
G. Bebis et al. (Eds.): ISVC 2007, Part I, LNCS 4841, pp. 288–297, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Anti-aliasing Technique for Voxel-Based  
Massive Model Visualization Strategies 

Gustavo N. Wagner, Alberto Raposo, and Marcelo Gattass 

Tecgraf, Computer Science Dept., PUC-Rio, Rua Marques de São  
Vicente, 255, 22453-900 – Rio de Janeiro, Brazil 

{gustavow,abraposo,mgattass}@tecgraf.puc-rio.br 
http://www.tecgraf.puc-rio.br 

Abstract. CAD models of industrial installations usually have hundreds of 
millions of triangles. For this reason they cannot be interactively rendered in the 
current generation of computer hardware. There are many different approaches 
to deal with this problem, including the Far Voxels algorithm, which uses a 
hierarchical level-of-detail structure. In this structure, voxels are used to create 
a coarse representation of the model when required. This strategy yields 
interactive rates for large data sets because it deals well with levels of detail, 
culling, occlusion and out-of-core model storage.  The Far Voxels algorithm, 
however, has a severe alias problem when it is used to represent small or thin 
objects, which is especially visible during transitions between different levels of 
detail. This paper presents a new version of the Far Voxels algorithm that 
improves visual quality during model navigation. 

1   Introduction 

The visualization of CAD (Computer Aided Design) models is important for many 
engineering-related activities spanning from conception and design up to 
maintenance.  There are, however, several problems in obtaining quality visualization 
of CAD models. One of these problems is the size of the visualization model, which 
can easily achieve hundreds of millions of triangles. As graphics engines become 
powerful enough to deal with large models, research on massive model visualization 
has received greater attention. Despite all recent advancements, most real CAD 
models still exceed the processing and memory capacity of existing hardware when 
interactive rates are required. 

To speed up the rendering of this type of model, several algorithms have been 
proposed in the literature.  Most of them are based on a combination of strategies that 
can be summarized as a combination of hierarchical levels of detail (HLOD), culling, 
occlusion, efficient use of the graphics pipeline and good management of disk, CPU 
and GPU memory. A promising algorithm to render massive models, called the Far 
Voxels, was presented in the paper by Gobbetti and Marton [3].  This algorithm uses a 
HLOD structure where intermediate (coarse) representations of sub-models are 
represented by voxels. This HLOD with voxel representation yields interactive rates 
for large data sets because it deals well with levels of detail, culling, occlusion and 
out-of-core model storage. 
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The Far Voxels algorithm, however, has a severe drawback when dealing with 
CAD models. CAD models usually have lines and thin objects that, even with the 
most detailed representation, introduce very high spatial frequency that cannot be 
rendered without proper anti-aliasing treatment. The aliasing caused is very disturbing 
during model navigation, where these thin objects seem to move between consecutive 
frames. 

In the original Far Voxels algorithm the temporal aliasing problem is aggravated 
when these thin objects are converted to voxels. The voxels used to represent these 
objects tend to create representations which are larger than the ones of the original 
geometric representation, as shown in Fig. 1. In addition to creating a representation 
that is very different from the original model, this distortion causes very noticeable 
popping artifacts in the transition between different levels of detail. 

 

Fig. 1. Thin objects: (left) represented as geometry, (right) represented as voxels, causing visual 
artifacts 

In this paper we propose a method for detecting this type of voxel and an 
alternative voxel representation that seeks to achieve images of the same quality 
obtained with current 3D hardware's anti-aliasing using the detailed representation of 
the model (triangles and lines). This detection and alternate voxel representation 
yields a new version of the Far Voxels algorithm. 

2   Related Work 

The literature on HLOD and point rendering is extensive and a complete review 
would be too long to be included here. For this reason, only key papers related to 
point rendering or improvement of its visual quality are discussed. Complete surveys 
on massive model rendering can be found in [3] and [10]. 

The idea of using points as graphics primitives is not new. In 1985, Levoy and 
Whitted [6] presented a seminal paper that proposes points as an efficient display 
primitive to render complex objects. In 1998, more than a decade later, Grossman and 
Dally [4] presented an efficient algorithm to render object from sampled points in the 
CPU. An advantage of representations based on points is that they do not require any 
effort to preserve the model’s topology, as it would have to be done in the frontier 
between meshes with different resolutions. 

