Augmented Reality Using Projective Invariant
Patterns

Lucas Teixeira, Manuel Loaiza, Alberto Raposo, and Marcelo Gattass

Tecgraf - Computer Science Department
Pontifical Catholic University of Rio de Janeiro, Brazil
{lucas,manuel,abraposo,mgattass}@tecgraf.puc-rio.br

Abstract. This paper presents an algorithm for using projective invari-
ant patterns in augmented reality applications. It is actually an adapta-
tion of a previous algorithm for an optical tracking device, that works
with infrared illumination and filtering. The present algorithm removes
the necessity of working in a controlled environment, which would be
inadequate for augmented reality applications. In order to compensate
the excess of image noise caused by the absence of the infrared system,
the proposed algorithm includes a fast binary decision tree in the process
flow. We show that the algorithm achieves real time rates.

1 Introduction

Augmented Reality (AR) is a research area interested in applications that en-
rich the visual information of the real environment where the users interact.
Computer vision algorithms are commonly used in AR applications to support
the detection, extraction and identification of markers in the real scene and to
continuously track these markers, allowing that users change their points of view.

The definition of what may be considered a marker has been changed as long
as tracking algorithms evolve; patterns of points, planar patterns and specific
characteristics of the tracked object may be considered markers. However, the
main requirement for markers remains the same: They should have a format that
can be easily identified. We propose an algorithm for a tracking pattern based on
projective invariants and demonstrate its good performance in the identification
and real time tracking of the pattern. The proposed algorithm is based on the
algorithm presented in [I], which was developed to support an optical tracking
system that works in illumination controlled environments, since it is based on
infrared (IR) filtering. We propose changes in this algorithm to allow its use
in non-controlled environments for the implementation of AR applications. The
main adaptation in the algorithm is the use of a binary decision tree classificator
to eliminate a significant part of false markers that appear in the image due to
the absence of IR filtering.

2 Related Work

One of the most common solutions for objects identification in AR is the use of
ARToolkit-like planar patterns [2]. In addition to the identification of objects,

G. Bebis et al. (Eds.): ISVC 2008, Part I, LNCS 5358, pp. 520-[529] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Augmented Reality Using Projective Invariant Patterns 521

(a) IR pass filter (b) no filter 4+ IR light (c) IR cut filter

Fig. 1. Same image with different illumination and filtering setups

this kind of pattern also allows the camera calibration in relation to the pattern,
enabling the easy insertion of virtual objects over or around the pattern. One
of the drawbacks of this kind of pattern is that it is very “invasive”, becoming
very apparent in the scene.

A different and more restrictive solution are systems that use IR illumina-
tion together with cameras with IR pass filters (filters that allow the passage
of high wavelengths only) to detect retro-reflexive patterns in the scene. This
combination of IR light and filters was used in [I] to develop a technique for
pattern identification and tracking. The problem of making AR with a system
that uses IR filters is that the captured image looks like a night-vision goggles
image, which is very different from the users’ normal vision — Figure

An attempt to use the above technique in an AR application was presented
in [3]. In that work, the solution to obtain a more “realistic” image was to use
lens without an IR filter, a weak IR illuminator to accentuate the retro-reflexive
markers, and fluorescent ambient light (that doesn’t emit IR). The work also
presents a technique to project virtual objects using patterns of collinear points.
This approach, however, presented two problems. The first one is that the image
is still preceptively altered due to the absence of the IR cut filter (filter that
doesn’t allow the passage of high wavelengths), present in any regular camera.
This difference is showed in Figures[1(b)|and[1(c)| The second problem is that the
absence of an IR pass filter introduced a lot of noise in the image, what increased
the time spent to find the patterns in the scene, restricting the velocity of camera
movements to keep real time rates.

The present work proposes a solution for the above mentioned problems and
explores the use of collinear patterns to support AR applications. Examples of
applications where this proposal may be used are applications for adding or vi-
sualizing information over previously marked objects, where the main problem is
the necessity of large patterns in the scene, falling again on the “visual invasion”
problem of ARToolkit-like patterns.

