
Kinect Projection Mapping

Thiago Motta, Manuel Loaiza, Alberto Raposo
Instituto Tecgraf de Desenvolvimento de Software Técnico-Científico

PUC-Rio – Pontifícia Universidade Católica do Rio de Janeiro
e-mail: {trmotta,manuel,abraposo}@tecgraf.puc-rio.br

Luciano Soares
Insper Instituto de Ensino e Pesquisa

e-mail: lpsoares@insper.edu.br

Abstract— Spatial augmented reality allows users to create a
projected virtual environment on irregular surfaces. This
demands an accurate Camera-Projector calibration process in
order to produce precise 3D information to match the real object.
This paper presents a framework to process data achieved from a
calibration of a Kinect-Projector system in visualization
applications, allowing the user to create an augmented reality
environment without having extensive process of the Camera-
Projector calibration, while maintaining a precise calibration to
the projection on irregular surfaces. Additionally, different
calibration techniques were evaluated in order to demonstrate
the better approaches.

Keywords—Calibration; Projection Mapping; Spatially
Augmented Reality;

I. INTRODUCTION
Virtual systems that augment the real world characteristics

have been showing to be relevant for several applications. The
Augmented Reality technology [1] mixes virtual reality
information with a real environment, traditionally adding
graphics and sound to what we see and hear in order to create a
unique experience in virtual interaction and simulation.

Tracking systems [2][3] have been developed allowing the
geometric localization of a user on a visualization platform.
With a set of cameras, Infrared (IR) light sensors and the use of
markers to find specific points in the world, they modify the
virtual environment based on a person movement. These
systems, although reducing the need of non-intuitive
interaction devices, still depend on displays to present data.

Traditional Projection Mapping environments, focused only
on visualization [4][5], use a static mapping of the scene,
measuring the dimensions of each object in this ambient, and
then reproducing these objects at the virtual scenario. This kind
of environment needs an extensive calibration in order to
achieve an accurate mapping of the world, having a high cost
of operation and not being able to be reused.

Taking these difficulties into account, the concept of
dynamic mapping/projection mapping [6] was established. This
concept defines the outcome attained when calibrating a
scenario without measuring it, thus working for whichever
objects placed at the scene, regardless whether they were added
before or after the calibration.

In the context of this research, a framework was developed
in order to take the calibration data into account and achieve a
dynamic mapping using the Microsoft Kinect.

The developed framework aims at users wanting to study or
use a tool capable of creating Augmented Reality environments
in a dynamic and simple way. A Projection Mapping system
can be used in a wide variety of cases, such as:

• Product presentation [7]
• Exhibitions [8].
• Advertising [9].
• Live performances [10].
• Entertainment [11][12].
• Medicine [13].

The proposed framework includes the following

characteristics:

• Process data obtained from a Kinect-Projector system
calibration in a more comprehensive way.

• Insertion of virtual 3D graphics in the captured scenes.
• Augmented scene reprojection.

The ultimate goal of this framework is to allow graphic

applications to make use of the data derived from a Kinect-
Projector calibration and apply them to a real environment,
creating an Augmented Reality visualization of the captured
scene in runtime.

The remainder of this paper is organized as follows:
Section II presents related work to Projection Mapping. All the
procedure required to achieve a Kinect-Projector system
calibration is described in Section III. Section IV details the
preliminary studies necessary in order to attain the proposed
goal. How to take advantage of the Kinect system is presented
in section V. System specification is described at section VI.
Section VII presents the results, and Section VIII concludes the
paper.

II. RELATED WORK
A Kinect-Projector system calibration has been used in

projects such as: RGBDemo [14], ProCamCalib [15], Open-
Light [16], and CameraProjectorCalibration [17]. These
projects identify the aforementioned problems and aim to
calculate the intrinsic and extrinsic parameters of the projector,
in the case of Kinect, its IR and RGB cameras are both
calibrated.

The initial part of this research consisted on studying the
four calibration methods above in order to better understand
their differences, pros and cons. After this, it was necessary to

4 SBC Journal on Interactive Systems, volume 5, number 3, 2014

ISSN: 2236-3297

create a solution to generate a dynamic mapping, thus
validating the obtained calibration.

The idea of integrating visualizations alongside projections
is not entirely new. However, previously, in order to receive a
proper projection, the objects had to be known in advance or
had to go through a reconstruction phase, which, besides
compromising runtime visualization, also generated artifacts
during the scanning process due to structured visible light
technique.

One of the most traditional works on irregular surfaces
image projection is the iLamps [18], where the authors present
techniques for adaptive projection on non-planar surfaces,
using a textured projection algorithm. With a different
approach, the work developed at the Sunnybrook Health
Sciences Center uses markerless tracking devices in order to
see and navigate in tomography and magnetic resonance
imaging data without the need of a keyboard and mouse [19],
using hand gestures to browse the data layers to be visualized.

Image projection on a person’s body with Kinect’s aid is
presented in an application of a futuristic massage [20]. The
masseur uses a projector to project flow lines on a human body.
However there is not an accurate matching of the image being
projected with the body itself and the projected images cannot
be used for further analysis.

A Kinect-Projector system has been also used in a system
for surgical planning [21]. In this system, a spatially augmented
reality surgical environment is constructed directly on the
patient body. The registration method proposed in that paper
uses fiducial markers attached onto the patient's skin in order to
produce an accurate AR display on the physical body of the
patient.

In spite of the variety of proposals in the area of
visualization integrated to projection, we found only very few
systems able to solve the problem of dynamic projection
mapping with Kinect and with the flexibility to be used with
most of the existing calibration methods.

