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Abstract. There are a lot of three-dimensional reconstruction applica-
tions of real scenes. The rise of low-cost sensors, like the Microsoft Kinect,
suggests the development of systems cheaper than the existing ones.
Nevertheless, data provided by this device are worse than that provided
by more sophisticated sensors. In the academic and commercial world,
some initiatives try to solve that problem. Studying that attempts, this
work suggests the modification of super-resolution algorithm described
by Mitzel et al. [1] in order to consider in its calculations colored images
provided by Kinect. This change improved the super-resolved depth maps
provided, mitigating interference caused by sudden changes of captured
scenes. The tests showed the improvement of generated maps and anal-
ysed the impact of CPU and GPU algorithms implementation in the
super-resolution step.

1 Introduction

Real scene 3D reconstruction can be applied to several areas: engineering surveys,
like those provided by private companies technologies as Leica Geosystems [2]
and LFM [3], ergonomic studies, robots navigation [4], customers’ body capture
for clothing stores [5] and historical monuments models creation, as proposed by
Chen et al. [6]. Focusing on applications related to the human body, there are
several technologies that offer high quality reconstructions, however, their costs
are too high. Considering this scenario, an approach that allows depuration of
Kinect data to a quality level closer to that of the devices mentioned above,
would allow this type of use on a broader scale.

If, in addition to reconstructing high qualtity human body 3D models, such
a system could be manipulated by the movements of the joints detected by the
Kinect, a range of possibilities would open up. Grouping and processing depth
maps, RGB images and joint movements detected by the Kinect, this system
would enable real time controlled avatars generation. Primarily, a reconstruction
process applied to depth maps and RGB images would provide 3D meshes related
to each captured user body. Later, through Rigging and Skinning methods [7],
each 3D user model would be integrated to captured joints. Thus, each user
movement would distort the respective meshes in real time.

Scrutinizing the rebuilding process, we have three basic stages: the super-
resolution, global rigid registration and non-rigid registration. Super-resolution
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generates high resolution from N low resolution depth maps. The global rigid
registration originates a 3D mesh reconstructed from the high-resolution maps.
However, this reconstruction contains many artifacts as a result of user move-
ments during capture. To eliminate such problems, the preliminary mesh is sub-
jected to non-rigid registration.

To the best of our knowledge, there isn’t an open library that covers all
steps needed by those goals. In this context, this paper focuses on the first
fundamental step of the process: super-resolution. When analyzing data provided
by low-cost sensors, we note that available resolution is insufficient for a series
of high quality 3D reconstruction applications. From this simple observation, it
is possible to understand why reconstruction strategies, based on these sensors,
depend fundamentally on super-resolution algorithms.

Our research highlights the work of Cui et al. [8], due to the use of RGB
images information in the super-resolution calculation. Our work, based on open
technologies and on ideas present in commercial solutions, adapts the super-
resolution approach proposed by Mitzel et al. [1] and incorporates the concept
of using RGB information in the reconstruction process.

During the capture of several low resolution depth maps required for the super-
resolution process, a person’s clothing, for example, can move. This movement
creates a difference between input frames that culminates in artifacts in final
reconstruction. Using OpenCV library, this study looked into incorporating RGB
images provided by the Kinect to super-resolved depth maps generation, in order
to minimize mentioned problems. This approach has shown promising results
regarding removal of interference present in depth maps captured by Kinect.

This paper is organized as follows. In Section 2 we present related work.
In Section 3 we discuss the incorporation of colors consideration in the super-
resolution calculation. In Section 4 we present tests and results. Finally, Section
5 discusses our main conclusions and points to future work.

2 Related Work

A full human body 3D scan system using the Kinect would need two basic ele-
ments. First, for a particular person, it should be able to capture the minutiae of
the body with reasonable quality. Additionally, another module would associate
the mesh generated by Kinect and, in each movement, would distort the model.

The system described by Tong et al. [9] proposes the use of three Kinects. At
the beginning, it records a very rough template of human body. This template
is used to deform sucessive frames. To distribute resulting errors deformations,
global registry geometries is used, treating problems like occlusion. Successive
iterations, alternating between paired and global registry, occur until the algo-
rithm converges. Finally, model reconstruction is made using Poisson reconstruc-
tion method as described by Kazhdan et al. [10].

