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Abstract. Aim of intense research in the field computational vision, dense 3D

reconstruction achieves an important landmark with first methods running in real

time with millimetric precision, using RGBD cameras and GPUs. However,

these methods are not suitable for low computational resources. The goal of this

work is to show a method of visual odometry using regular cameras, without

using a GPU. The proposed method is based on techniques of sparse Structure

from Motion (SFM), using data provided by dense 3D reconstruction. Visual

odometry is the process of estimating the position and orientation of an agent (a

robot, for instance), based on images. This paper compares the proposed method

with the odometry calculated by Kinect Fusion. Odometry provided by this

work can be used to model a camera position and orientation from dense 3D

reconstruction.

1 Introduction

Augmented reality applications using cameras are increasingly present in live broad-

casts, advertisements and games. The critical requirement in the above cases is to

estimate the camera position and orientation. This process of estimating the orientation

and position with a camera is known as visual odometry. The first work on this subject,

developed by Moravec [1], dates from the early 80’s and was designed to control a

robotic probe. The visual odometry is currently a subset of a more general problem

known as structure from motion (SFM) [2]. It focuses on calculating the camera

position and direction sequentially as it processes new frames. When it generates a map

of the environment, we have methods called simultaneous localization and mapping

(SLAM), as Davison et al. [3], Klein and Murray [4], and Grisetti et al. [5] has

presented. Unlike the visual SLAM methods that seek real-time, the methods of dense

reconstruction try to recover the geometry of a scene, also based on visual odometry.

An example of a dense reconstruction system is Kinect Fusion [6], which uses a dense

global model and an RGBD camera, achieving great precision in the reconstruction.

The applications of such methods are diverse.
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In this work, we implemented a method for calculating the visual odometry with a

pipeline based on sparse features with local adjustment and using information from

dense reconstruction, in this case, the 3D position of reconstruction points with 2D

information of features. To assess the accuracy and performance of the system pro-

posed here, the results are compared with those obtained with Kinect Fusion. We have

put together data from a dense 3D reconstruction previously made by Kinect Fusion,

with position calculated by a classic SFM pipeline with sparse features, without the use

of a GPU or an RGBD camera. Thus, information such as dense geometry of a scene is

available and the odometry may be calculated in devices with less computational

power.

The text is organized as follows. Section 2 provides a summary of the work related

to dense 3D reconstruction and not dense visual odometry. The following section

presents the proposed method. Section 4 describes the results of the proposed model

with Kinect Fusion in two scenes. Finally, the last section presents conclusions.

2 Related Work

Visual odometry is a widely studied topic [7]; it has several techniques that leverage the

use of common RGB cameras, as well as new RGBD cameras with depth information.

In this paper, we focus on real-time techniques using a single RGB calibrated camera

and an RGBD camera. The RGBD camera is used in a first step to make the dense

reconstruction of a predetermined environment, and in a second step, the visual

odometry is made with an RGB camera, allowing this device to know where it is within

the previously mapped environment. Visual Odometry techniques can be classified into

two types, those based on sparse environment information and those that use all

environmental information by creating a dense representation of the same.

The visual odometry techniques using sparse points were successfully implemented

to support augmented reality and robot control applications. The typical pipeline of

these methods, as described by Nister et al. [8], is to first extract points of interest with

the use of detectors like Harris [9] and FAST [10] and then establish the correspon-

dence between the points of interest calculated in the current frame and the equivalent

points in the previous one. The correspondence is made by comparing an area around

the points, using some metrics based on descriptors such as SURF [11] and FREAK

[12]. Finally, the rigid body transformation between consecutive frames is estimated

with 2D-2D methods decomposing the essential matrix, or 2D-3D methods using

triangulation [13] between pairs of previous 3D reconstructed points. The stage of

points of interest correspondence is not free of errors and the amount of points is

important for filtering outliers using methods like RANSAC [14].

The techniques of dense visual odometry, unlike the sparse ones, use information of

the whole picture. There are two main approaches: those based on photometric error and

those based on iterative closest point (ICP) [15]. A work that shows the first approach

based on photogrammetric error is the work described as DTAM [16], where the authors

were able to extract the depth of a picture through the analysis of a set of images filling a

distance d, building a discrete cost volume to assign a depth value to a certain pixel. In

the line of ICP, the methods seek to align, with a rigid body transformation, a set of 3D
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points to another set of 3D points, minimizing the distances between corresponding

points. There are several variations of ICP. A widely used is the plane to point [17],

where their normals are also used for calculating the alignment. When depth information

is available in a depth map from a projection as in an RGBD camera, the technique

known as projective date association [18] can be used with better performance to search

nearest neighbors, commonly used in ICP methods for the calculation of the corre-

sponding points. The technique that better uses this approach is the Kinect Fusion [6],

which is the basis for our proposal in the first stage.

