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Abstract— Spatial augmented reality allows users to create a 
projected virtual environment on irregular surfaces. This 
demands an accurate Camera-Projector calibration process in 
order to produce precise 3D information to match the real object. 
This paper presents a framework to process data achieved from a 
calibration of a Kinect-Projector system in visualization 
applications, allowing the user to create an augmented reality 
environment without having extensive process of the Camera-
Projector calibration, while maintaining a precise calibration to 
the projection on irregular surfaces. Additionally, different 
calibration techniques were evaluated in order to demonstrate 
the better approaches. 

Keywords—Calibration; Projection Mapping; Spatially 
Augmented Reality; 

I. INTRODUCTION 
Virtual systems that augment the real world characteristics 

have been showing to be relevant for several applications. The 
Augmented Reality technology [1] mixes virtual reality 
information with a real environment, traditionally adding 
graphics and sound to what we see and hear in order to create a 
unique experience in virtual interaction and simulation. 

Tracking systems [2][3] have been developed allowing the 
geometric localization of a user on a visualization platform. 
With a set of cameras, Infrared (IR) light sensors and the use of 
markers to find specific points in the world, they modify the 
virtual environment based on a person movement. These 
systems, although reducing the need of non-intuitive 
interaction devices, still depend on displays to present data. 

Traditional Projection Mapping environments, focused only 
on visualization [4][5], use a static mapping of the scene, 
measuring the dimensions of each object in this ambient, and 
then reproducing these objects at the virtual scenario. This kind 
of environment needs an extensive calibration in order to 
achieve an accurate mapping of the world, having a high cost 
of operation and not being able to be reused. 

Taking these difficulties into account, the concept of 
dynamic mapping/projection mapping [6] was established. This 
concept defines the outcome attained when calibrating a 
scenario without measuring it, thus working for whichever 
objects placed at the scene, regardless whether they were added 
before or after the calibration. 

In the context of this research, a framework was developed 
in order to take the calibration data into account and achieve a 
dynamic mapping using the Microsoft Kinect. 

The developed framework aims at users wanting to study or 
use a tool capable of creating Augmented Reality environments 
in a dynamic and simple way. A Projection Mapping system 
can be used in a wide variety of cases, such as: 

• Product presentation [7]  
• Exhibitions [8]. 
• Advertising [9]. 
• Live performances [10]. 
• Entertainment [11][12]. 
• Medicine [13]. 

 
The proposed framework includes the following 

characteristics: 

• Process data obtained from a Kinect-Projector system 
calibration in a more comprehensive way. 

• Insertion of virtual 3D graphics in the captured scenes. 
• Augmented scene reprojection. 

 
The ultimate goal of this framework is to allow graphic 

applications to make use of the data derived from a Kinect-
Projector calibration and apply them to a real environment, 
creating an Augmented Reality visualization of the captured 
scene in runtime. 

The remainder of this paper is organized as follows: 
Section II presents related work to Projection Mapping. All the 
procedure required to achieve a Kinect-Projector system 
calibration is described in Section III. Section IV details the 
preliminary studies necessary in order to attain the proposed 
goal. How to take advantage of the Kinect system is presented 
in section V. System specification is described at section VI. 
Section VII presents the results, and Section VIII concludes the 
paper.  

II. RELATED WORK 
A Kinect-Projector system calibration has been used in 

projects such as: RGBDemo [14], ProCamCalib [15], Open-
Light [16], and CameraProjectorCalibration [17]. These 
projects identify the aforementioned problems and aim to 
calculate the intrinsic and extrinsic parameters of the projector, 
in the case of Kinect, its IR and RGB cameras are both 
calibrated. 

The initial part of this research consisted on studying the 
four calibration methods above in order to better understand 
their differences, pros and cons. After this, it was necessary to 
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create a solution to generate a dynamic mapping, thus 
validating the obtained calibration. 

The idea of integrating visualizations alongside projections 
is not entirely new. However, previously, in order to receive a 
proper projection, the objects had to be known in advance or 
had to go through a reconstruction phase, which, besides 
compromising runtime visualization, also generated artifacts 
during the scanning process due to structured visible light 
technique. 

One of the most traditional works on irregular surfaces 
image projection is the iLamps [18], where the authors present 
techniques for adaptive projection on non-planar surfaces, 
using a textured projection algorithm. With a different 
approach, the work developed at the Sunnybrook Health 
Sciences Center uses markerless tracking devices in order to 
see and navigate in tomography and magnetic resonance 
imaging data without the need of a keyboard and mouse [19], 
using hand gestures to browse the data layers to be visualized. 