III. COORDINATE SYSTEMS CALIBRATION
Before accomplishing a mapping, it is essential to calibrate

a system, which commonly consists of a camera-projector pair.

Camera calibration, whose purpose is to extract the
extrinsic and intrinsic parameters of a camera, is a major
difficulty in Computer Vision. The obtained parameters define
the 3D position, rotation, focal length, center of image, and
distortion coefficient of a camera. These data are necessary to
insert virtual models in a real environment captured by a
camera.

A. Single camera calibration
The first calibration method is that of a single camera,

being required to estimate, at the image obtained from the
camera, a series of points p1, p2, ..., pn that matches known
points P1, P2, ..., Pn of the tridimensional space. Once the
points are found, it is possible to calculate the intrinsic and
extrinsic parameters of the camera, such that the virtual points
p’1, p’2, ..., p’n overlap in the best possible way the observed
points.

A chessboard, with known dimensions, as seen in Figure 1, is
a pattern frequently used to represent the known points. This
pattern is moved in front of the camera’s field of view while
several snapshots are being made, keeping the different
positions and rotation of the chessboard. The most used
algorithms to perform this processing are the ones developed
by Zhang [22] and Tsai [23].

Figure 1 – Standard chessboard pattern 9x7

A calibration is accomplished using the coordinates system
below, so that the camera transformation can be defined as the
set of transformations performed by these systems:

• World Coordinate System (WCS)
• Camera Coordinate System (CCS)
• Image Coordinate System (ICS)
• Pixel Coordinate System (PCS)

Equation 1 – Affine transformation

Equation 1 defines the following transformation:

(C) Multiplication by the RT matrix defines the
transformation from WCS to CCS, called Change of 3D
Referential.

(B) Multiplication defines the transformation from CCS to
ICS, named Perspective Projection.

(A) Multiplication defines the transformation from ICS to
PCS, called Affine Transformation.

Where in the equation:

f is the focal length;
sx and sy are the amount of pixels per length in both axis;
uc and vc are the orthogonal projection coordinates of the

optical center on the projection plane;
𝜏 is given by the tangent angle that the pixel matrix row

makes with the perpendicular lines;
R and T correspond to the rotation matrix and the

translation vector, respectively.

The final result is presented in Figure 2, where it is possible
to note that the virtual points (the colored circles and lines) are
overlapped to the inner pattern corners. Notice that even if the
pattern is translated or rotated, the virtual points will remain
overlapped to them.

 (A) (B) (C)

SBC Journal on Interactive Systems, volume 5, number 3, 2014 5

ISSN: 2236-3297

Figure 2 – Photo of calibration on a standard chessboard.

In spite of working for a simple configuration, this
approach is not enough for the goal of the present research, but
it works as a basis to achieve a higher-level complexity.

A dynamic-mapped system consists primarily of a camera,
used to acquire the correspondence from the points at the WCS
and the PCS, but it is still needed to present the user with the
virtual data overlapped to the calibrated scene. To achieve such
task, it is necessary to utilize a camera-projector pair, where the
projector can be interpreted as the dual of a camera, thus
requiring the calibration of two cameras.

B. Calibration of Two Cameras
Noting that each camera holds its own calibration

parameters, we define as CCS1 and CCS2 the coordinate
system of each camera, denoted by [𝑅1 𝑇1], and by
[𝑅2 𝑇2], respectively, in relation to the same WCS used at
the calibration.

The extrinsic parameters transformation of the first camera
can be obtained by multiplying by [𝐼 0], since the system is
already at the desired position. Based on that, in the same way
that a camera calibration is made by acquiring the points from
the CCS in relation to the WCS, the calibration of two cameras
is made by acquiring the points from CCS2 in relation to
CCS1.

In order to obtain the extrinsic parameters of the second
camera in relation to the first one, we need to find at CCS2 a
known point to the CCS1, which comes down to attaining the
rotation and translation matrix of a coordinate system in
relation to each other. This can be done by creating a transition
from CCS1 to WCS to then change from WCS to CCS2, where
the first transition was made with the multiplication by
𝑅!! −𝑅!!𝑇!
0 1

 and the second change made by multiplying by
𝑅! 𝑇!
0 1 . In other words, the coordinates P1 and P2 of a point

in space with relation to CCS1 and CCS2 satisfies the relations
𝑃2 = 𝑅𝑃1 + 𝑇 and 𝑃1 = 𝑅!𝑃2–𝑅!𝑇.

C. Calibration of a Camera-Projector
The internal optics of a camera is close to that of a

projector, thus both can be modeled in the same way.

The camera-projector calibration is achieved in a similar
way to a calibration between two cameras, in which both

cameras or the camera-projector pair demands to be calibrated
regarding a common reference system in the world. The
calibration allows correlating the points in the world to the
captured points; therefore both cameras are positioned to
capture the same scene.

The difference between calibrating two cameras and
calibrating a camera-projector pair is that the projector does not
capture points in a WCS, so the idea is to project a known
image and determine the points found in the scene, as seen in
Figure 3.

A convenient way to do it is by using a virtual checkered
pattern (projected) over the same plane where the physical
checkered pattern is located (printed). The inverse
transformation of the projector is applied to the transformation
of the camera to obtain the coordinates on the WCS from a
point visualized by the projector.

Figure 3 - Representation of a Projector-Camera system [16]

The calibration of the projector-camera system allows the
identification of the 3D points on a scene and the reprojection
of them over themselves. However, to truthfully reproduce a
2D image over a real 3D object, it is necessary to compute the
texture extracted from the real world scene, to then apply the
2D image over the texture and finally project the result. To
simplify the process, the Kinect was chosen as camera since it
already has a system to capture the depth of an image.