Cui et al. [8] use a different approach to allow the use of a single Kinect
to obtain meshes with a higher detail level when compared to those presented
by Tong et al. [9]. Depending only of Kinect provided data and not demand-
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ing a previously captured model, they reproduce in detail all face and clothes
geometry.

Low resolution and high noise level of data provided by Kinect demand a
smoothing step of surfaces generated from map provided by this device. New-
combe et al. [11] apply a bilateral filter in order to obtain a map with reduced
noise and preserved discontinuities. Schuon et al. [12] develop a super-resolution
algorithm capable of increasing depth resolution and quality of the data gener-
ated by a scanner based on structured light. Later, Cui et al. [13] improve this
method. Cui et al. [8] devise a new algorithm for processing the color and depth
data of Kinect. This algorithm presents a higher resolution, reduces noise and
preserves original surfaces details.

Cui et al. [13] approached the global rigid registration through a scan align-
ment probabilistic model that takes into account noise sensor characteristics.
However, this strategy solves local alignment. The same authors proposed a
global probabilistic alignment algorithm [8].

Non-rigid deformation of human body during scan makes the previous step
result not ideal. Taking advantage of the fact that the human body is highly
articulated, Cui et al. [8] improve the algorithm presented by Chang and Zwicker
[14] using a scan alignment probabilistic model which is robust to noise device.

Cui et al. [8], computing appropriate transformations from a total energy
function, solve the already known closed-loop problem. At the end, a texture
mapping is applied to attach to the model the scanned body appearance.

Those works have proven the feasibility of acquiring input data to human
body models generation using the Kinect. More than that, our paper suggests
the incorporation of colors consideration proposed by Cui et al. [8] to the data
term of Mitzel et al. [1] super-resolution approach. Basically, we have modified
the equation 1 proposed by Mitzel et al. [1].
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In equation 1, τ describes time in each iteration and 4I
(n)
H

corresponds to the
regularization term. After warping (Wk), blurring (Bk) and down-sampling (Dk),
the two equation terms induces super-resolved image IH , to all low resolution
frames, while imposing a linear diffusion of the intensities weighted by λ. Changes
made in equation 1 are described in the following section.

3 Incorporating Colors to Super-Resolution

This work focuses on the development of a super-resolution algorithm efficient to
be applied to depth maps provided by Kinect. During research, super-resolution
class provided by OpenCV library has proved to be the most promising as the
core of this work.

Well documented and widely used by the community, this library is available
for academic and commercial use under BSD licensing. The respective super-
resolution class is based on the strategy presented by Mitzel et al. [1]. However,
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Mitzel et al. [1] focus on video sequence images. This scenario does not consider
environments where we have two sensors information, that provide different data
of the same scene, as Kinect does, providing depth data and RGB images. Con-
sidering this, the present work unified the algorithm already implemented in
OpenCV [15] with the benefits of Cui et al [8], leveraging RGB images to depth
maps reconstruction process.

Both the use of the proposal of Cui et al. [8], as the adaptation of Mitzel et
al. [1] approach, were only viable because of negligible rotation of the object
between frames captured from a certain images group. In the case of adaptation
of Mitzel et al. [1] approach, for example, such characteristic between frames
allow an interpretation of the depth maps as images represented by levels of
intensity without impacting in any way the super-resolution algorithm originally
proposed for sequences of video frames.

Following the proposal of Cui et al. [8], the adjustment term A(k) — a matrix
which produces bigger values if original color frame is similar to the average of
the other images — is

1

Ck −
1
s

∑s

i=1 Ci
(2)

where Ck is the RGB frame corresponding to each depth map k, that is, the

related low resolution image I
(k)
L

. The i index varies between several RGB im-
ages used in the current reconstruction, being s the quantity of images used.
We should adjust the equation which describes reconstruction process of super-
resolved image from numerical method “Steepest Descendent”, in order to be-
have the adjustment provided by the color map contribution. Such an adaptation
leads to the following equation:
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where ∗ is the term-by-term product of A(k) with the regularization term
originally proposed by Mitzel et al. [1]. The array Ck dictates the dimensioning
of adjustment array A(k). However, it is term-by-term multiplied by the resulting
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), that is, it has to be βn×βm size, where
β is the resolution increasing factor. In this paper, we use β equals to 2. The
low resolution depth map provided by Kinect leads us to n = 640 and m = 480.
Thus, our adjustment term size might be 1280× 960. However, Kinect provides
us RGB images with 1280×1024 size. So, the second step of colors incorporation
was to adapt such images, so that each array Ck contains a image with 1280×960
resolution.