Image projection on a person’s body with Kinect’s aid is 
presented in an application of a futuristic massage [20]. The 
masseur uses a projector to project flow lines on a human body. 
However there is not an accurate matching of the image being 
projected with the body itself and the projected images cannot 
be used for further analysis. 

A Kinect-Projector system has been also used in a system 
for surgical planning [21]. In this system, a spatially augmented 
reality surgical environment is constructed directly on the 
patient body. The registration method proposed in that paper 
uses fiducial markers attached onto the patient's skin in order to 
produce an accurate AR display on the physical body of the 
patient. 

In spite of the variety of proposals in the area of 
visualization integrated to projection, we found only very few 
systems able to solve the problem of dynamic projection 
mapping with Kinect and with the flexibility to be used with 
most of the existing calibration methods. 

III. COORDINATE SYSTEMS CALIBRATION 
Before accomplishing a mapping, it is essential to calibrate 

a system, which commonly consists of a camera-projector pair. 

Camera calibration, whose purpose is to extract the 
extrinsic and intrinsic parameters of a camera, is a major 
difficulty in Computer Vision. The obtained parameters define 
the 3D position, rotation, focal length, center of image, and 
distortion coefficient of a camera. These data are necessary to 
insert virtual models in a real environment captured by a 
camera. 

A. Single camera calibration 
The first calibration method is that of a single camera, 

being required to estimate, at the image obtained from the 
camera, a series of points p1, p2, ..., pn that matches known 
points P1, P2, ..., Pn of the tridimensional space. Once the 
points are found, it is possible to calculate the intrinsic and 
extrinsic parameters of the camera, such that the virtual points 
p’1, p’2, ..., p’n overlap in the best possible way the observed 
points.  

A chessboard, with known dimensions, as seen in Figure 1, is 
a pattern frequently used to represent the known points. This 
pattern is moved in front of the camera’s field of view while 
several snapshots are being made, keeping the different 
positions and rotation of the chessboard. The most used 
algorithms to perform this processing are the ones developed 
by Zhang [22] and Tsai [23]. 

 
Figure 1 – Standard chessboard pattern 9x7 

A calibration is accomplished using the coordinates system 
below, so that the camera transformation can be defined as the 
set of transformations performed by these systems:  

 

• World Coordinate System (WCS) 
• Camera Coordinate System (CCS) 
• Image Coordinate System (ICS) 
• Pixel Coordinate System (PCS) 

Equation 1 – Affine transformation 

 
Equation 1 defines the following transformation: 

(C) Multiplication by the RT matrix defines the 
transformation from WCS to CCS, called Change of 3D 
Referential. 

(B) Multiplication defines the transformation from CCS to 
ICS, named Perspective Projection. 

(A) Multiplication defines the transformation from ICS to 
PCS, called Affine Transformation. 

Where in the equation: 
 

f is the focal length; 
sx and sy are the amount of pixels per length in both axis; 
uc and vc are the orthogonal projection coordinates of the 

optical center on the projection plane; 
𝜏 is given by the tangent angle that the pixel matrix row 

makes with the perpendicular lines; 
R and T correspond to the rotation matrix and the 

translation vector, respectively. 

The final result is presented in Figure 2, where it is possible 
to note that the virtual points (the colored circles and lines) are 
overlapped to the inner pattern corners. Notice that even if the 
pattern is translated or rotated, the virtual points will remain 
overlapped to them. 

              (A)                       (B)                 (C) 
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Figure 2 – Photo of calibration on a standard chessboard. 

In spite of working for a simple configuration, this 
approach is not enough for the goal of the present research, but 
it works as a basis to achieve a higher-level complexity.  

A dynamic-mapped system consists primarily of a camera, 
used to acquire the correspondence from the points at the WCS 
and the PCS, but it is still needed to present the user with the 
virtual data overlapped to the calibrated scene. To achieve such 
task, it is necessary to utilize a camera-projector pair, where the 
projector can be interpreted as the dual of a camera, thus 
requiring the calibration of two cameras. 

B. Calibration of Two Cameras 
Noting that each camera holds its own calibration 

parameters, we define as CCS1 and CCS2 the coordinate 
system of each camera, denoted by [  𝑅1 𝑇1  ],  and by 
[  𝑅2 𝑇2  ], respectively, in relation to the same WCS used at 
the calibration. 

The extrinsic parameters transformation of the first camera 
can be obtained by multiplying by [  𝐼 0  ], since the system is 
already at the desired position. Based on that, in the same way 
that a camera calibration is made by acquiring the points from 
the CCS in relation to the WCS, the calibration of two cameras 
is made by acquiring the points from CCS2 in relation to 
CCS1. 