3 Original Algorithm for Projective Invariant Patterns

In this section we explain the algorithm originally proposed in [I], upon which
the algorithm proposed here is based. The original algorithm will be referred as
APIP (Algorithm for Projective Invariant Patterns).

522 L. Teixeira et al.

3.1 Tracking Algorithm

APIP was developed to support the process of creation, identification and track-
ing of specific patterns used in an optical tracking system. This kind of system
works in a restrictive interaction ambient, defined by the properties of IR light
and retro-reflexive materials used to accentuate the markers from the rest of the
scene. APIP may be summarized as:

Input image of each captured frame
Image binarization
Extract circular areas based on contours found in the image
Group circular areas using a quadtree
For each quadtree branch
Generate test patterns of 4 markers. These test patterns are
generated by the combination of the circular areas
For each generated pattern
Execute the collinearity test
If collinear
Test the value of the projective invariant for this pattern
Compare the value of the projective invariant of the
candidate with the value of the wanted pattern
If equal
Save the set of markers that compose the pattern
If the pattern is recognized
Create a bounding area around the markers so that in the next
frame the markers may be extracted in this area

3.2 Main Techniques Used by APIP

Projective Invariants: The implementation of projective invariant properties
has been discussed especially in the area of pattern recognition [4]. It is based
on the invariant property of cross ratio, particularly in the case of perspective
projection. The cross ratio property states that if we have 4 collinear points
(A,B,C,D) we can define a cross ratio value based on these points distances

(2

according to the following relationship: Crossratio(A, B,C,D) =

Collinearity: Collinearity is a perspective projection invariant characteristic
explored in the proposed tracking application. This characteristic, besides having
an unique identifier extracted from the projective invariant theory, may generate
a specific format that can be used as a filter to discard several candidate groups
of 4 points that don’t fit this format.

Bounding Area: A second technique used to reduce computational costs is the
generation of a bounding area around the pattern position in the current frame.
Once the pattern is found and validated, the system creates a bounding area,
used as a simple way to predict and restrict the area where a well recognized
pattern may appear, based on information from frame t in frame t+1.

Augmented Reality Using Projective Invariant Patterns 523

3.3 Limitations

APIP was developed to work in an environment where image noise problems
are reduced due to IR filtering. This avoids the generation of false markers that
would hamper its real time performance. The proposal of the present paper is to
adapt the algorithm to be used in environments without the IR restrictions. The
main problem with this new approach is that the number of false markers are
increased due to the absence of the IR system (IR pass filter 4+ IR illumination).
We show that with some modifications in APIP we can quickly discard these false
markers (or at least the majority of them), keeping the real time performance,
necessary in AR applications.

4 Adapted APIP

In order to treat the problem of noise increase, we developed a marker classi-
fier based on machine learning. This classifier is a binary decision tree (BDT)
that is used to eliminate the majority of false markers. The BDT is necessary
because the algorithm to find ellipses [5] only adjusts the best ellipse within a
connected component with any format. In addition to the BDT, we introduce a
restriction for the size of the pattern in order to help the optimization consider-
ing the specific case of using the projective invariants technique in AR. About
the illumination, the system just assume that the light sources are static or only
exist ambient illumination. Figure 2l shows an overview of the adapted APIP.

4.1 Binary Decision Tree Classification

BDT is a fast and broadly used form of classification [6]. The tree is generated
by passing a list of examples for a generic algorithm of decision tree generation.

. . . Contour : . Elimination
@ X Ellipse list
i;r;:;a Color image binarization Binary image iiEeiEn P of false
and ellipses
ellipse fitting using BDT
S Filtered Ellipse list
For each combination of four ellipses
A . Ly AT ~N Invariant | —»| Search a possible
ol it S il calculation pattern that matching
Update of
bounding —J

area position

Clinput data @ Output data CJAPIP process [New process

Fig. 2. Adapted APIP process flow

524 L. Teixeira et al.

Each example is a register of the universe about which we want to learn. It is
formed by the attributes that describe this example in that universe and the class
to which it belongs. The algorithms that need the correct class included in each
example during the training are called supervised algorithms. The intermediary
nodes of the tree have a reference for an attribute and two child nodes. Leaf
nodes store only one of the possible classes in the universe. In order to use
the tree to classify a sample (i.e., an example without an associated class), we
traverse it from the root and, at each intermediary node, we use the attribute
associated to this node to decide the child to go. When we arrive at a leaf node,
its associated class is the result of the classification. In this section we describe
how to construct a BDT capable of eliminating the majority of false markers in a
segmented image. Initially we explain how to choose the attributes to describe an
elliptical marker. Then, we show how to generate the training examples (corpus)
and suggest a technique to increase the robustness of the corpus. We then define
the tree generation algorithm we use and explain how to use the tree, keeping it
robust with the markers’ scale variation.

