless we regard the scene as
business knowledge because they represent snapshots of the
same domain in different times, configurations, simulation
scenarios and so on. Figure 1 shows the structuring of our
domain regarding scenes. Examples of scenes in an oil field
visualizer are: the oil field when exploration began, the oil
field in present date, the oil field in a catastrophe simulation
scenario, etc .

Figure 2 shows the layering of the system according to
the MVC concept and an overview of the interfaces and
interactions among the many modules.

C. Domain Model Framework

As mentioned above, the domain should be an object
graph. However, this graph is not useful for the rest of the
application only by itself. Its state needs to be propagated
through the layers above it. Therefore it is necessary to have
a graph controlling system that provides controlled access to
the domain graph and notifications to everyone that depends
on it. We designed this controlling system as a non-intrusive
module that keeps track of all the changes in the object graph
and provides a fine grained notification system for the rest
of the application. We call this system the DMF—Domain
Model Framework—(Figure 3). Every component that applies
some modification in the business object graph needs to certify
that these changes will be propagated to everyone else. Hence
whenever a change has to be applied to the graph, this change
has to go through the DMF. Consequently, every component
that needs to display information about a business object needs
to be connected to the notification system of the DMF.

The DMF notification system follows the Observer pattern
[11]. Every element that needs to watch the state of a piece
of the domain will be registered as an observer to that piece
in the DMF notification system. Accordingly, the DMF will
notify that observing element whenever a change is applied
to the observed piece of the domain. The notification itself
consists of the previous and the current states of the piece.
The DMF also provides a global graph access system for the
elements that need to change the graph. Notice that in our
design, the actual objects from the business object graph does
not reside inside the DMF data structures. As we mentioned
before, the domain management is non-intrusive. Therefore,
the DMF has an internal graph containing meta information
about the actual objects and it keeps versioning information,
which is necessary for undo/redo operations and is also very
important for our distribution module that will be explained in
the next section.

This non-intrusive approach makes the DMF useful for any
graph of objects that must be versioned and shared. However,
as the actual objects are not inside the DMF, there is the
risk of a business object being modified from outside of
the DMF interface. If this happens, then there will be an
inconsistent state. Therefore, there must be strict guidelines
for the developers on the usage of such kind of framework.

With these foundations set, a module responsible for dis-
playing the 3D scene can be a simple observer of the current
scene and its referred entities, which are all contained by the
domain graph. Whenever a new entity reference is added to the
current scene, the module searches for a graphical representa-
tion for the object and add it to the underlying graphical API.
Never should the actor be modified directly, it must always
mirror the business object through observation. This way, it
becomes easy to switch the graphical implementation of the
objects. We may change the whole scene graph implementation
without touching the rest of the application.

The UI layer sits above the rest of the application, no
module should access the UI. The UI must make sure also

34

InstanceA

InstanceB

InstanceC
InstanceD

EntityA
EntityB

EntityC

Domain

SceneA

SceneB

SceneA

Fig. 1. Chart showing the relation between the domain, the scenes and the entities

Views

Controller

Model

GUI Scene

Domain Model Framework

Domain Entity 1
Entity2

Entity5

Entity6

Entity3 Entity7

…

Manipulation
Interface

Registration
Interface

Simple add/remove
Interface

Observer
Interface

…

Register ObserverManipulates
the domain

Notifies changes
in the domain

Apply manipulation results to the domain

Scene 1

Scene 2

Fig. 2. Blueprint of the the visualizer architecture

that it does not change its own state, which is very common
if no special care is taken. E.g., if a button that when pressed
automatically changes its image and the button represents a

state of a business object, when the state of the object is
changed by any other means—be it collaboration, animation,
task scheduling and so on—the button will be left in an

35

Business Objects Graph

...