In order to obtain the extrinsic parameters of the second 
camera in relation to the first one, we need to find at CCS2 a 
known point to the CCS1, which comes down to attaining the 
rotation and translation matrix of a coordinate system in 
relation to each other. This can be done by creating a transition 
from CCS1 to WCS to then change from WCS to CCS2, where 
the first transition was made with the multiplication by 
𝑅!! −𝑅!!𝑇!
0 1

 and the second change made by multiplying by 
𝑅! 𝑇!
0 1 . In other words, the coordinates P1 and P2 of a point 

in space with relation to CCS1 and CCS2 satisfies the relations 
𝑃2 = 𝑅𝑃1 + 𝑇 and 𝑃1 = 𝑅!𝑃2–𝑅!𝑇. 

C. Calibration of a Camera-Projector  
The internal optics of a camera is close to that of a 

projector, thus both can be modeled in the same way. 

The camera-projector calibration is achieved in a similar 
way to a calibration between two cameras, in which both 

cameras or the camera-projector pair demands to be calibrated 
regarding a common reference system in the world. The 
calibration allows correlating the points in the world to the 
captured points; therefore both cameras are positioned to 
capture the same scene. 

The difference between calibrating two cameras and 
calibrating a camera-projector pair is that the projector does not 
capture points in a WCS, so the idea is to project a known 
image and determine the points found in the scene, as seen in 
Figure 3. 

A convenient way to do it is by using a virtual checkered 
pattern (projected) over the same plane where the physical 
checkered pattern is located (printed). The inverse 
transformation of the projector is applied to the transformation 
of the camera to obtain the coordinates on the WCS from a 
point visualized by the projector.  

 
Figure 3 - Representation of a Projector-Camera system [16] 

The calibration of the projector-camera system allows the 
identification of the 3D points on a scene and the reprojection 
of them over themselves. However, to truthfully reproduce a 
2D image over a real 3D object, it is necessary to compute the 
texture extracted from the real world scene, to then apply the 
2D image over the texture and finally project the result. To 
simplify the process, the Kinect was chosen as camera since it 
already has a system to capture the depth of an image. 

D. RGB-D – Kinect Camera Device 
The Kinect is a 3D camera sensor developed primarily as a 

natural interaction device. Taken its low cost in comparison to 
commercial RGB-D systems (D means depth) this system has 
been used for various goals, including mapping and 3D 
modeling [23]. 

The Kinect device has three key elements which allow 
capturing simultaneously an image with depth and color: a 
RGB Camera with a resolution of 640 x 480; an IR Camera of 
640 x 480, and an IR Projector. 

Having a camera-projector pair and a system named Light 
Coding [24], the Kinect is capable of detecting its distance 
from a point, turning it into a 3D runtime measuring device. 
The Light Coding, presented in Figure 4, encodes information on 
light patterns leaving the IR projected image over any surface, 
generating a deformity on the projected pattern. This offers the 
necessary information to calculate the distance for the 3D 
image. 
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Figure 4 - Kinect Light Coding 

Operational features: 

• Viewing angle: 43o vertical by 57o horizontal. 
• Tilt’s motor movement interval: ±27o. 
• Audio: 16 kHz, 24-bit mono pulse code modulation. 
• Audio: 4 microphones array with analogical-digital 

convertor (ADC) of 24 bits. 
• Accelerometer: 2G/4G/8G, with 1o precision. 
• Operational depth detection limits: 0.8m – 4.0m. 
• Frames Rate: 30 frames per second. 

E. Kinect-Projetor System Calibration 
A Kinect device brings a new level of complexity: it 

includes another camera in the system. What was previously 
summarized as: 

1) Capturing data from the scene using a RGB camera, 
resulting in 2D data; 

2) Reprojecting the data using a projector. 

Now, with the Kinect, becomes: 
 

1) Capturing the data from the scene with an IR camera, 
resulting in 3D points; 

2) Transforming those points to the space of the RGB 
camera; 

3) Applying a new transformation to be sent to the 
projector space; 

4) Reprojecting the data using a projector. 
 

Kinect has a standard calibration of its sensors; nevertheless 
this calibration only provides an approximation of the points’ 
correlation of different sensors and, for that reason, a 
calibration between them is necessary. 

Regardless of following the same logic of calibrating two 
cameras, taking into consideration that one of the cameras only 
captures IR, an extra caution is added: It is necessary to 
separate the obtained images from the calibration in two 
different groups – the group which has the IR emitter blocked, 
therefore having no IR lighting, and the group which has IR 
lighting. 