Our proposal is to create a hybrid method that in a first step uses dense odometry

data to create a 3D map of an environment that in a second step can be used by an

ordinary RGB camera to perform a sparse odometry without the high computational

costs derived from the image processing required by these techniques.

3 The Proposed Method

The method proposed in this work is divided into two blocks:

• The first block carries out the construction of an offline time 3D map using the

dense reconstruction offered by Kinect.

• The second one uses the extracted data from the 3D map to perform a visual

odometry in real time. For this, it uses keypoints and descriptors defined from the

data captured in the first block.

The procedures performed in each block are described below.

3.1 Offline Map Generation

Kinect has two cameras, an infrared used to generate the depth map and an RGB

camera. As the cameras are tightly coupled and calibrated, there is a transformation that

takes a pose from the RGB camera to the IR camera. With this information, Kinect

Fusion performs the dense 3D reconstruction of the environment by following these

steps:

• Obtain the depth map, smooth the map maintaining edges, and calculate normal for

each point.

• Estimate the pose of the new depth map.

• Update the global volume with the new depth map.

• Generate a depth map through raycast using a prediction for next pose and use this

map to calculate the next pose.

Since the Kinect Fusion works at 30 FPS, the same capture rate of the cameras, then

it is possible to calculate a 3D pose for each captured frame. With this information and

the RGB stream (Fig. 1) a keyframes map is constructed, being composed of a set of

keypoints, a descriptor, and a 3D pose for each certain interval of the 3D map.

This dataset will be used to calculate the visual odometry in the next step. This

process starts reading the stream of IR and RGB cameras sequentially (Algorithm 1,

lines 2–3). After running the fusion pipeline (line 4), it is checked whether the tracking
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is valid (convergence given by Fusion Kinect API). Moreover, if the time interval

between capturing the two images is below a threshold and there was a movement to a

distance greater than 10 cm or an angle larger than 10° between the last image stored in

the buffer and the current one. After this another raycast of the volume using the RGB

camera pose and its intrinsic parameters is executed, and with this data an image where

the pixels have the 3D coordinates of the world is generated (line 7). RGB and 3D

images are stored in a buffer. After a certain number of frames the process is finished

and the buffer is written to disk. Thereafter, for each 3D and RGB images set their

respective pairs of SURF keypoints and FREAK descriptors are generated.

_________________________________________________________________
Algorithm 1: Create the Keyframe map________________________________________

1: loop

2: Imir readImageIR 

3: ImRGB readImageRGB 

4: fusion(Imir) execute fusion pipeline

5: Tir
w fusion.readPose(Imir) 

6: If changeAngle(Tir) && timeStampOK && fusion.trackOK then

7: Im3d fusion.raycast(Trgb
ir Tir

w, Krgb) new raycast

8: buffer (Imrgb, Im3d,, Trgb
ir Tir

w) save 3D image, 2D image and pose

9: end if

10: end loop

11: for all(Imrgb, Im3d,,Pose) belonging to buffer do

12: keypoints surf(Imrgb)

13: descriptors freak(keypoints, Imrgb) 

14: map (pose, keypoints, descriptors, Im3d) add tuple to map

15: end for______________________________________________________________

The SURF keypoints and FREAK descriptors, lines 12 and 13, are calculated using

the OpenCV library [19]. The calculation of the non max suppression is done by

comparing every neighbor, pixel by pixel in a simple way, although there are algo-

rithms with higher performance. This allows the implementation to be parallelizable.

The parameters used in the calculation of keypoints are: value above 300 for deter-

mining the Hessian, 4/8 and two scales per octave. The implementation of FREAK

descriptor uses the size of keypoints (in the case of SURF keypoint, the kernel size

used in the range where the keypoint was found), in order to adjust the position and

area of the sample. The scale in the area of the sample allows the FREAK descriptor to

be resistant to scale operations.