D. RGB-D – Kinect Camera Device
The Kinect is a 3D camera sensor developed primarily as a

natural interaction device. Taken its low cost in comparison to
commercial RGB-D systems (D means depth) this system has
been used for various goals, including mapping and 3D
modeling [23].

The Kinect device has three key elements which allow
capturing simultaneously an image with depth and color: a
RGB Camera with a resolution of 640 x 480; an IR Camera of
640 x 480, and an IR Projector.

Having a camera-projector pair and a system named Light
Coding [24], the Kinect is capable of detecting its distance
from a point, turning it into a 3D runtime measuring device.
The Light Coding, presented in Figure 4, encodes information on
light patterns leaving the IR projected image over any surface,
generating a deformity on the projected pattern. This offers the
necessary information to calculate the distance for the 3D
image.

6 SBC Journal on Interactive Systems, volume 5, number 3, 2014

ISSN: 2236-3297

Figure 4 - Kinect Light Coding

Operational features:

• Viewing angle: 43o vertical by 57o horizontal.
• Tilt’s motor movement interval: ±27o.
• Audio: 16 kHz, 24-bit mono pulse code modulation.
• Audio: 4 microphones array with analogical-digital

convertor (ADC) of 24 bits.
• Accelerometer: 2G/4G/8G, with 1o precision.
• Operational depth detection limits: 0.8m – 4.0m.
• Frames Rate: 30 frames per second.

E. Kinect-Projetor System Calibration
A Kinect device brings a new level of complexity: it

includes another camera in the system. What was previously
summarized as:

1) Capturing data from the scene using a RGB camera,
resulting in 2D data;

2) Reprojecting the data using a projector.

Now, with the Kinect, becomes:

1) Capturing the data from the scene with an IR camera,
resulting in 3D points;

2) Transforming those points to the space of the RGB
camera;

3) Applying a new transformation to be sent to the
projector space;

4) Reprojecting the data using a projector.

Kinect has a standard calibration of its sensors; nevertheless
this calibration only provides an approximation of the points’
correlation of different sensors and, for that reason, a
calibration between them is necessary.

Regardless of following the same logic of calibrating two
cameras, taking into consideration that one of the cameras only
captures IR, an extra caution is added: It is necessary to
separate the obtained images from the calibration in two
different groups – the group which has the IR emitter blocked,
therefore having no IR lighting, and the group which has IR
lighting.

Figure 5 - IR-RGB Calibration

Figure 5 shows some images of the procedure of calibrating
a Kinect system, in which the pattern to be perceived is
presented in the image on the upper left. The upper right image
represents the recognition of the pattern by the RGB camera.
The lower left image presents the recognition of the pattern by
the IR camera having the IR projector being obstructed and
presenting external IR lighting. The lower right image
represents the recognition of the pattern by the IR camera
without obstruction of the IR projector. Notice that in the last
case the image gets polluted, which can hinder the recognition
of the pattern or generate wrong/imprecise recognition.

IV. DATA VISUALIZATION
Knowing that Kinect is capable of recovering 3D data of a

scene, it is natural to work with the data in a 3D environment in
order to take advantage of the obtained information. Aiming to
achieve this goal, traditional point cloud visualization was
adopted, shown in Figure 6, consisting of a collection of 3D
points that are not connected, providing a sparse visualization.

According to Nicolas Burrus [14], using a point cloud is a
natural way to represent data from the Kinect since each pixel
on the image of depth camera can be transformed into a 3D
point.

A graphics rendering tool was necessary to create a virtual
environment that uses the result of the Kinect-Projector system
calibration with the point cloud and which also allows the
addition of new elements to the scene.

OpenGL is a graphic library, which specifies a render API,
and by its implementation not being structured by a platform, it
is possible to use it in different architectures. In order to use
OpenGL routines, the following spaces coordinates need to be
defined.

SBC Journal on Interactive Systems, volume 5, number 3, 2014 7

ISSN: 2236-3297

Figure 6 - Different viewing angles of the same point cloud.

A. Object Space Coordinates
This is the local coordinate system of an object, also known

as Camera Coordinate System and it is the initial state of an
object. This is the matrix found before any transformation is
applied over this object.

The transformations provided by OpenGL are glRotatef() to
rotate an object on a determined angle at a determined axis,
glTranslatef() to translate an object and glScalef() to modify
the size of an object at any axis.

B. Eye Space Coordinates
On OpenGL, objects are transformed from the Object’s

Coordinate System to the Eye’s Coordinate System using the
GL_MODELVIEW matrix. The GL_MODELVIEW matrix is
a combination of matrices of Model and View (𝑀!"#$ ∙
𝑀!"#$%).

The Model transformation, Equation 2, is used to convert
the Object’s Coordinate System to the World’s Coordinate
System, while the View transformation is used to convert the
World’s Coordinate System into the Eye’s Coordinate System.

𝑥!"!
𝑦!"!
𝑧!"!
𝑤!"!

= 𝑀!"#$%&'$(∙

𝑥!"#
𝑦!"#
𝑧!"#
𝑤!"#

Equation 2 – Model-view transformation

C. Clipping Space coordinates
When the GL_PROJECTION matrix multiplies the Eye’s

Coordinate System, the result is the Clipping’s Coordinate
System. The GL_PROJECTION matrix defines the volume of
visualization (frustum), which is how the vertices are projected
on the screen (by perspective or orthogonal).