 
Figure 5 - IR-RGB Calibration 

Figure 5 shows some images of the procedure of calibrating 
a Kinect system, in which the pattern to be perceived is 
presented in the image on the upper left. The upper right image 
represents the recognition of the pattern by the RGB camera. 
The lower left image presents the recognition of the pattern by 
the IR camera having the IR projector being obstructed and 
presenting external IR lighting. The lower right image 
represents the recognition of the pattern by the IR camera 
without obstruction of the IR projector. Notice that in the last 
case the image gets polluted, which can hinder the recognition 
of the pattern or generate wrong/imprecise recognition. 

IV. DATA VISUALIZATION  
Knowing that Kinect is capable of recovering 3D data of a 

scene, it is natural to work with the data in a 3D environment in 
order to take advantage of the obtained information. Aiming to 
achieve this goal, traditional point cloud visualization was 
adopted, shown in Figure 6, consisting of a collection of 3D 
points that are not connected, providing a sparse visualization. 

According to Nicolas Burrus [14], using a point cloud is a 
natural way to represent data from the Kinect since each pixel 
on the image of depth camera can be transformed into a 3D 
point. 

A graphics rendering tool was necessary to create a virtual 
environment that uses the result of the Kinect-Projector system 
calibration with the point cloud and which also allows the 
addition of new elements to the scene. 

OpenGL is a graphic library, which specifies a render API, 
and by its implementation not being structured by a platform, it 
is possible to use it in different architectures. In order to use 
OpenGL routines, the following spaces coordinates need to be 
defined. 
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Figure 6 - Different viewing angles of the same point cloud. 

A. Object Space Coordinates 
This is the local coordinate system of an object, also known 

as Camera Coordinate System and it is the initial state of an 
object. This is the matrix found before any transformation is 
applied over this object. 

The transformations provided by OpenGL are glRotatef() to 
rotate an object on a determined angle at a determined axis, 
glTranslatef() to translate an object and glScalef() to modify 
the size of an object at any axis. 

B. Eye Space Coordinates 
On OpenGL, objects are transformed from the Object’s 

Coordinate System to the Eye’s Coordinate System using the 
GL_MODELVIEW matrix. The GL_MODELVIEW matrix is 
a combination of matrices of Model and View (𝑀!"#$ ∙
𝑀!"#$%). 

The Model transformation, Equation 2, is used to convert 
the Object’s Coordinate System to the World’s Coordinate 
System, while the View transformation is used to convert the 
World’s Coordinate System into the Eye’s Coordinate System. 

𝑥!"!
𝑦!"!
𝑧!"!
𝑤!"!

= 𝑀!"#$%&'$( ∙

𝑥!"#
𝑦!"#
𝑧!"#
𝑤!"#

 

Equation 2 – Model-view transformation 

C. Clipping Space coordinates 
When the GL_PROJECTION matrix multiplies the Eye’s 

Coordinate System, the result is the Clipping’s Coordinate 
System. The GL_PROJECTION matrix defines the volume of 
visualization (frustum), which is how the vertices are projected 
on the screen (by perspective or orthogonal). 

D. Normalized Coordinates Space 
The division of the Clipping Coordinate System obtains the 

Normalized Coordinate System by the w component, known as 
perspective division, as observed in Equation 3. 

𝑥!"#
𝑦!"#
𝑧!"#

=
𝑥!!"# 𝑤!"#$
𝑦!"#$ 𝑤!"#$
𝑧!"#$ 𝑤!"#$

 

Equation 3 – Perspective division 

This new system works as the Screen Coordinate System, 
without the translation and the scale to the screen pixels. The 
interval of values gets normalized between -1 and 1 in the 3 
axes. 

E. ModelView Matrix 
The OpenGL ModelView matrix is presented in Figure 7, the 

elements m12, m13, m14 are for the translation, glTranslatef(). 
The m15 element is a homogeneous coordinate used for 
projective transformation. 

The three sets of elements, (m0, m1, m2), (m4, m5, m6) 
and (m8, m9, m10), are for the Euclidean transformations, 
performing the rotation’s transformation glRotatef() and scale 
glScalef(), while this sets being combined with the elements 
(m12, m13, m14) are part of the affine transformation. Ahead, 
the three initially mentioned sets represent 3 orthogonal axes: 

(m0, m1, m2): axis +X, vector left, (1, 0, 0) by standard 
(m4, m5, m6): axis +Y, vector up, (0, 1, 0) by standard 
(m8, m9, m10): axis +Z, vector forward, (0,0,1) by standard 

 
Figure 7 – 4 Columns GL_MODELVIEW Matrix 

F. Projection Matrix  
A computer display is a 2D surface, therefore, a scene 

rendered in 3D by OpenGL needs to be projected on the 
computer screen or projector as a 2D image and the 
GL_PROJECTION matrix is responsible for this 
transformation. It first transforms all the vertices of the Eye’s 
Coordinate System to the Clipping’s Coordinate System, so the 
Clipping’s Coordinate System is transformed into the 
Normalized Coordinate System as each component of the 
Clipping’s Coordinate System is divided by its corresponding 
w component. 