Versioned
GraphDomain

DMF

Apply Changes

Notification API Control API

Other Modules

A B

C Z

User

Observes

Apply Changes

Apply Changes

Fig. 3. DMF architecture overview

inconsistent state. Therefore, the developers must make sure
that these automatic feedbacks that usual UI frameworks have
by default are not enabled.

V. DISTRIBUTED VISUALIZATION AND COLLABORATION

MODULE

A. Domain Distribution

We intend to seamlessly connect this module to our vi-
sualizer, hence transforming its visualization and workflow
with only small changes in configuration files. Nevertheless
switching from local to distributed may create a high risk
for inconsistency if the application is not properly designed.
This inconsistency can be noticed when the application state
is spread across multiple elements and layers, hence making
complicated for one instance of the application to propagate
its state consistently to another. However, in our designed
visualizer, we concentrate all the application state in a single
element—the domain—thus alleviating our effort designing
distribution. Still, in order to provide seamless integration with
the application, this module must distribute the application
domain in an agnostic and non-intrusive way.

We followed the same approach as with the DMF design—
explained in Section IV-C—, we created a separate module
with its own internal structures that serve only for the module
purposes, the actual application domain data is controlled by
the application. Hence the module observes and applies state

changes to the application domain, for that purpose it has a
dependency to the DMF. Therefore, our domain propagation
strategy is clearly a mere distribution of the DMF notification
calls, and persisted through the DMF domain control function-
ality.

B. Collaboration

In our shared domain scheme, whenever multiple users are
making a collaborative visualization, they can simultaneously
change the same data, therefore collisions are prone to happen.
In online gaming realm, collisions are a very difficult problem
to handle because there can be a massive amount of players
interacting with the same data at the same time. Moreover
there is usually no action of “take control of an entity”
before altering it in any way, as the players are interacting
with a simulated world, and requiring such action may break
the immersion. Therefore, the collision problem needs to be
handled very fast and smoothly so that all the players involved
in the collision feel that the object that triggered the collision
is being really shared. Such steep requirements are not the case
in the scientific visualizer.

Entities in a scientific visualizer domain are not to be
treated as objects in a game. It is possible to apply a system
where a user must first take control of an entity in order to
apply any changes to it. Such system eliminates the problem
of users sharing an object. Still, even if there is no control
system, the latency when solving a collision does not need

36

Node A

Node C

Node B

User Input

Node D
1. Apply Changes

2. Asks Permission
3. Grants Permission

4. Propagates

4. Propagates

Fig. 4. Arbiter Topology

to be so low as in games. Therefore, it is acceptable to have
an arbiter node responsible to keep the consistency, and every
change applied by every node must be verified by the arbiter
first, and only the arbiter and other designated nodes by the
arbiter can propagate the changes (see Figure 4).

C. Distributed Visualization

Considering that all the domain data is properly distributed
as explained in the previous section, achieving distributed
visualization becomes a simpler issue. We need to calculate
the views for every display output based on a single observer
and synchronize the frame displaying. These tasks must be
assigned somehow to nodes in the visualization cluster, hence
we need to create roles with appropriate responsibilities for
the nodes. In order to accomplish distributed visualization in
our design, it is imperative that we assign at least master and
slave roles.

The frustum calculation is done based on the output
screens. Every node has a number of outputs connected to
it and they need to display the current view of the scene on
those. The view of the scene is based on a single observer—
in a typical scenario—and therefore, this view should be
split between the nodes. The master node needs to know
the dimensions of the multiple-display environment and slave
nodes disposition.

The frame synchronization is very simple. The master node
must first command every node to render—with the appropriate
frusta transferred. Then, after every slave node has finished
rendering, the master node commands the slaves to present
their rendered frames. If this synchronization strategy is not
used, the user immersion can be broken, as there will be
different frames being exhibited at the same time.