D. Normalized Coordinates Space
The division of the Clipping Coordinate System obtains the

Normalized Coordinate System by the w component, known as
perspective division, as observed in Equation 3.

𝑥!"#
𝑦!"#
𝑧!"#

=
𝑥!!"# 𝑤!"#$
𝑦!"#$ 𝑤!"#$
𝑧!"#$ 𝑤!"#$

Equation 3 – Perspective division

This new system works as the Screen Coordinate System,
without the translation and the scale to the screen pixels. The
interval of values gets normalized between -1 and 1 in the 3
axes.

E. ModelView Matrix
The OpenGL ModelView matrix is presented in Figure 7, the

elements m12, m13, m14 are for the translation, glTranslatef().
The m15 element is a homogeneous coordinate used for
projective transformation.

The three sets of elements, (m0, m1, m2), (m4, m5, m6)
and (m8, m9, m10), are for the Euclidean transformations,
performing the rotation’s transformation glRotatef() and scale
glScalef(), while this sets being combined with the elements
(m12, m13, m14) are part of the affine transformation. Ahead,
the three initially mentioned sets represent 3 orthogonal axes:

(m0, m1, m2): axis +X, vector left, (1, 0, 0) by standard
(m4, m5, m6): axis +Y, vector up, (0, 1, 0) by standard
(m8, m9, m10): axis +Z, vector forward, (0,0,1) by standard

Figure 7 – 4 Columns GL_MODELVIEW Matrix

F. Projection Matrix
A computer display is a 2D surface, therefore, a scene

rendered in 3D by OpenGL needs to be projected on the
computer screen or projector as a 2D image and the
GL_PROJECTION matrix is responsible for this
transformation. It first transforms all the vertices of the Eye’s
Coordinate System to the Clipping’s Coordinate System, so the
Clipping’s Coordinate System is transformed into the
Normalized Coordinate System as each component of the
Clipping’s Coordinate System is divided by its corresponding
w component.

The GL_PROJECTION matrix is used to define a frustum.
This frustum determinates which objects will be cut from the
scene. Also, it determines how the 3D scene is projected on the
screen.

The OpenGL provides two ways to accomplish a
GL_PROJECTION transformation:

glFrustum(): to produce a perspective projection.
glOrtho(): to produce an orthographic projection (parallel).

8 SBC Journal on Interactive Systems, volume 5, number 3, 2014

ISSN: 2236-3297

In the Perspective Projection, one 3D point on a pyramid of
truncated frustum (in the Eye’s Coordinate System) is mapped
to the cube (in the Standardized Coordinate System), where the
interval of its coordinates in the X axis changes from [left,
right] to [-1,1], in the Y axis changes from [bottom, top] to [-
1,1] and in Z axis changes from [near, far] to [-1,1] (Figure 8).

Figure 8 – Perspective Frustum and Normalized Coordinate Space

It is possible to perceive that the Eye Coordinate System is
defined according to the Right Hand Rule, however the
Normalized Coordinate System is defined by the Left Hand
Rule, meaning that the camera, in the origin, is looking to the –
Z axis on the eye system but looking to the +Z axis on the
Normalized Coordinate System.

V. KINECT ACCESS PRELIMINARY STUDIES
The following libraries were studied to properly use the

Kinect device: OpenNI [26], Microsoft Kinect SDK [27] e
Open Kinect [28].

The Microsoft Kinect SDK is the most modular library to
be used in the development of new applications, presenting
well-defined modules, a range of examples available and full
documentation. However, only a few examples which used this
library were found regarding to the scope of this work.

The Open Kinect, despite of being one of the first libraries
to provide support to Kinect, does not have a large community,
with about 2000 active users, and its advances depends on the
few users interested on improving it.

At last, there is the OpenNI library, created and developed
by the creators behind the Kinect technology, PrimeSense [25].
It was the easiest to learn library, besides having a variety of
demonstration programs and a manual with details and codes to
understand how to use the main resources of Kinect. Taking
into consideration the presented reasons, this was the library
chosen for the development of this research.

Having the SDK for the Kinect been chosen, it was
necessary to look for previously existing projects that solved
the calibration of the Kinect-Projector system.

A. RGBDemo
RGBDemo [14] provides, among other functionalities, the

Kinect camera calibration and the camera-projector system
calibration. The driver used to calibrate the Kinect was the
libfreenect, while the driver used to calibrate the Kinect-
Projector system was the OpenNI. It was necessary to use both
drivers once that OpenNI does not provide the option for
simultaneous visualization between RGB camera and the data

from IR camera. The resulting calibration format is YAML
[29] and it consists of all the intrinsic and extrinsic parameters
obtained. The estimated time to make a calibration was
between 5 and 15 minutes for a set of 30 images, which not
always had a coherent result, being then necessary to repeat the
previous steps several times. By the end of the whole process,
the consumed time could vary from 40 to 90 minutes, where
the time taken by the algorithm to process all the images and
generate the calibration matrices lasted about 10 minutes, while
the rest of the process was used for the positioning of the
chessboard.

B. CameraProjectorCalibration
This method [17] aims to be fully automatized, not

requiring that the user provides commands through the
keyboard to select an image, taking less time than the
RGBDemo. The driver used on this method was the Microsoft
Kinect SDK, once the program works together with
OpenFrameworks [30], which does not support this SDK, and
it was not possible to remove this dependency. Therefore it was
necessary to emulate [31] the Kinect camera with a webcam in
order to the CameraProjectorCalibration to interpret it as a
video source and use the RGB camera information as an input
to calibrate the Kinect-Projector system. Even though this
method has a calibration between a pair of cameras, it was not
possible to use it once the integration with the Kinect driver
through the webcam did not provide the result of the IR camera
and, therefore, the camera calibration used here was obtained
with RGBDemo.