The GL_PROJECTION matrix is used to define a frustum. 
This frustum determinates which objects will be cut from the 
scene. Also, it determines how the 3D scene is projected on the 
screen. 

The OpenGL provides two ways to accomplish a 
GL_PROJECTION transformation: 

glFrustum(): to produce a perspective projection.  
glOrtho(): to produce an orthographic projection (parallel). 
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In the Perspective Projection, one 3D point on a pyramid of 
truncated frustum (in the Eye’s Coordinate System) is mapped 
to the cube (in the Standardized Coordinate System), where the 
interval of its coordinates in the X axis changes from [left, 
right] to [-1,1], in the Y axis changes from [bottom, top] to [-
1,1] and in Z axis changes from [near, far] to [-1,1] (Figure 8). 

 
Figure 8 – Perspective Frustum and Normalized Coordinate Space 

It is possible to perceive that the Eye Coordinate System is 
defined according to the Right Hand Rule, however the 
Normalized Coordinate System is defined by the Left Hand 
Rule, meaning that the camera, in the origin, is looking to the –
Z axis on the eye system but looking to the +Z axis on the 
Normalized Coordinate System. 

V. KINECT ACCESS PRELIMINARY STUDIES 
The following libraries were studied to properly use the 

Kinect device: OpenNI [26], Microsoft Kinect SDK [27] e 
Open Kinect [28]. 

The Microsoft Kinect SDK is the most modular library to 
be used in the development of new applications, presenting 
well-defined modules, a range of examples available and full 
documentation. However, only a few examples which used this 
library were found regarding to the scope of this work. 

The Open Kinect, despite of being one of the first libraries 
to provide support to Kinect, does not have a large community, 
with about 2000 active users, and its advances depends on the 
few users interested on improving it. 

At last, there is the OpenNI library, created and developed 
by the creators behind the Kinect technology, PrimeSense [25]. 
It was the easiest to learn library, besides having a variety of 
demonstration programs and a manual with details and codes to 
understand how to use the main resources of Kinect. Taking 
into consideration the presented reasons, this was the library 
chosen for the development of this research. 

Having the SDK for the Kinect been chosen, it was 
necessary to look for previously existing projects that solved 
the calibration of the Kinect-Projector system. 

A. RGBDemo 
RGBDemo [14] provides, among other functionalities, the 

Kinect camera calibration and the camera-projector system 
calibration. The driver used to calibrate the Kinect was the 
libfreenect, while the driver used to calibrate the Kinect-
Projector system was the OpenNI. It was necessary to use both 
drivers once that OpenNI does not provide the option for 
simultaneous visualization between RGB camera and the data 

from IR camera. The resulting calibration format is YAML 
[29] and it consists of all the intrinsic and extrinsic parameters 
obtained. The estimated time to make a calibration was 
between 5 and 15 minutes for a set of 30 images, which not 
always had a coherent result, being then necessary to repeat the 
previous steps several times. By the end of the whole process, 
the consumed time could vary from 40 to 90 minutes, where 
the time taken by the algorithm to process all the images and 
generate the calibration matrices lasted about 10 minutes, while 
the rest of the process was used for the positioning of the 
chessboard. 

B. CameraProjectorCalibration 
This method [17] aims to be fully automatized, not 

requiring that the user provides commands through the 
keyboard to select an image, taking less time than the 
RGBDemo. The driver used on this method was the Microsoft 
Kinect SDK, once the program works together with 
OpenFrameworks [30], which does not support this SDK, and 
it was not possible to remove this dependency. Therefore it was 
necessary to emulate [31] the Kinect camera with a webcam in 
order to the CameraProjectorCalibration to interpret it as a 
video source and use the RGB camera information as an input 
to calibrate the Kinect-Projector system. Even though this 
method has a calibration between a pair of cameras, it was not 
possible to use it once the integration with the Kinect driver 
through the webcam did not provide the result of the IR camera 
and, therefore, the camera calibration used here was obtained 
with RGBDemo. 

The total calibration time varies from 25 to 50 minutes, but 
this method achieved a coherent result on the first or second 
attempt, ensuring a depth allowed variation of almost two 
meters. Despite the total calibration time being shorter than the 
RGBDemo, the algorithm’s processing time of this method is 
superior, being responsible by at least 15 minutes of the total 
time. 