 



290 G.N. Wagner, A. Raposo, and M. Gattass 

More recent approaches began to make use of 3D graphics hardware. In 2000, 
Rusinkiewicz and Levoy [9] presented the QSplat system, which uses point primitives 
to render very complex laser scanned models. In this system, the model is converted 
to a hierarchy of bounding-spheres. During visualization, the most appropriate 
spheres from the hierarchy are selected and rendered in 3D hardware as point 
primitives. In this hierarchy, points of a region of the model are grouped into a single 
point, which may be used instead of the cluster when viewed at distance. 

In 2004 Gobbetti and Marton [2] presented an approach to organize point 
primitives in clusters. Their strategy reduces CPU processing, permits the clouds to be 
cached in graphics hardware and improves the performance of CPU-to-GPU 
communications. This idea evolved into the Far Voxels technique [3], which allows 
much larger models to be efficiently rendered with point-based primitives. The leaf 
nodes, which contain the most detailed representation of the model in the hierarchy, 
are still rendered as triangles. 

Much effort has been placed in trying to improve the rendering quality of point 
primitives. In QSplat [9], different primitive shapes are tested to determine the one 
with the best quality/performance ratio. Alexa et al. [1], convert the model into a tree 
of higher order polynomial patches which is used to generate the point primitives in 
the proper resolution needed during visualization. 

Zwicker et al. [11] presented a seminal paper about sampling issues in point 
rendering, based on the concept of Elliptical Weighted Average (EWA) resampling 
filters, which were introduced by Heckbert [5]. Ren, Pfister and Zwicker [8] proposed 
an implementation compatible with modern graphics hardware for the EWA screen 
filter [11], which permits high quality rendering of point-based 3D objects. 

Here we approach the problem of visualizing large models using the Far Voxels 
algorithm, which is one of the most efficient techniques available for dealing with 
large CAD models. We present a solution that improves the appearance of a few 
specific voxels of the model, namely those representing objects whose dimensions are 
smaller than one voxel. Our approach to improve the rendering quality of point 
primitives is orthogonal to the abovementioned ones and could be used in conjunction 
with any one of them that uses voxels as impostors. 

3   Opaque Voxels 

The Far Voxels algorithm is composed of two main phases: preprocessing and model 
visualization. The preprocessing phase computes visibility information that will aid in 
the creation of the simplified voxel-based representations of parts of the model. The 
visualization phase uses this information to efficiently navigate through the model. 

3.1   Preprocessing Phase 

The preprocessing phase creates a representation of the model optimized for rendering 
by sampling the volume from all possible directions. This optimized representation is 
structured on an HLOD hierarchy, which has on its leaves the most detailed 
representation available for the model, and on the other nodes simplified 
representations of their respective regions. In this representation, nodes located near 
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the hierarchy root will have the coarsest representations of the model, and are 
intended to be used to represent the model when it is viewed from far away.  

The hierarchy is created by a recursive subdivision which uses axis-aligned planes 
positioned according to the surface-area heuristic [7]. The subdivision starts working 
with all triangles of the model, which are assigned to the hierarchy's root, and then 
starts subdividing them. Each subdivision will create a new pair of nodes on the tree, 
with existing triangles split between both nodes. The subdivision process ends when a 
node with less than a predefined amount of triangles is created. This node becomes a 
leaf of the hierarchy.  

Simplified representations of parts of the model are created using a voxel 
representation. Inside a node, voxels are organized on a uniform grid, where each 
voxel will have, under ideal conditions, the size of one pixel when projected on the 
screen. Each voxel may assume different representations depending on the direction 
from where it is visualized, as it attempts to reproduce the appearance of the original 
model as closely as possible.  

The simplified representations of the model's regions are created in two steps. First, 
all visible surfaces in that region are sampled with the use of a CPU-based raytracer. 
Then, the radiance of all the hits obtained from the intersection of the rays with the 
region's surfaces is analyzed and the appropriate shader to represent them is selected. 
The use of a raytracer permits selecting only the surfaces of the model that are visible, 
which is important to avoid that hidden surfaces create artifacts on the generated 
simplified representation. 