Later, after guaranteeing that, at instant k, low resolution map capture IL
and the respective already processed RGB image generation occurs at the same

time, the arrays I
(k)
L

and Ck are processed according to the algorithm described
in section 4.
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In summary, prior to processing the new algorithm, there are the preliminary
steps described in the algorithm below.

Preliminary processing

1: Adapt the low resolution depth map to the intensity levels

representation.

2: Adapt RGB images resolution from 1280× 1024 to 1280× 960.
3: Ensure the concomitance between low resolution map capture IL and the

respective already processed RGB image generation C.

The new algorithm guarantees that, if colored image corresponding to the
instant k, presents some difference when compared to other images of the group,

the respective map I
(k)
L

, will contribute less than others to the super-resolution
result. This is due to the incorporated term-by-term multiplication, where the
adjustment term A(k) has lower values for the pixels that are very different from
their corresponding pixels in other frames.

4 New Algorithm

The goal of the algorithm is: given a sequence of N low-resolution images

{Ik
L
}
N

k=1, to estimate the movement between frames and infer high resolution

image IH of the current scene. If some disparity in the colors map C(k) cor-

responding to each frame I
(k)
L

is detected, such low resolution image may not
contribute to the final result.

New algorithm

1: Choose an image of the sequence as reference.

2: Estimate for each pair of consecutive frames the shift between the

current frame and the next one using optical flow algorithm.

3: Use motion fields u
f
i and v

f
i to compute motion fields uri , v

r
i related

to the reference image, observing that f indexes (movement between

mutual frames) and r (movement between reference frames and

individual images) must indicate differences between motion maps.

4: Interpolate motion fields uri e vri in order to reach the same

dimension of IH image.

5: Initialize IH, setting values to 0.

6: Csum := 0;
7: from k = 1 to N do

8: Csum = Csum +C(k)

9: end for

10: from k = 1 to N do

11: A(k) = 1

C(k)
−

1

s
Csum

12: end for

13: from t = 1 to T do

14: sum := 0;
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15: from k = 1 to N do

16: b :=WkI
t
H ("backward" warping);

17: c := h(x, y) ∗ b (convolution with Gaussian Kernel);

18: c := Dc (down-sampling to IL dimensioning);

19: d := (IkL − c);

20: b := DT d (up-sampling without interpolation);

21: c := h(x, y) ∗ b

22: d :=W T
k c ("forward" warping);

23: sum := sum+A(k)d (colors map consideration);

24: end for

25: It+1
H = ItH + τ (sum− λ# ItH);

26: end for

With these changes, a given frame I
(k)
L

contribution to the final result is
lower in the case that corresponding Ck presents a color pattern different when
compared to the average color of the other.

5 Tests

Aiming at finding some improvement arising from colors consideration included
in the proposed algorithm, a turntable test was designed.

A turntable was positioned two meters from the Kinect. It was marked so as
to be divided into eight identical pieces. At each frame generated, the turntable
was rotated 45 ◦. Furthermore, two marks have been made on turntable surface
to indicate the position of two interference objects over tests. Test sequence is
as follows:

1. With turntable empty, depth maps are captured until the first super-resolved
frame is generated;

2. Interference objects are positioned on the respective marks;
3. Each super-resolved frame generated, the turntable is rotated 45 ◦.
4. Previous steps are repeated 25 times.

This procedure was executed once for the original Mitzel el al [1] algorithm
implementation, without colors consideration, and again for the proposed im-
plementation that incorporates RGB images to the process. Objects added after
first super-resolved frame generation act as interferences between captured RGB
images. Due to turntable rotation, these differences move through pixels at each
frame. So, colors consideration inclusion might avoid that depth of interference
objects has some influence upon the super-resolved frames.