In spite of the differences between RBGDemo and the 
CameraProjectorCalibration, the following conclusions were 
observed over both solutions: 

It is not recommended to perform the calibration with more 
than 30 images once the complexity of the equations used to 
find the intrinsic and the extrinsic parameters grow according 
to the numbers of images obtained, requiring more time and 
presenting higher chances of bad outcomes. 

All of the calibrations were performed after a 60 minutes 
period of the Kinect-Projector being turned on, following the 
study presented in [32]. 

In order to perform a calibration that covered the biggest 
projection/vision area of the Kinect, it was necessary to adopt 
the following procedures to generate new images: 
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• Rotating the pattern for at least 5 angulations of a 
maximum of 20º each, as shown in Figure 9.1 (no 
rotation, rotation left, right, up and down and/or with 
some concatenations). 

• Once having used the various possibilities, the pattern 
was moved to a new height, as shown in Figure 9.2 and 
the process repeated itself. 

• Having explored at least 2 heights, the pattern is moved 
horizontally in order to explore the best possible way the 
system’s field of vision, as shown in Figure 9.3. 

• Finally, for the calibration of the Kinect-Projector system, 
it was necessary to also explore the depth of calibration, 
as shown in Figure 9.4. So, in addition to the procedures 
previously described, it was necessary to 
approach/distance the Kinect/Projector. 

 

 
Figure 9 - Different positions and angulations used during the calibration. 

To reassure that the result of the calibration was consistent, 
two different positions were tested with the Kinect relative to 
the Projector, as seen in Figure 10: having a rotation between 
them (Figure 10, left) and the case in which the Kinect was 
directly over the Projector and there was no apparent rotation 
between them (Figure 10, right). It was important to test these 
cases to prove the correctness of the calibration methods 
because the first case generates a system of equations more 
complex to be solved; therefore, it is more prone to failure. 
Once it was proven that the calibration still worked, even 
though it was not the ideal scenario, it was changed to the 
superposition of cameras so that a better result could be 
achieved.  

Having finalized these studies, to get to the desired final 
result, it was necessary to study efficient methods which 
presented correct data from the Kinect, considering one method 
to visualize 2D data and another to visualize 3D data, as 
presented in the following. 

 
Figure 10 – Different positions used for the Kinect-Projector System. 

C. Base Application: NIViewer 
In order to aid the development of the library that used the 

features offered by the OpenNI, the NIViewer was utilized as a 
base program. This program offers the main functions 
developed for the Kinect use, such as visualization of RGB 
Camera and IR, and also different depth maps, multiple 
visualizations, and possibility of audio and video recording, in 
addition to its management. 

Figure 11 presents the main visualization methods offered by 
NIViewer, in which all are done from the Textures’ Mapping 
in OpenGL, delivering only a 2D visualization of the resources 
available on Kinect. Despite the visualization not being in three 
dimensions it is possible to notice how the images under Depth 
Mapping present a better idea of depth than the one offered by 
the RGB Camera. 

Figure 11 on the left shows a Depth Mapping made with a 
single color scale, in which the more the contrast the color 
presents, the closer the point is to the Kinect Device. 

 
Figure 11 – Depth Mapping (A) and Colors (B). 

D. Point Cloud Library 
The Point Cloud Library (PCL) [33] offers wide 

visualization resources, management and treatment of point 
clouds, therefore adding several dependences to a project that 
would only use a point clouds’ visualization. Aiming to 
simplify this research’s development, a module capable of 
achieving similar results to PCL visualization was developed, 
as presented on Figure 12. 
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Figure 12 – Frontal view (left) and side view (right) of the point cloud. 

VI. PROJECT AND SYSTEM SPECIFICATION 
The developed framework details are described below: 

A. System’s Architecture: 
1) Extraction of intrinsic and extrinsic parameters from 

the Kinect’s RGB camera relative to the Kinect’s IR camera: 

a) Move the calibration pattern in front of the cameras. 

b) Take diverse snapshots of the calibration pattern in 
different positions and angulations. 

c) Process the snapshots using the RGBDemo calibration 
program. 

2) Intrinsic and extrinsic parameters extraction from the 
projector relative to the RGB Kinect Camera: 

a) Position the calibration pattern in front of the 
cameras. 

b) Take diverse snapshots of the calibration pattern in 
different positions and angulations. 

c) Process the snapshots using the RGBDemo calibration 
program or the CameraProjectorCalibration. 

3) Correlation between the points of both calibrations: 

a) Accomplish the transformation of the point in the IR 
Camera’s Coordinate System to the Projector’s Coordinate 
System. 

4) Verification of quality in both calibrations: 

a) Use a Point Cloud to validate the calibrations of the 
previous steps as verifying that the projected objects are over 
the real objects. 

b) Case the previous step fails, restart from step 1.a) 
5) Insertion of extra information to the real scene to 

create Augmented Reality: 

a) Create a treatment on the Point Cloud generated on 
step 4 to insert visual information to the real scene. 