Attribute Generation: APIP doesn’t restrict the kind of marker, but to create
a smaller and more robust BDT, we are going to be restricted here to elliptical
markers. We can use circular or spherical markers in the scene, which will be
viewed as ellipses in the image due to perspective distortion. In order to describe
image segmented areas in discrete attributes, we may use complex methods that
use adjacent angles, such as that proposed in [7]. These methods achieve good
results, but it is shown that performance of attribute generation is expensive,
on average 20 ms for frame. However, the mentioned methods are proposed to
identify complex shapes like hand signs, and we are looking for ellipses that are
much easier to define. In order to increase the performance we use an aligned
patch of binary image with A x A around the centroid of the best ellipse that
fits into each segmented area. Therefore, a sample has A? binary attributes that
indicate whether each pixel of the patch is white or black.

Generation of the Training Examples: The set of training examples is
generated by making a movie with IR cut lenses over the interest area containing
the patterns and the background where the AR application will take place.
To reduce the size of the BDT, we use a reduced dataset, since we need the
classification as fast as possible. However, we are accepting the possibility of
having to make new trainings for different applications.

The movie must be recorded with smooth camera movements, so that the
bounding area doesn’t loose the pattern, what would demand reinitialization,
which is a slow process. After that, the invariants’ values are measured in some
frames with different points of view that were manually chosen. With the mea-
sured values, we start the APIP process of extracting and classifying the points
in each frame as marker or non-marker. Although this classification is 100% reli-
able, some segmented areas classified as non-marker by APIP may have a format
very similar to an ellipse. Since we don’t want that these cases confuse the BDT
training, we use a stronger elliptical forms detection algorithm [§] to remove

Augmented Reality Using Projective Invariant Patterns 525

them from the training. We could have changed the class of these points instead
of removing them, but we would be assuming the error of the ellipses algorithm,
which may identify ellipses that are not very similar to those we want, and po-
tentially augmenting the size of the BDT, unnecessarily. Finally, we generate a
file with the attributes for the remaining points and their corresponding classes.
This file is the input of the decision tree generation algorithm.

Oversampling: We showed that from the binarized image and the detected
ellipses we generated the samples to be classified by the decision tree. In this
process, each ellipse generates a single sample. In order to generate more training
samples without having to capture more images, we use a sample extrapolation
process. In [9] homographies were used to extrapolate samples of other perspec-
tives to a patch, but this works well only in planar situations, which is insufficient
for our system. Therefore, we use a more limited hypothesis, derived from the
assertion that a patch around a centroid not aligned with x and y is equivalent
to a camera rotation over the “roll” axis.

The Decision Tree Learning Algorithm: Rosten and Drummond [I0] suc-
ceeded in using ID3 algorithm [II] to classify points with the knowledge of
neighborhood color. Then we choose the C4.5 algorithm [I2] (an extension of
ID3) as the decision tree generator.

The learning algorithm generates a tree that can be used directly with the
aligned patches of the points detected in real time, but in order to augment the
robustness of the process regarding the scale, an additional process was added.
The tree theoretically classifies the ellipses of the sizes it was trained. However,
there are cases of ellipses larger than those used in the training, that happens
when the user gets closer to the interest area. In such cases we use the ellipse’s
bounding box to calculate a factor to reduce the ellipse to a size a little smaller
than the A x A patch. This factor is used to guarantee that the ellipse reaches
a size compatible to the training and that its contour is well defined.