The total calibration time varies from 25 to 50 minutes, but
this method achieved a coherent result on the first or second
attempt, ensuring a depth allowed variation of almost two
meters. Despite the total calibration time being shorter than the
RGBDemo, the algorithm’s processing time of this method is
superior, being responsible by at least 15 minutes of the total
time.

In spite of the differences between RBGDemo and the
CameraProjectorCalibration, the following conclusions were
observed over both solutions:

It is not recommended to perform the calibration with more
than 30 images once the complexity of the equations used to
find the intrinsic and the extrinsic parameters grow according
to the numbers of images obtained, requiring more time and
presenting higher chances of bad outcomes.

All of the calibrations were performed after a 60 minutes
period of the Kinect-Projector being turned on, following the
study presented in [32].

In order to perform a calibration that covered the biggest
projection/vision area of the Kinect, it was necessary to adopt
the following procedures to generate new images:

SBC Journal on Interactive Systems, volume 5, number 3, 2014 9

ISSN: 2236-3297

• Rotating the pattern for at least 5 angulations of a
maximum of 20º each, as shown in Figure 9.1 (no
rotation, rotation left, right, up and down and/or with
some concatenations).

• Once having used the various possibilities, the pattern
was moved to a new height, as shown in Figure 9.2 and
the process repeated itself.

• Having explored at least 2 heights, the pattern is moved
horizontally in order to explore the best possible way the
system’s field of vision, as shown in Figure 9.3.

• Finally, for the calibration of the Kinect-Projector system,
it was necessary to also explore the depth of calibration,
as shown in Figure 9.4. So, in addition to the procedures
previously described, it was necessary to
approach/distance the Kinect/Projector.

Figure 9 - Different positions and angulations used during the calibration.

To reassure that the result of the calibration was consistent,
two different positions were tested with the Kinect relative to
the Projector, as seen in Figure 10: having a rotation between
them (Figure 10, left) and the case in which the Kinect was
directly over the Projector and there was no apparent rotation
between them (Figure 10, right). It was important to test these
cases to prove the correctness of the calibration methods
because the first case generates a system of equations more
complex to be solved; therefore, it is more prone to failure.
Once it was proven that the calibration still worked, even
though it was not the ideal scenario, it was changed to the
superposition of cameras so that a better result could be
achieved.

Having finalized these studies, to get to the desired final
result, it was necessary to study efficient methods which
presented correct data from the Kinect, considering one method
to visualize 2D data and another to visualize 3D data, as
presented in the following.

Figure 10 – Different positions used for the Kinect-Projector System.

C. Base Application: NIViewer
In order to aid the development of the library that used the

features offered by the OpenNI, the NIViewer was utilized as a
base program. This program offers the main functions
developed for the Kinect use, such as visualization of RGB
Camera and IR, and also different depth maps, multiple
visualizations, and possibility of audio and video recording, in
addition to its management.

Figure 11 presents the main visualization methods offered by
NIViewer, in which all are done from the Textures’ Mapping
in OpenGL, delivering only a 2D visualization of the resources
available on Kinect. Despite the visualization not being in three
dimensions it is possible to notice how the images under Depth
Mapping present a better idea of depth than the one offered by
the RGB Camera.

Figure 11 on the left shows a Depth Mapping made with a
single color scale, in which the more the contrast the color
presents, the closer the point is to the Kinect Device.

Figure 11 – Depth Mapping (A) and Colors (B).

D. Point Cloud Library
The Point Cloud Library (PCL) [33] offers wide

visualization resources, management and treatment of point
clouds, therefore adding several dependences to a project that
would only use a point clouds’ visualization. Aiming to
simplify this research’s development, a module capable of
achieving similar results to PCL visualization was developed,
as presented on Figure 12.

10 SBC Journal on Interactive Systems, volume 5, number 3, 2014

ISSN: 2236-3297

Figure 12 – Frontal view (left) and side view (right) of the point cloud.

VI. PROJECT AND SYSTEM SPECIFICATION
The developed framework details are described below:

A. System’s Architecture:
1) Extraction of intrinsic and extrinsic parameters from

the Kinect’s RGB camera relative to the Kinect’s IR camera:

a) Move the calibration pattern in front of the cameras.

b) Take diverse snapshots of the calibration pattern in
different positions and angulations.

c) Process the snapshots using the RGBDemo calibration
program.

2) Intrinsic and extrinsic parameters extraction from the
projector relative to the RGB Kinect Camera:

a) Position the calibration pattern in front of the
cameras.

b) Take diverse snapshots of the calibration pattern in
different positions and angulations.

c) Process the snapshots using the RGBDemo calibration
program or the CameraProjectorCalibration.

3) Correlation between the points of both calibrations:

a) Accomplish the transformation of the point in the IR
Camera’s Coordinate System to the Projector’s Coordinate
System.

4) Verification of quality in both calibrations:

a) Use a Point Cloud to validate the calibrations of the
previous steps as verifying that the projected objects are over
the real objects.

b) Case the previous step fails, restart from step 1.a)
5) Insertion of extra information to the real scene to

create Augmented Reality:

a) Create a treatment on the Point Cloud generated on
step 4 to insert visual information to the real scene.

Figure 13 presents a graphic showing the process.