Figure 13 presents a graphic showing the process. 

 
Figure 13 – System’s architecture 

B. System’s Characteristics 
The program and all of its dependencies were written in 

C++ and were developed in Visual Studio 2010. The driver 
used to capture the information from the Kinect was OpenNI 
1.5.4 version, along with Prime Sense NITE driver 1.5.2 
version and Sensor Kinect 5.1.2.1 version. 

As dependencies, the Glut version 3.7.6 library was used 
and the OpenGL 3 version to the creation and management of 
the graphic elements. OpenCV [34] version 2.4.2 was utilized 
to ease the handling of algebraic data from the calibrations. 

The projector used on the tests was the Projection Design 
evo2sx+, contrast of 2500:1, 2500 ANSI Lumens, 1600x1200 
resolution and throw ratio 1.78 - 2.23 : 1. 

The computer used on the tests was an Intel 2nd Gen. Core 
i7-2670QM processor, 4 physical cores, 4 logical cores and 
clocked at 2.20 GHz, RAM memory of 8.00GB, GeForce 
GT540M dedicated graphic card, Intel(R) HD Graphics 3000 
integrated graphic card, HD Serial ATA-300 of 750.0 GB, 
Microsoft Windows 7 64-bits and a screen resolution of 
1600x900. 

The calibration patterns used were printed on bond paper 
weighing 75 g/m2, A4 size for the Kinect calibration and A1 
for the Kinect-Projector calibration. Both physical patterns 
were attached to featherweight paper and later attached to a 
camera tripod. 

The projector was positioned upside down so the generated 
image would have as the highest point the height of the 
projector and its lowest point according to the projection 
distance. This solution was necessary so the Kinect could 
capture the whole projection area without generating occlusion 
and a person with an approximate maximum height of 1.8m 
could be projected on. 

C. Libraries and Modules created 
In order to recover the data obtained by the calibration 

between the cameras, a module called Calibration was created 
based on the Cámara Lúcida program [35]. This module is 
responsible for loading the calibration matrices on the program 
so that, in the future, they could alter the Modelview and 
Projection of OpenGL matrices and, in addition, to store the 
intrinsic and the extrinsic data of each camera in its 
corresponding device. 
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Modelview and projection matrices creation was done by 
the OpticalDevice module, which solves the required algebra 
as explained on Section III, in order to use as a set all of the 
matrices obtained by the calibration between the cameras. 

The HelpMenu module was created to aid users to provide, 
on the screen, the necessary hotkeys to handle the program and 
its tooltips. 

To make it possible to have different visualizations of the 
Point Cloud, it was needed to create a module capable of 
interpreting movements from the mouse and handling the Point 
Cloud according to their movements. 

D. NIViewerLib 
NIViewerLib is a library to access the functions offered by 

Kinect, and aiming reuse, management and maintenance of 
methods that utilize the resources offered by Kinect, a library 
that encompasses the main functions was developed, including: 

1) Startup. 
2) Acquisition and visualization of different streams 

offered by OpenNI. 
3) Resizing the stream. 
4) Test on the OpenGL context using simple matrices of 

Modelview and Projection. 

A library for functionalities offered by Kinect was created. 
This library furnishes a modular use of the necessary methods, 
encapsulating modules of direct access to Kinect’s raw data 
and enabling only the visualization of necessary functions. 

The prototypes created of OpenNI library provide the same 
functionalities, all presented in 2D: 

1) RGB/IR Camera’s visualization. 
2) Different depth maps over the IR Camera’s 

visualization. 
3) RGB Camera’s visualization with depth information. 
4) Side by side visualization from both cameras. 
5) Management and visualization of the Skeleton in 2D 

and 3D. 

E. Point Cloud Viewer 
Modifications in the OpenGL software were conducted to 

ensure the use, management and maintenance of a point cloud. 
It is possible to create a depth map with a transparency factor – 
over the RGB Camera’s Point Cloud –, providing easily 
understood information for the user about the distance in which 
each point is found. This mode will be referred here as Point 
Cloud with Depth Mapping. Figure 14 presents points that are 
closer to the Kinect under shades of blue; meanwhile the 
further ones are under shades of green. 

The Point Cloud’s software with Depth Mapping was 
necessary because, when trying to validate a calibration with 
the prototype, only the Point Cloud of the RGB Camera was 
being projected over the scene. We verified this wasn’t an 
efficient validation method since it wasn’t viable to visualize 
whether the projected points truly overlap the real points once 
both had the same color. With the depth mapping information 
and with the transparency factor added to the Point Cloud, it 
was easier to perform the validation. 