3.2 Odometry in Real Time

The visual odometry provides a pose g(R, T) using the stream of an RGB camera and

keyframes map. The pose is calculated according to the following steps:

• Read the RGB image stream (algorithm 2, line 2)

• Calculate the SURF keypoints and FREAK descriptors; search similar descriptors

of the current image in keyframes and create the set of 2D and 3D points (lines 3–5)
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• Calculate the pose minimizing the reprojection error of 3D points in the current

image (line 6)

• Find nearest keyframe following a metric between angle and distance of the current

pose with the calculated pose (line 7).

3.3 Matching

This step makes the association between the descriptors of the current frame and

keyframe descriptors. Initially the SURF keypoints are calculated (line 3 Algorithm 2)

and after the FREAK descriptors are calculated, line 4.

__________________________________________________________________
Algorithm 2: Odometry______________________________________________________

1: loop

2: ImRGB readImageRGB 

3: keypts surf(Imrgb)

4: descriptors freak(keypts, Imrgb) 

5: (2D keypts, 2D current, 3D) matching(k.keypts, k.descriptors, keypts, descriptors)

6: pose calcPose(2D keypts, 2D current, 3D, k.pose, poseCurrent) 

7: k searchNext(map, pose) 

8: end loop________________________________________________________________

This is followed by a search of the next neighbor (NN) using as the metric the

Hamming distance, which is given by SUM (XOR(s1, s2)), being s1 and s2 two binary

strings, the xor or exclusive and the SUM function has the numbers 1 in the resulting

string. The search is done by brute force comparing each descriptor set of the current

frame with the set of descriptors of keyframes by selecting the descriptor with less

distance for each pair. We used OpenCV BFMatcher class that has optimizations.

After the search for the closest neighbor, a filter is created to select the strongest

correspondences, making sure that the shortest distance to the “i” assembly descriptor

A is the “j” descriptor set B, and if this relationship is valid in the opposite direction too

(Fig. 2). This calculation is done crossing the tuples calculated in search nn(A,B), for

each tuple (ai,bj,d) update the tuple (bj,k,dmin) and (bj;j;d) if d < dmin.

Fig. 1. Flow process for the construction of offline map.
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The resulting tuple contains the filtered pairs. Figure 2 illustrates the process with

Euclidean distance, but the same is valid for the Hamming distance that satisfies the

axioms of distance, especially in the symmetry case d a; bð Þ ¼ dðb; aÞ.

3.4 Pose Calculation

The pose calculation is done by minimizing the reprojection error of 3D points found in

matching and projected in the current image. The residual is given by ri = π(Xi) – xi.

Where π is the projection matrix, Xi is a 3D point coordinate and xi is a pixel coor-

dinate found in the current frame.
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This is a problem of nonlinear least squares containing outliers. The projection can

be parameterized using the tangent space of the rigid body transformation, and

assuming a small transformation ξ ≈ 0 in relation to a previous pose G(R,T). This

assumption allows to calculate the Jacobian of projection π in a simple way with the

formula, as described in [20]. The simplification ξ = 0 is not always the case of the

current problem. The use of a robust descriptor allows the matching function with

considerable difference between poses and parameterization, which must take into

account this characteristic. Thus, the projection π is parameterized with the equation:

KðebxX þ TÞ ¼ Xp x ¼ X1
p

$
X3
p y ¼ X2

p

$
X3
p

with the variable x = (w1,w2,w3,t1,t2,t3). This problem is solved with the aid of Ceres

Solver library [21], using with automatic derivatives calculations [22] and the

Levenberg- Marquardt method (LM).

Fig. 2. Filtering procedure of the strongest correspondences. (Color figure online)
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3.5 Select the Keyframe

The keyframe that will be used for matching is the one with the minimum value of the

formula: (2−cos(a))2d, where d is the distance between the origin of the current pose

P and keyframe “ki”, and “a” is the angle between the Z components (Fig. 3).

The poses P and Pk (pose in the kth keyframe) transforms the world coordinates to

the camera and can be seen as matrices that change the orthonormal basis with change

of origin. The Z component points to the projection center and T is the distance to the

origin of the world coordinates. The cosine of the angle and the distance d are given by:

cosðaÞ ¼
Zk : Zp

jjZkjj jjZpjj
d ¼ jjTk ( Tpjj

4 Results

In this section, we present a comparison of the proposed method with the localization

calculated by the Kinect Fusion algorithm and analyze the performance achieved. To

validate our method, a test composed of two parts was designed: first, mounting and

generating a 3D map of the environment, and capturing and saving some keyframes to

this environment based on the data generated by the Kinect Fusion algorithm. A second

part does the analysis and comparison between the odometry calculated with Kinect

Fusion and with the proposed method based on the approximations and distances to

saved keyframes.