Figure 13 – System’s architecture

B. System’s Characteristics
The program and all of its dependencies were written in

C++ and were developed in Visual Studio 2010. The driver
used to capture the information from the Kinect was OpenNI
1.5.4 version, along with Prime Sense NITE driver 1.5.2
version and Sensor Kinect 5.1.2.1 version.

As dependencies, the Glut version 3.7.6 library was used
and the OpenGL 3 version to the creation and management of
the graphic elements. OpenCV [34] version 2.4.2 was utilized
to ease the handling of algebraic data from the calibrations.

The projector used on the tests was the Projection Design
evo2sx+, contrast of 2500:1, 2500 ANSI Lumens, 1600x1200
resolution and throw ratio 1.78 - 2.23 : 1.

The computer used on the tests was an Intel 2nd Gen. Core
i7-2670QM processor, 4 physical cores, 4 logical cores and
clocked at 2.20 GHz, RAM memory of 8.00GB, GeForce
GT540M dedicated graphic card, Intel(R) HD Graphics 3000
integrated graphic card, HD Serial ATA-300 of 750.0 GB,
Microsoft Windows 7 64-bits and a screen resolution of
1600x900.

The calibration patterns used were printed on bond paper
weighing 75 g/m2, A4 size for the Kinect calibration and A1
for the Kinect-Projector calibration. Both physical patterns
were attached to featherweight paper and later attached to a
camera tripod.

The projector was positioned upside down so the generated
image would have as the highest point the height of the
projector and its lowest point according to the projection
distance. This solution was necessary so the Kinect could
capture the whole projection area without generating occlusion
and a person with an approximate maximum height of 1.8m
could be projected on.

C. Libraries and Modules created
In order to recover the data obtained by the calibration

between the cameras, a module called Calibration was created
based on the Cámara Lúcida program [35]. This module is
responsible for loading the calibration matrices on the program
so that, in the future, they could alter the Modelview and
Projection of OpenGL matrices and, in addition, to store the
intrinsic and the extrinsic data of each camera in its
corresponding device.

SBC Journal on Interactive Systems, volume 5, number 3, 2014 11

ISSN: 2236-3297

Modelview and projection matrices creation was done by
the OpticalDevice module, which solves the required algebra
as explained on Section III, in order to use as a set all of the
matrices obtained by the calibration between the cameras.

The HelpMenu module was created to aid users to provide,
on the screen, the necessary hotkeys to handle the program and
its tooltips.

To make it possible to have different visualizations of the
Point Cloud, it was needed to create a module capable of
interpreting movements from the mouse and handling the Point
Cloud according to their movements.

D. NIViewerLib
NIViewerLib is a library to access the functions offered by

Kinect, and aiming reuse, management and maintenance of
methods that utilize the resources offered by Kinect, a library
that encompasses the main functions was developed, including:

1) Startup.
2) Acquisition and visualization of different streams

offered by OpenNI.
3) Resizing the stream.
4) Test on the OpenGL context using simple matrices of

Modelview and Projection.

A library for functionalities offered by Kinect was created.
This library furnishes a modular use of the necessary methods,
encapsulating modules of direct access to Kinect’s raw data
and enabling only the visualization of necessary functions.

The prototypes created of OpenNI library provide the same
functionalities, all presented in 2D:

1) RGB/IR Camera’s visualization.
2) Different depth maps over the IR Camera’s

visualization.
3) RGB Camera’s visualization with depth information.
4) Side by side visualization from both cameras.
5) Management and visualization of the Skeleton in 2D

and 3D.

E. Point Cloud Viewer
Modifications in the OpenGL software were conducted to

ensure the use, management and maintenance of a point cloud.
It is possible to create a depth map with a transparency factor –
over the RGB Camera’s Point Cloud –, providing easily
understood information for the user about the distance in which
each point is found. This mode will be referred here as Point
Cloud with Depth Mapping. Figure 14 presents points that are
closer to the Kinect under shades of blue; meanwhile the
further ones are under shades of green.

The Point Cloud’s software with Depth Mapping was
necessary because, when trying to validate a calibration with
the prototype, only the Point Cloud of the RGB Camera was
being projected over the scene. We verified this wasn’t an
efficient validation method since it wasn’t viable to visualize
whether the projected points truly overlap the real points once
both had the same color. With the depth mapping information
and with the transparency factor added to the Point Cloud, it
was easier to perform the validation.

Figure 14 - Front view (left) and lateral (right) Depth Point Cloud Mapping

VII. RESULTS
The developed program allows the user to load the

calibration files. Once the files are loaded, the program
interprets the given matrices and generates the Modelview and
the Projection’s matrices necessary for the mapping projection.
It is important to notice that the matrices given by the
calibration program are on the OpenCV format and, therefore,
are row oriented, requiring them to be transformed to the
OpenGL format, which is column oriented.

The results obtained with the framework are presented on
Figure 15, Figure 16, and Figure 17. All of the mapping formats
presented by the framework are made with support from the
point clouds and can be seen, on runtime, on any type of
surface, whether it being well defined or not. Figure 15 presents
a chessboard rotated about 30º relative to the Kinect-Projector
system, as an example of a well-defined surface. It is possible
to observe on this image that the depth difference, which exists
from the lower left to the upper right border of the chessboard.
The mapping used to present the difference is based on a color
cycle from red to blue.

Figure 15 – Chessboard on a tripod under Depth Mapping with Cyclic Scale.

Figure 16 (left) allows the visualization of even more depth
levels, accurately emphasizing the differences of distances
between the shoulders, the torso and the hands.