4.2 Pattern Maximum and Minimum Sizes

The excess of noise may generate false markers that pass through the previous
tests. To reduce even more this possibility, we define maximum and minimum
sizes for the pattern. We suppose that in an AR application it is normal the
necessity of having space for a virtual object to be included in the scene, which
allows the definition of a maximum size for the pattern. For the minimum size,
we use the assertion that when the object is too far, the possibility of detecting
the pattern is small. Since this filter is applied before the ordination of the
points, we still don’t have the organization of the pattern, but just a list of
points. Therefore, we make these tests calculating the minimum and maximum
x and y for the list of points, which define the bounding box of this group of
points.

526 L. Teixeira et al.

5 Results

Real time performance is an important requirement of AR applications. For this
reason, the evaluation of the proposed algorithm is focused on this requirement.
We assume that a real time AR application must be visualized at rates equal or
greater than 30 fps, which means that the processing time cannot exceed 33 ms.
The processing of an AR application includes not only the pattern identification
and tracking, but also complimentary processes, such as the insertion of virtual
objects in the scene. Therefore, we assume that the maximum execution time
allowed for the proposed algorithm is 15 ms, i.e., half of the maximum processing
time allowed. In the following we present an analysis of the individual costs in
terms of time of the algorithm’s key processes. At the end we can evaluate the
limitations of parameters and conditions to accomplish the 15 ms restriction.

5.1 Image Loading and Markers Extraction

In this section we present some measured times for the processes of loading
the image buffer, and the segmentation and extraction of elliptical markers in a
synthetic image with the following characteristics: a base circular marker named
of type 1, marker of type 2 (with the double size of type 1). Some results on
these measures are presented in Table [l

Table 1. Time (in milliseconds) spent to load and detect circular markers

1| 10| 20| 30f 40| 50
Markers type 1 |1.718]1.891|2.078|2.266|2.437|2.625
Markers type 2 |1.719]1.953|2.219|2.468|2.703|2.953

Markers type 1+2| ——[1.922]2.140|2.360|2.593|2.813

Based on the results presented in the table, we may calculate the average
relative time to extract a marker as 0.02275 ms. The results also show that
depending on the number of markers and their sizes, the loading and extraction
times vary, but the average time estimative indicates the maximum number of
markers that may be treated at each frame.

5.2 Collinearity and Projective Invariants Tests

We also measured average times for collinearity tests and for the calculation
and comparison of the projective invariant value for a collinear pattern, for
collinearity test the mean time was 0.0000703 ms, and for projective invariant
test with ordering pattern points: 0.0001600 ms.

These times were calculated as an estimative of the time to evaluate a single
collinear pattern composed of 4 markers. As the total number of patterns to
be analyzed is obtained by the number of combinations in 4 of the number of
markers detected in the image, it is possible to define a formula to find the total

Augmented Reality Using Projective Invariant Patterns 527

cost (in time) and the maximum number of markers that can be present in an
image: C} * (Collinearity test + Proj. invariant).

As may be seen from the above formula, the algorithm must give priority
to the reduction of false markers passed to the process of pattern generation.
The linear increment of the number n of detected markers causes an exponential
increment in the combination of points to be tested as possible patterns. For
this reason, the implementation of the BDT test was necessary to remove a
large number of false markers.

5.3 Cross Validation

Results were obtained through 5-fold cross validation tests. The Datasets used
were five training films of the same scene, recorded with smooth camera move-
ments throughout the scene. This scene has the objects shown in Figures [3]
and [l Each video has around 16 seconds. We couldn’t use randomly chosen
groups of equal sizes because of the necessity of having different perspectives for
the training. The A used was 15.

Classification results are described by four indicators: Number of true mark-
ers (TM), number of false markers (FM), number of true non-markers (TNM),
number of false non-markers (FNM). The size of the pruned tree will referred
by PTSize and the quality evaluators are described by:

Precision = % Recall = ﬂ
NMTTNM + FNM NMTTNM + FM

Table 2. 5-folt cross validation

PTSize|#frames| TM|FM|TNM |1-Precision s |Recallyas
1 77 611|2424| 20|85358 0.000199| 0.999766
2 81 527(2099| 9|76144 0.000276| 0.999882
3 81 403(1601| 11|47126 0.000297| 0.999767
4 77 438|1715| 3749937 0.000400| 0.999260
5 89 534(2122| 14|68206 0.000337| 0.999795

We use the BDT to eliminate non-marker ellipses. This is the reason to an-
alyze its recall and precision. The main requirement of BDT training is that
precision be very high, because when the BDT obtains false non-markers, pro-
jective invariants don’t find the pattern. To achieve real time rates, recall needs
to be high enough to remain a manageable number of false markers for projective
invariants. Results in Table[Plindicates that these requirements are accomplished.