D. Integrating with the Visualizer

The Distributed Visualization and Collaboration Module—
DVCM— should be a generic DMF observer that propagates
local changes to the network and network changes locally.
In order to use the module, when assembling the visualizer’s
components through a startup script, there must be a list of
available options in the DVCM interface in order to assign
its role. These options must cover a series of supported
roles: local domain updates to be propagated throughout the
network, incoming domain changes are going to be analyzed

for collisions and confirmed or simply accepted, passively or
actively render and display on the screen, among others. All
of these possible setups are going to be covered and shown
implementation-wise in the following section.

VI. RESULTS

We show in this section how the implemented example
system behaves under local and distributed visualization. Our
goal is to measure how much the distribution and frame
display checkpoint impacts the performance. Therefore we
registered the frame rates of the visualization while varying
the number of nodes in the cluster and which nodes used.
As mentioned before, the example system has no multicast
implemented, thus all the tests have been executed with only
unicast communication between the nodes. We used 4 nodes
with similar configuration in our tests:

Our tests are consisted of the visualization of a scene with
1,300,000 triangles with all culling disabled. This scene is just
a collection of triangles in a certain position, but emulates a
typical scene in our application usage scenario. During this
visualization, we recorded the frames per second while the
camera followed a predefined path. We executed these tests
for a series of combination of nodes as shown in table.

In table I, we show in the ”Average FPS“ row how many
frames per second each setup achieved and in the ”FPS
loss“ row the loss of performance of the given node group
when compared to the performance of the worst local node
performance of the group. Notice that the first 4 scenarios are
of the nodes executing the tests locally. The results show that
there is a performance loss of less than 15% with networking
due to latency of the network in any of the cases. Moreover,
considering that nodes C and D have a similar performance
locally and since a group performance limit is equal the weak-
est node’s local performance, the comparison of performance
between groups A,B,C and A,B,C,D is important to show us
the raw impact of adding another node to a group, which is a
negligible loss of less than 1%.

As can be seen, although the performance suffers an
expected loss with distribution, our system can easily provide
interactive frame rates during the visualization of large scenes
in a distributed visualization scenario I, which is the usual
desired cave disposition and our ultimate goal with the project.

We tested the system in the same 4 node scenario with
a collaborative scene following an arbiter topology. The tests
successfully worked and there had been no inconsistencies or
noticeable performance hindrances as expected.

VII. CONCLUSION

In this work, we presented our design of an extensible
and modular visualizer as well as the design of a module
that provides distributed visualization and collaboration for
the visualizer. By following these designs, we implemented an
example system and tested the synchronism of the distributed
visualization and the consistency of the collaboration among
multiple nodes, we also evaluated the impact on performance
caused by the distributed visualization.

37

Group A B C D A, B A,B,C A,C,D A,B,C,D

Average FPS 430 416 220 216 356 199 195 191

FPS loss — — — — 14.4% 11.3% 11.5% 11.4%

TABLE I. FRAME RATES AND PERFORMANCE COMPARISON OF DIFFERENT CLUSTER CONFIGURATIONS

We discussed first the relevant concepts and problems
of designing and implementing a real time immersive vi-
sualizer, from which we extracted our main architectural
requirements—modularity and extensibility. Following we pre-
sented our design for the visualizer inspired by MVC archi-
tecture and explained how we try to fulfill the aforementioned
requirements. We continued by presenting the design of the
module responsible for distributed visualization and collabora-
tion, its interactions with the visualizer and why our described
design for the visualizer simplifies its implementation and
usage. We concluded with results of the implemented example
system.

We expected to indicate how our MVC-inspired design
made possible the development of a module that transparently
provided distributed visualization and collaboration to a visu-
alizer. Also, how the design enabled the substitution of parts
of the system easily. E.g., the scene graph implementation
can be switched between a very efficient and licensed per
station library for displaying a scene in massive immersive
environments and a cheaper licensed library for common
desktop usage. These reasons along with others explained
in section I are what motivated this work as a solution for
our real project. We try to summarize here the key points
that we believe we have addressed with our design and can
impact overall productivity of the development of real time
and efficiency-focused applications.