Fig. 3. Angle and distance between two poses.

Fig. 4. Outliers present in matching.
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The RGB camera of the Kinect device was used in our method to calculate its

position and navigate in the environment using the keyframe data, the descriptors and

the poses mapped to the first part of the proposed method. 3D maps were made using

the Kinect Fusion algorithm with a resolution of 128 voxels per meter and

512 × 384 × 512 voxels, resulting in a volume of 4 × 3 × 4 m and resolution by

voxel 8 × 10 × 8 mm.

The capture of the keyframes used in the mapping environment module was done at

every movement with a separated distance of 15 cm between frames or 10° angle, both

measures were extracted from the data of Kinect Fusion odometry. The calculation of

the intrinsic parameters of the RGB and IR cameras, and the relative pose between

them cameras was made with MRPT [23]. Two cases with two different scenarios were

chosen for our tests, where Kinect RGB camera is used to calculate the visual odometry

with our method. The camera works with the resolution of 640 × 480 pixels and a

frame rate of 20 FPS. Figure 4 shows views of the two test scenarios.

During the matching phase and the creation of the map, the SURF detector found a

high amount of keypoints, with an average of 652 per frame. In Fig. 4 there is a

matching display showing on the right, an image of one frame and on the left, a picture

in the keyframe saved with which the odometry will be calculated. The white dots are

the keypoints/descriptors and the lines are the matches found between them. In Fig. 4,

in the region in the table in the upper left corner we can see the outliers. Although there

are several outliers, we use the RANSAC algorithm to reduce them in the corre-

spondence process. The distance and the orientation obtained for the calculated pose in

relation to the value obtained by Fusion remained smaller than 4 cm and less than 2°

(Fig. 5, up) throughout the experiment in the case of the scene 1.

In Scene 1, the maximum value for the distance between the pose calculated by the

Fusion and the proposed method was 3.75 cm with minimum of 0.14 cm. The average

value was 1.83 cm and standard deviation of 0.67 cm.

Fig. 5. Position and orientation errors for scene 1 (Up) and scene 2 (bottom).
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Figure 6, shows the execution times for each components of our method. In the

case of the experiment on the scene 2, we had a noticeably poorer quality compared to

the results of scene 1. The maximum value for the distance in relation to the Fusion was

22.6 cm with minimum of 0.18 cm. The average value was 4.63 and standard deviation

of 3.80 cm (Fig. 5, bottom). Figure 6 shows the time values that each subprocess of

odometry calculations, as it is showed the bottleneck of the process is the step of

finding the characteristic points with SURF detection algorithms. Figure 7 shows the

graphic results of odometry process using the RGB camera. The white dots represent

keypoints/map descriptors and the blue line is the trajectory of the camera calculated by

Kinect Fusion algorithm.

The green arrows (Z axis) and red (Y-axis) represents the pose and the position

calculated by the visual odometry based on the keyframes saved as a part of our

proposed method.

5 Conclusion and Future Work

This paper proposed a method to use data from a 3D dense reconstruction made by

Kinect Fusion algorithm, joined to a pipeline that calculates the visual odometry using

sparse features. In the experiments, the proposed method calculates in real time the

pose of an external camera, based on information of pre-processed 3D mapping

Fig. 6. Execution times of visual odometry: scene 1 (left), scene 2 (right).

Fig. 7. Visual odometry results for scene 1(left) and scene 2 (right). (Color figure online)
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information and 2D features captured and saved for some keyframes in the tracking

environment. In the worst case, our method gets a distance error of 23 cm in relation to

Kinect Fusion odometry calculation.

The limitations of the 3D mapping using the Kinect device restricted our tests for

the proposed method to internal areas with controlled lighting and not allowed the

camera to be moved with great speed, the maximum angle recorded between pose and

keyframe was 20°, and the capture frame rate of Kinect device was 30 FPS.

One practical application for the presented method would be to use the visual

odometry calculation by the external cameras to give support to augmented reality

applications. For example, an initial user might be generating keyframes with the 3D

environment-mapping module, and other users in the same environment can simulta-

neously use the odometry information to view or interact with virtual objects placed in

the scene, without the need to have an RGBD camera. In this case, the user can use

their standard RGB cameras found in mobile devices such as smartphones or tablets.
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