The raytracer starts by defining a volume V, which corresponds to the region being 
sampled, and a surface S, from where the sampling rays will be shot. The distance 
dmin of surface S to the volume V is calculated as being equal to the minimum 
distance that the user has to be from V for this voxel representation to be used. As we 
can assure that the user will not be inside the region defined by surface S, all objects 
inside it can be used as occluders (Fig. 2a). 

 

S
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Fig. 2. (a) Example of a possible raytracing configuration. Voxel appearances may vary with 
viewing direction: (b) varying normals, (c) varying colors. 

Many of the surfaces located inside features of the model are never hit by the 
sampling rays traced during the preprocessing phase and do not need to be 
represented, as it is assumed that this voxel representation is always viewed from 
outside. This is called Environmental Occlusion [3] and allows the creation of a more 
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efficient simplified representation of the model. The amount of discarded voxels is 
reported to vary from 25% to 43% in the original paper and reached up to 57% in the 
models used here to test our implementation.  

For all voxels that are hit by the sampling rays, the colors computed for all 
directions are stored and then analyzed to produce a radiance model for that point in 
space.  This analysis results in a choice of the most appropriate shader model to 
render the voxel from the minimum distance established by the criterion that it should 
project in approximately one pixel. There are two types of shade models. The first one 
is intended to represent surfaces which are flat or almost flat, and is parameterized by 
a single normal and two materials, one for each direction from which the voxel may 
be seen. The second one is intended for more complex surfaces and is composed of 6 
materials and 6 normals, each associated with one of the main viewing directions (±x, 
±y, ±z). In Fig. 2b and 2c, there are examples where the normal and color of the 
surfaces are significantly different depending on the direction from where they are 
seen, and a single representation for the normal or color on the voxel would not 
generate satisfactory results. When the corresponding voxel is being viewed from an 
intermediate direction, the resulting material and normal used correspond to an 
interpolation of the material and normal associated with the nearest viewing directions 
weighted by their respective direction cosines. 

The generated voxels are stored on disk to be loaded on demand during the model's 
visualization. The data file that is generated is divided in two parts. One part 
corresponds to the HLOD hierarchy, which contains all information necessary to 
traverse it and determine the appropriate configuration of nodes to be used. The other 
part contains the data that is used to represent the model, composed of lists of voxels 
for internal nodes of the hierarchy, and lists of triangles/triangle-strips for leaf nodes. 

3.2   Visualization Phase 

During visualization, all nodes of the model’s hierarchy are traversed. Each voxel 
node found on the hierarchy may be composed of voxels of the two existing types. 
For each type, the appropriate vertex shader is bound and all the voxels contained in it 
are drawn with a single call to glDrawArrays. The additional parameters necessary to 
create the voxel representation are transmitted using VertexAttributes. 

Each node of the model’s hierarchy contains a possible simplified representation 
for its corresponding region of the model. While traversing these nodes, the viewer 
has to decide whether to use the representation available at that node or to continue 
traversing the node’s children in search of a more precise representation. This 
decision is based on a user-defined parameter that indicates the size that the voxel of a 
node must have when it is projected to the screen. The viewer keeps descending on 
the hierarchical structure until the existing voxels are smaller than the desired 
projected size or until a leaf node is found. 

During the model traversal, branches of the hierarchy are tested for occlusion using 
Hardware Occlusion Queries. Parts of the model that are determined as being hidden 
do not need to be drawn. 

The rendering algorithm may issue the Occlusion Query to determine if a certain 
branch of the graph is visible while rendering its bounding box or while rendering its 
full geometry. If only its bounding box is rendered and is found to be visible, its 
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geometry will have to be rendered later. On the other hand, if the branch’s full 
geometry is rendered, there is no advantage, at least for the current frame, in 
determining that it is hidden. 

The visibility information obtained is used on the next frame when the renderer 
needs to decide how to query a node’s visibility. Nodes that where hidden on the 
previous frame have their bounding-boxes checked for visibility before being 
rendered. These nodes have a good chance of remaining hidden in the current frame. 
The nodes that were visible on the last frame are always directly rendered as 
geometry or voxels. 