We addressed complexity with the separation of a system
into modules with explicit interfaces, which tend to isolate
the low level details of implemented features and create
abstractions, which enhance the productivity of the business
logic development by reducing the complexity of the system.
The isolation of all the distribution code inside our designed
module leverages the productivity of the business and graphical
developers in our visualizer.

We provided easier prototyping for a product with a long
development cycle, which can be extremely complex. There-
fore, designing and implementing the system iteratively can
leverage productivity and also accommodate late changes in
product requirements. By making the application extensible,
we give the developers an easy way to prototype new func-
tionality and implementations. Our component based design
enabled our system to be distributed after its first version
without any significant modifications to it.

We enhanced the flexibility of the system with the possibil-
ity of switching between different functionality with no code
change, which is important for a software that must assume
different roles depending on the scenario—e.g. different scene
graphs, distribution schemes and so on.

Our example system implementation showed that our de-
sign worked for the expect scenario. The synchronism among
multiple output displays was achieved without any dedicated
hardware and also without even the need to use broadcast
messages. A loss of less than 15% for a 4 node setup, which

is our common CAVE scenario has been a very good result,
confirming our design as a proper solution. Furthermore, the
consistency among the scenes when using the software col-
laboratively was achieved without any noticeable performance
hindrances.

VIII. FUTURE WORK

Our distributed visualization strategy is not suitable for
scenarios where there is no single node in the cluster with a
number of output displays that creates a rendering bottleneck
on it, which happens due to the amount of graphical processing
on it. However, if desired, the task of rendering can be
separated for the task of displaying. By creating this new
layer of parallelism, the rendering task can be distributed
equally among the nodes independently of the number of
output displays connected to each one of them. However, it
becomes necessary to recompose the final image based on a
given recompositing strategy, which can adds complexity and
inefficiency if not necessary.

The consistency among multiple stations when working
collaboratively is currently only designed for reliable envi-
ronments without simultaneous edition of the same entity.
Therefore no special collision treatment of time synchronizing
strategy is currently needed. However, if the visualizer needs
to be deployed in a slow and non reliable network, with
dynamic entity behavior, simultaneous edition of the same
entity, and so on, the distribution module can be extended
to support prediction algorithms, time synchronizing strategies
and dynamic behavior descriptions.

ACKNOWLEDGMENT

This research project is supported by Petrobras. Alberto
Raposo also thanks CNPq for the individual grant.

REFERENCES

[1] C. A. ELLIS, S. J. D. GIBBS, and G. REIN, “Groupware: some issues
and experiences,” Commun. ACM, vol. 34, no. 1, 1991.

[2] B. Boehm, Software Engineering Economics. Prentice Hall, 1991.

[3] Microsoft Patterns and Practices Team, Microsoft Application Architec-
ture Guide. Microsoft Press, 2009.

[4] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[5] “Opensg,” www.opensg.org.

[6] S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A scalable
parallel rendering framework,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, pp. 436–452, 2009.

[7] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski, “Chromium: a stream-processing
framework for interactive rendering on clusters,” ACM Trans. Graph.,
vol. 21, no. 3, pp. 693–702, Jul. 2002. [Online]. Available:
http://doi.acm.org/10.1145/566654.566639

[8] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira, “Vr juggler: a virtual platform for virtual reality application
development,” in Virtual Reality, 2001. Proceedings. IEEE, March, pp.
89–96.

38

[9] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification
of parallel rendering,” Computer Graphics and Applications, IEEE,
vol. 14, no. 4, pp. 23–32, 1994.

[10] M. Makhinya, S. Eilemann, and R. Pajarola, “Fast compositing
for cluster-parallel rendering,” in Proceedings of the 10th
Eurographics conference on Parallel Graphics and Visualization,
ser. EG PGV’10. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2010, pp. 111–120. [Online]. Available:
http://dx.doi.org/10.2312/EGPGV/EGPGV10/111-120

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

39