Using the original Mitzel et al. [1] algorithm, at the twelfth high resolution
image generated, interference objects which must not appear, were visualized,
as shown in figure 1b. Executing the algorithm proposed in this paper, after
25 repetitions of the third step, no signal of interference objects emerged, as
shown in figures 1c and 1d. Thus, this result indicates that colors consideration
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(a) Captured scene with interfer-
ence objects

(b) Interferences detected when
RBG images are not considered

(c) First scene considering RGB
information

(d) After several repetitions
frame does not show interfer-
ences

Fig. 1. Turntable test

avoids that abrupt changes in the captured elements have some influence on the
distances presented in super-resolved map.

In addition, we wanted to show that the proposed algorithm has mitigated
the interference caused by abrupt modifications in captured scene, human being
clothes for example, during the super-resolved images generation process.

For such an assessment, a human being was positioned in the centre of cap-
tured scene. We capture this environment continuously. On average, every 10 s,
capture was frozen and the person put on a suit. After three new frames capture,
the process was frozen again and the person undressed the suit. This procedure
has been repeated for 120s.

If the proposed algorithm is capable of eliminating artifacts caused by punc-
tual changes between captured frames, as the result reached by Cui et al. [8],
when super-resolved maps were generated considering RGB images, the suit will
not be detected.

The results of the original algorithm described by Mitzel et al. [1] suffered
interference of the frames which contain the suit, as shown in figure 2b. When
using the algorithm proposed at this work, the suit does not appear, as shown
in figures 2c and 2d.

This test has shown that, within a 3D digitalization system dedicated to
human body, the use of RGB images would avoid clothes movement of captured
body, for example, harm depth levels provided by final mesh reconstruction.
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These tests indicate that, with color consideration, super-resolved depth maps
will be less prone to interferences during capture process.

(a) Captured body (b) Captured body with interference

(c) First scene considering RGB infor-
mation

(d) After several repetitions frame
does not show any interference of the
suit

Fig. 2. Test with human body

Finally, to analyse the impact of CPU and GPU algorithms we use a computer
with Intel Core i7 with a 1.73GHz Processor, 6 GB of RAM and GEFORCE GT
425M Video Card. Runtime related to the ten first frames has been computed
for the following distinct combination:

– Using CPU and without colors consideration;
– Using GPU and without colors consideration;
– Using CPU and with colors consideration;
– Using GPU and with colors consideration.

The captured resolution of depth maps was 640 x 480 and of the colored
images was 1280 x 1024. Since scaling factor β was 2, super-resolved resolution
was 1280 x 960.
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Tests have showed that CPU runtime is sevenfold bigger than GPU runtime.
Analising color consideration impact, CPU runtime increased about 9% — to
frame0 — and 18% — to the other ones. GPU runtime increased about 42% —
to frame0 — and 41% - to the other frames.

6 Conclusion

This paper aimed at making a super-resolution system capable of increasing res-
olution of depth maps provided by low-cost sensors. That system would serve as
a basis for human bodies 3D scanning. To mitigate problems caused by possi-
ble movements of captured bodies, we used color images of the same scene that
provided the depth maps.

Theoretical contribution of this work consists in incorporating Cui et al. [8]
approach, to Mitzel et al. [1] algorithm, through equation 3. The two concepts
junction, here proposed, has allowed use of Mitzel et al. [1] algorithm implemen-
tation provided in OpenCV library as a base for the presented strategy.

The classes, dedicated to super-resolution, provided by OpenCV library de-
manded some modifications to accomplish two aspects:

– depth maps and colored image concomitant acquisition;

– incorporation of color images consideration in the original super-resolution
algorithm.

These changes, culminated in exposed results. Tests have indicated that col-
ored images use improved super-resolved depth maps in the sense by avoiding
interferences caused by abrupt changes in captured scene.

Addressing future work possibilities, it would be interesting to exploit two
points:

– system implementation optimization;

– proposition of a new approach over colors consideration that could be com-
puted faster.

Global and non-global registration modules development would continue low
cost 3D digitalization system and would allow volumetric tests capable to provide
new data regarding the efficiencies of colors consideration. More than that, that
implementation would allow comparison with reconstruction results reached by
Cui et al. [8].

Furthermore, future tests could analyse two aspects:

– What is the response of the proposed algorithm on scenes where the object
has a small interference contrast from the rest of the captured scene?

– If we use a low-resolution image as input for the rigid and non-rigid regis-
trations, which would be the impact on the reconstructed 3D mesh?
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7. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. ACM
Transactions on Graphics 26, 72:1–72:8 (2007)
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