Nodes on the scene hierarchy are visited by order of proximity to the camera, 
starting from the nearest ones. The results for the issued Occlusion Queries are not 
available instantly, so the renderer must not stop rendering while it waits for them. All 
performed queries are stored in a list of pending queries, which is checked by the 
visualization algorithm every time it needs to select a new node to be rendered. If the 
result of any pending query becomes available and indicates that its associated 
geometry is visible and has to be rendered, it is rendered immediately. 

4   Detecting Problematic Voxels 

When voxels are used to represent parts of the model composed of small or thin 
objects, the “pure” Far Voxels algorithm tends to create representations which appear 
"bloated" when compared to the original geometric representation. Unfortunately, thin 
and small objects are very common in CAD models and the first tests conducted with 
the original Far Voxels algorithm yielded unsatisfactory results. In addition to 
creating distortions in the simplified model appearance, they cause a very noticeable 
popping effect in the transition between two different levels of detail. 

A naive solution would be breaking the voxel into smaller voxels, which would 
create a representation that could adjust to the model with the required precision. As 
in all other aliasing problems, increasing the resolution is not the best method to solve 
the problems arising from the presence of high spatial frequencies. Furthermore, this 
increase contradicts the whole idea of having voxels with the approximate size of one 
pixel in the screen. 

A better approach results from using the pre-processing stage as a sampling stage.  
Voxels with small objects are problematic because they enclose high spatial 
frequencies that must be filtered before the rendering reconstruction occurs.   

A possible implementation for filtering and rendering voxels with small objects 
follows the same ideas for anti-aliasing currently implemented in graphic boards.  In 
the sampling stage they determine an opacity factor to be attributed to the voxel.  The 
blending of a partially transparent voxel yields the blurring that results from filtering 
high frequencies. Note that to achieve this result it is not just a matter of enabling the 
3D hardware's anti-aliasing procedures with opaque voxels.  Semi-transparent voxels 
must be used. 

In order to determine which voxels have to be represented as semi-transparent 
voxels, we use the visibility information generated by the raytracer during the 
preprocessing phase (Fig. 3a). Depending on the geometry configuration inside a 
voxel, the rays shot against it may hit some geometry inside it or pass through it. 
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When a voxel is trespassed by many rays in a certain direction, we may safely assume 
that the geometry contained in that voxel occupies a small cross-section area of the 
voxel when it is viewed from that angle. Thus, for that angle, this voxel may be 
rendered with a transparency scale proportional to the ratio between the amount of 
rays that hit a surface inside the voxel and the total number of rays that where shot 
against it. 

a)  b)  

Fig. 3. a) Raytracer sampling a voxel to obtain its visibility. b) Voxels containing small parts of 
large objects may also have many rays passing through it. 

We must be careful to use the transparency information in a different direction than 
the one in which it is computed. In very frequent cases, parts of large objects may 
occupy only a small fraction of the voxel (Fig. 3b) in a way it is hit by rays that come 
only from a few directions. This voxel may be rendered with transparency when 
viewed from the direction from where the rays that passed through it came from, but 
must remain opaque when viewed from all other directions.  This procedure prevents 
the appearance of holes in large objects. 

As storing visibility information for every possible viewing direction is unfeasible, 
the transparency information obtained from each sampling direction must be packed 
before it may be used in the visualization.  Since the rays that crossed a certain voxel 
are not evenly distributed over all directions, we use a representation that allows 
independent transparencies for each of the six main viewing directions (±x, ±y, ±z).  
That is, we use a transparency model that is similar to the material color model 
explained in section 3.  

The final voxel transparency will be an interpolation of the transparencies 
associated with the nearest viewing directions weighted by their respective direction 
cosines. If the transparency factor is the same for all directions, we may use a single 
transparency factor for the voxel, yielding a more efficient representation. 

5   Rendering Anti-aliased Voxels 

Correctly rendering any kind of transparent geometry using 3D hardware requires that 
it is drawn after the whole opaque geometry in the rendered scene. Also, transparent 
geometry has to be drawn from back to front in order to create a correct representation 
in cases where two or more transparent objects overlap on screen. This is exactly the 
opposite behavior expected for geometry being tested for occlusion with Occlusion 
Queries, which has to be rendered from front to back. For this reason, transparent 
voxels have to be handled in a different way. 