On Figure 17 (right) the colors information obtained by the
Kinect’s RGB camera accurately overlaps the objects
contained in the scene. On Figure 17 (left) is presented the
Mapping Skeleton accurately overlapping the user. Both Figure
16 and Figure 17 are examples of non-smooth surfaces.

12 SBC Journal on Interactive Systems, volume 5, number 3, 2014

ISSN: 2236-3297

Figure 16 - Left: Depth Mapping with a Cyclic Scale. Right: Depth Mapping

with a Two Color Scale. In both cases the skeleton mapping overlaps the
corresponding mapping.

Figure 17 - Left: Mapping Skeleton. Right: Mapping Depth with the RGB

camera information

The more shades a scene has and the less linear the borders
are, the smaller are the chances of the whole surface to be fully
and properly lit by the Kinect-Projector System, resulting in
less information generated to the scene and worsening the
behavior of the Mapped Projection to these objects.

A. Difficulties encountered
Almost all of the problems found by the end of the system

development are part of the calibration process. They are
presented below:

1) Lack of control of White Balance and Auto Exposure
on Kinect: to be able to successfully use the Projector over the
same object Kinect is observing, it was necessary to utilize the
Microsoft SDK driver. However, the Kinect used was a
XBOX 360 version, instead of the Kinect for Windows, and
because of this, it was not possible to have any kind of control
over the RGB camera. This drastically hindered the calibration
since the light emitted by the projector, once filtered by the
Auto Exposure, ended decreasing the natural lighting,
worsening the physical pattern recognition. Four options were
found to surpass this problem:

a) Add a new high quality camera to the system and
execute the calibration of this camera with the Kinect RGB
camera, adding a new complexity to the system.

b) Create a driver capable of recognizing other Kinect
drivers as webcam. Drivers such as libfreenect and OpenNI
2.x version claim to have the necessary controls to surpass this
problem, but building this driver would scape the envisioned
theme.

c) Perform a refactoring in the whole calibration project
in order to remove the dependency of the
CameraProjectorCalibration input.

d) Acquire a Kinect for Windows. The tests were done
using a standard version of the XBOX with an USB adaptor.

2) Kinect’s RGB camera has a low quality image. It would
be needed that both physical and logical patterns to be close to
the Kinect so that the detection could be successful. Since the
Kinect was positioned above the Projector and that the closer
the pattern is to the Kinect, smaller the projection is going to
be, this scenario hinders once again the projection of patterns.
A balance between calibration quality and calibration distance
had to be found. That is the reason why the physical pattern
was printed on A1 paper: so that it could cover a larger
calibration distance.

3) The ProjectorCameraCalibration program has
performance bottlenecks, delaying the response of the system
when capturing an image. Since the system is automated, these
delays could often mean that the image was captured during
the movement of the pattern – generating blurred images and
resulting into low quality calibrations. The reason for this
bottleneck was not found, therefore, the method found to
minimize it was to increase the interval between the picture
capturing, considerably hindering the total calibration time.

4) The amount of time to perform a calibration under any
of the presented methods were superior to the calibration time
of higher quality cameras.

5) Since the visualization program uses the OpenNI driver
and the calibration program uses the Microsoft Kinect SDK
driver, it is necessary to have both drivers installed in the
computer and make the necessary exchanges between them,
enlarging the dependency as a whole to obtain good results.

6) On Figure 16, it is possible to perceive that the
projection goes beyond the body area. This happens because:

a) Since the visualization is made with a point cloud,
each visualization pixel is a point designed by OpenGL,
however the drawing of this point by the OpenGL has a
minimum size, which is bigger that the one needed to properly
fulfill the whole area.

b) When this image was made, the pixel size was defined
as 3, but changing this point to size to 1 made the point cloud
to look sparse, hindering the visualization.

SBC Journal on Interactive Systems, volume 5, number 3, 2014 13

ISSN: 2236-3297

c) Each point in a point cloud is given by the Kinect so,
aiming to avoid the point cloud to look sparse with a smaller
point on OpenGL, it would be necessary that the Kinect's IR
projector could project more points.

d) Projection error: one of the parameters to verify if the
calibration went properly is the projection error value, where
the larger the number the less accurate the calibration was and
the smaller the overlapping was going to be between the real
and the virtual scene. Since in order to perform a projection
mapping it is necessary to perform two calibrations, the final
reprojection error will be increased in relation to the isolated
error of each calibration.

VIII. CONCLUSION
This work presented a framework capable of reading a

calibration performed by a Kinect-Projector system and
validating it. This validation is done as different kinds of
visualization of data originated in Kinect. Developers will be
able to check their calibration methods through this framework,
in addition to study the effects of the visualization methods
presented here.

Due to the limitations of Kinect and of the calibration
methods, future research can be conducted on the use of Kinect
2.0, which has a better resolution (1080p) and more resources
than the Kinect 1.0, enabling it to solve various problems found
here. Additionally, more efficient calibration methods can be
studied, aiming to achieve better and faster visualizations in
Mapping Projection.

Considering that Kinect 2.0 does not have a partnership
with Primesense, it would be prudent to use a Microsoft driver
instead of the OpenNI driver in order to reassure that the
framework works with both Kinect versions, or that the
required maintenance for both versions is as low as possible.

The calibration patterns currently used impose a restriction
to this work, both for its hard maneuvering and for the
difficulty of finding a light and rigid surface in order to avoid
folds and distortions to the pattern. It is necessary to search
smaller patterns and more efficient algorithms, capable of
detecting them.

I. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of

Tecgraf/PUC-Rio to this project. Luciano Soares was financed
by CNPq, process 483195/2011-1.

II. REFERENCES
[1] R. T. Azuma, "A Survey of Augmented Reality," Presence -

Teleoperators and l Environments, vol. 6, pp. 355-385, 1997.
[2] Pinto, F., Buaes, A., Francio, D., Binotto, A. P. D., & Santos, P. (2008,

August). BraTrack: a low-cost marker-based optical stereo tracking
system. In SIGGRAPH Posters (p. 131).

[3] ART – AdvancedRealtimeTracking - http://www.ar-
tracking.com/home/ - Last visited at 08/12/2014

[4] Nova3D – Projeção Mapeada - http://www.nova3d.com.br/#!projecao-
mapeada.html - Last visited at 08/12/2014

[5] Bot&Dolly - http://thecreatorsproject.vice.com/show/projection-
mapping-and-robots-combine-in-bot--dollys-new-film - Last visited at
08/12/2014

[6] Bimber, O., Raskar, R., &Inami, M. (2005). Spatial augmented reality.
Wellesley: AK Peters.

[7] UAU Mídia Interativa - http://www.uaugrupo.com.br/site/ - Last
visited at 08/12/2014

[8] LPMT - http://hv-a.com/lpmt/ - Last visited at 08/12/2014
[9] CarProjection - http://carprojection.com/ - Last visited at 08/12/2014
[10] A Dandy Punk - http://www.adandypunk.com/#!viddywell/c1t44 - Last

visited at 08/12/2014
[11] ARPool - http://arpool.ca/ - Last visited at 08/12/2014
[12] Ziola, R., Grampurohit, S., Nate, L., Fogarty, J., Harrison, B. OASIS:

Creating Smart Objects with Dynamic Digital Behavior,Workshop at
IUI 2011.

[13] Kondo, D., Goto, T., Kouno, M., Kijima, R., & Takahashi, Y. (2004).
A virtual anatomical torso for medical education using free form image
projection. InProceedings of 10th International Conference on Virtual
Systems and MultiMedia (VSMM2004) (pp. 678-685).

[14] RGBDemo - https://github.com/rgbdemo - Last visited at 08/12/2014
[15] Audet, S. (2012). Markerless Interactive Augmented Reality on

Moving Planar Surfaces with Video Projection and a Color
Camera (Phd. Tokyo Institute of Technology).

[16] Jones, B., Sodhi, R. (2010). OpenLight - Kinect-Projector Calibration.
[17] CameraProjectorCalibration -

https://github.com/alvarohub/Example_CameraProjectorCalibration -
Last visited at 08/12/2014

[18] Raskar, R., Baar, J., Beardsley, P., Willwacher, T., Rao, S. and
Forlines, C. 2003. iLamps: geometrically aware and self-configuring
projectors. ACM Trans. Graph. 22, 3 (July 2003), 809-818.

[19] Chung-Sayers, N. “TEAM USES *XBOX *KINECT TO SEE
PATIENT IMAGES DURING SURGERY”, Sunnybrook report

[20] Interactive Healing Space - github.com/VideoAlchemy/TVToolkit/wiki
Last visited at 10/12/2014

[21] Wen, R.; Nguyen, B. P.; Chng, C. B., and Chui, C. K. (2013). In situ
spatial AR surgical planning using projector-Kinect system. In Proc.
Fourth SoICT '13, pp. 164-171.

[22] Zhang, Z. (1998), A flexible new technique for camera calibration,
Technical report, Microsoft Corporation.

[23] Tsai , R. Y. (1987), ‘A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv cameras
and lenses’, Ieee Journal Of Robotics And Automation, 323–344.

[24] Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli,
P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; KinectFusion:
Real-time 3D reconstruction and interaction using a moving depth
camera. In Proceedings of ACM Symposium on User Interface
Software and Technology, Santa Barbara, CA, USA

[25] PrimeSense Technology - https://github.com/PrimeSense - Last visited
at 08/12/2014

[26] OpenNI - http://structure.io/openni - Last visited at 08/12/2014
[27] Kinect for Windows SDK - http://www.microsoft.com/en-

us/kinectforwindowsdev/Start.aspx - Last visited at 08/12/2014
[28] OpenKinect Project - http://openkinect.org/wiki/Main_Page - Last

visited at 08/12/2014
[29] Oren Ben-Kiki, Clark Evans und Ingy döt Net. YAML Ain’t Markup

Language (YAML). 2009. url: http://yaml.org/spec/1.2/spec.pdf.
[30] OpenFrameworks - http://www.openframeworks.cc/ - Last visited at

08/12/2014
[31] Kinect for PC and Skype means KinectCam -

http://codingbytodesign.net/2013/03/17/kinect-for-pc-and-skype-
means-kinectcam/ - Last visited at 08/12/2014

[32] Fiedler, D., & Müller, H. (2012, November). Impact of thermal and
environmental conditions on the kinect sensor. In Proc. Int. Workshop
on Depth Image Analysis.

[33] Aldoma, A., Marton, Z. C., Tombari, F., Wohlkinger, W., Potthast, C.,
Zeisl, B., & Vincze, M. (2012). Point Cloud Library. IEEE Robotics &
Automation Magazine, 1070(9932/12).

[34] OpenCV, L. (& Adrian Kaebler-O’Reilly.
[35] Cámara Lúcida. R+D - http://www.camara-lucida.com.ar/ - Last visited

at 08/12/2014

14 SBC Journal on Interactive Systems, volume 5, number 3, 2014

ISSN: 2236-3297