5.4 Case Study

In this section, we test a real case using the BDT training described in the
previous section. We recorded a video of 25 seconds with random movements
to allow the capture of diverse views of the scenes showed in Figure [3l In the

528 L. Teixeira et al.

Fig. 3. Scene Objects

+ Markers detected Valid markers after filtered by BDT — - — - Frame lost

Number of markers

Frame #

Fig. 4. Attribute generation

graphic presented in Figure [we show that all captured views contain more
than 60 markers in the elipse list and after filtered by the BDT, they decrease
to an average of 7 markers in the filtered elipse list. Black lines in the graphic
indicate views where markers of the pattern were lost, invalidating the detection.

For our experiments we used a modest 1.2Ghz tablet PC, and we obtained
the following times: for the executions of the BDT we achieved less than 1 ms
per fame analyzed for all frame samples. We also made synthetic tests to find
the worst case of A = 15 (225 attributes to test) and defined a sample of 400
detected markers per frame. The time needed to filter the sample was 2.4 ms.
We concluded that, for the tested hardware, real time rates are achieved if the
BDT, the collinearity filter and the size filter allow the passage of no more than
25 markers to be evaluated by the projective invariants.

6 Conclusion

We presented a new algorithm for the detection and tracking of projective invari-
ant patterns, which are used as a support tool to develop AR applications. The
advantages of the proposed algorithm is that it uses less “invasive” patterns when
compared to planar ones, and allows the detection and tracking in non-controlled
environments, differently from IR-based systems. We calculate the computational
costs of all the processes that compose the algorithm and show that we can achieve
real time rates. We expect to implement complementary algorithms to enhance the
identification and tracking process, such as a camera calibration algorithm that
uses the information about the markers that compose the patterns.

Augmented Reality Using Projective Invariant Patterns 529

References

10.

11.
12.

Loaiza, M., Raposo, A., Gattass, M.: A novel optical tracking algorithm for point-
based projective invariant marker patterns. In: ISVC (1), pp. 160-169 (2007)
Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based
augmented reality conferencing system. In: IWAR, pp. 85-94 (1999)

Teixeira, L., Loaiza, M., Raposo, A., Gattass, M.: Hybrid system to tracking based
on retro reflex spheres and tracked object features (in portuguese). In: X Sympo-
sium on Virtual and Augmented Reality - SVR, pp. 28-35 (2008)

Meer, P., Lenz, R., Ramakrishna, S.: Efficient invariant representations. Interna-
tional Journal of Computer Vision 26, 137-152 (1998)

Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least squares fitting of ellipses. IEEE
Trans. Pattern Analysis and Machine Intelligence 21, 476-480 (1999)

Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22, 4-37 (2000)

Cho, K., Dunn, S.: Learning shape classes. IEEE Transactions on Pattern Analysis
and Machine Intelligence 16, 882-888 (1994)

Aguado, A., Nixon, M.: A new hough transform mapping for ellipse detection,
Technical Report, 1995/6 Research Journal (1995)

Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code.
In: Computer Vision and Pattern Recognition, CVPR 2007, pp. 1-8 (2007)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
European Conference on Computer Vision, vol. 1, pp. 430-443 (2006)

Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81-106 (1986)
Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in
Machine Learning. Morgan Kaufmann, San Francisco (1993)

	Introduction
	Related Work
	Original Algorithm for Projective Invariant Patterns
	Tracking Algorithm
	Main Techniques Used by APIP
	Limitations

	Adapted APIP
	Binary Decision Tree Classification
	Pattern Maximum and Minimum Sizes

	Results
	Image Loading and Markers Extraction
	Collinearity and Projective Invariants Tests
	Cross Validation
	Case Study

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