 An Anti-aliasing Technique for Voxel-Based Massive Model Visualization Strategies 295 

As transparent voxels  make up for only a small part of all voxels they may be 
rendered without being tested for occlusion after the whole opaque geometry, without 
significant impact on the overall performance. Also, most of the occluded transparent 
voxels are going to be discarded before being rasterized by the Early Z Culling 
present in current graphics cards, as most occluders will have already been rendered. 

Ordering all voxels from back to front could cause performance problems with 
larger models, as we would have to manage these objects on a per-primitive level. As 
transparent voxels are well distributed in small groups throughout the model, a more 
relaxed approach can be used. During rendering, only the nodes of the graph that 
contains transparent voxels are ordered from back to front, while letting the primitives 
that exist inside these nodes be rendered in any order. As transparent voxels occur 
only in well distributed parts of the models, visual artifacts that arise from this 
simplification are hardly noticed, and can be further reduced if the transparent voxels 
are rendered with Z-Buffer writing disabled. 

6   Results 

The navigation application used to validate and test the developed technique was 
implemented in C++ using OpenGL. The models used to test the algorithm were real 
offshore structure models provided by Petrobras, a Brazilian Oil & Gas Company. In 
this paper, we present the results obtained using a single real engineering model, the 
P-50 FPSO (Floating Production Storage and Offloading), with 30 million triangles 
and 1.2 million objects. This model was chosen because it contains many regions 
where small or thin objects create visual artifacts when represented using voxels. 

Performance tests were made over a typical walkthrough of the model. The 
machine used was an Athlon X2 64 4200+, with 4 GB of RAM memory, nVidia 
GeForce 8800 GTX graphics card with 768 MB of memory running on Windows XP 
Professional 32-bit. 

The model was preprocessed on the same machine, but using Windows XP 
Professional 64-bit to allow the preprocessor to have access to all the available system 
memory. The entire model was preprocessed in 27 hours on a single machine. 

Transparency information, which was added to all voxels of the model, only 
increased the total processed model size in 5%, from 1.56 GB to 1.64 GB. The 
rendering performance of the developed method was evaluated during a walkthrough 
that followed the path outlined in Fig. 4. 

Frame rate information was recorded for each frame rendered. The data recorded 
compares the performance of the walkthrough over a model that uses the anti-aliased  
 

 

Fig. 4. Path followed on the walkthrough around the P-50 model 
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voxels developed with the performance obtained on a model that uses only the voxels 
presented in the original Far Voxels technique and occlusion queries. The frame rate 
obtained during the walkthrough over these two models is plotted in Fig. 5. 
Comparing the results obtained with these two different types of model allows 
verifying the efficiency of the developed anti-aliasing method. 

The graph shows that the performance does not decrease significantly when the 
new types of voxels are used. This indicates that the developed voxel anti-aliasing  
 

Anti-aliased voxels performance - P-50 model

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Walkthrough time

F
ra

m
es

 p
er

 s
ec

o
n

d

With voxels anti-aliasing
Without voxels anti-aliasing

 
Fig. 5. Walkthrough performance with and without anti-aliased voxels 

(a)  voxels without the anti-
aliasing technique 

(b) triangles only, no voxels (c) voxels with the anti-
aliasing technique  

Fig. 6. Results obtained using the developed technique compared with the ones obtained the 
original voxel strategy. The zoomed views are intended to be pixelated. 
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technique is efficient enough to be applied on larger models. Regarding visual quality 
improvement, Fig. 6 illustrates the difference between the voxels with and without 
anti-aliasing, comparing them to the ideal representation which uses only triangles. 

7   Conclusions 

This paper evaluated the use of the Far Voxels technique on models of offshore 
structures. Due to particular characteristics of these models, their visualization 
presented problems that were not treated in the original algorithm. To improve the 
visual representation of very small and thin objects, a detection method and an 
alternative voxel representation were implemented. This technique was implemented 
with a small simplification in the way transparent voxels are ordered, aiming at not 
increasing the CPU processing required to prepare the scene for rendering. 

The results were evaluated using real oil & gas platform models, and the algorithm 
performance with the anti-aliasing filter was not significantly inferior to the 
performance obtained with our implementation of the original Far Voxels algorithm, 
which by itself is far more efficient than using simpler optimizations. This is 
especially true for very large models. 
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