 
Figure 14 - Front view (left) and lateral (right) Depth Point Cloud Mapping 

VII. RESULTS 
The developed program allows the user to load the 

calibration files. Once the files are loaded, the program 
interprets the given matrices and generates the Modelview and 
the Projection’s matrices necessary for the mapping projection. 
It is important to notice that the matrices given by the 
calibration program are on the OpenCV format and, therefore, 
are row oriented, requiring them to be transformed to the 
OpenGL format, which is column oriented. 

The results obtained with the framework are presented on 
Figure 15, Figure 16, and Figure 17. All of the mapping formats 
presented by the framework are made with support from the 
point clouds and can be seen, on runtime, on any type of 
surface, whether it being well defined or not. Figure 15 presents 
a chessboard rotated about 30º relative to the Kinect-Projector 
system, as an example of a well-defined surface. It is possible 
to observe on this image that the depth difference, which exists 
from the lower left to the upper right border of the chessboard. 
The mapping used to present the difference is based on a color 
cycle from red to blue. 

 
Figure 15 – Chessboard on a tripod under Depth Mapping with Cyclic Scale. 

Figure 16 (left) allows the visualization of even more depth 
levels, accurately emphasizing the differences of distances 
between the shoulders, the torso and the hands. 

On Figure 17 (right) the colors information obtained by the 
Kinect’s RGB camera accurately overlaps the objects 
contained in the scene. On Figure 17 (left) is presented the 
Mapping Skeleton accurately overlapping the user. Both Figure 
16 and Figure 17 are examples of non-smooth surfaces. 
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Figure 16 - Left: Depth Mapping with a Cyclic Scale. Right: Depth Mapping 

with a Two Color Scale. In both cases the skeleton mapping overlaps the 
corresponding mapping. 

 
Figure 17 - Left: Mapping Skeleton. Right: Mapping Depth with the RGB 

camera information 

The more shades a scene has and the less linear the borders 
are, the smaller are the chances of the whole surface to be fully 
and properly lit by the Kinect-Projector System, resulting in 
less information generated to the scene and worsening the 
behavior of the Mapped Projection to these objects. 

A. Difficulties encountered 
Almost all of the problems found by the end of the system 

development are part of the calibration process. They are 
presented below: 

1) Lack of control of White Balance and Auto Exposure 
on Kinect: to be able to successfully use the Projector over the 
same object Kinect is observing, it was necessary to utilize the 
Microsoft SDK driver. However, the Kinect used was a 
XBOX 360 version, instead of the Kinect for Windows, and 
because of this, it was not possible to have any kind of control 
over the RGB camera. This drastically hindered the calibration 
since the light emitted by the projector, once filtered by the 
Auto Exposure, ended decreasing the natural lighting, 
worsening the physical pattern recognition. Four options were 
found to surpass this problem: 

a) Add a new high quality camera to the system and 
execute the calibration of this camera with the Kinect RGB 
camera, adding a new complexity to the system. 

b) Create a driver capable of recognizing other Kinect 
drivers as webcam. Drivers such as libfreenect and OpenNI 
2.x version claim to have the necessary controls to surpass this 
problem, but building this driver would scape the envisioned 
theme. 

c) Perform a refactoring in the whole calibration project 
in order to remove the dependency of the 
CameraProjectorCalibration input. 

d) Acquire a Kinect for Windows. The tests were done 
using a standard version of the XBOX with an USB adaptor. 

2) Kinect’s RGB camera has a low quality image. It would 
be needed that both physical and logical patterns to be close to 
the Kinect so that the detection could be successful. Since the 
Kinect was positioned above the Projector and that the closer 
the pattern is to the Kinect, smaller the projection is going to 
be, this scenario hinders once again the projection of patterns. 
A balance between calibration quality and calibration distance 
had to be found. That is the reason why the physical pattern 
was printed on A1 paper: so that it could cover a larger 
calibration distance. 

3) The ProjectorCameraCalibration program has 
performance bottlenecks, delaying the response of the system 
when capturing an image. Since the system is automated, these 
delays could often mean that the image was captured during 
the movement of the pattern – generating blurred images and 
resulting into low quality calibrations. The reason for this 
bottleneck was not found, therefore, the method found to 
minimize it was to increase the interval between the picture 
capturing, considerably hindering the total calibration time. 

4) The amount of time to perform a calibration under any 
of the presented methods were superior to the calibration time 
of higher quality cameras. 

5) Since the visualization program uses the OpenNI driver 
and the calibration program uses the Microsoft Kinect SDK 
driver, it is necessary to have both drivers installed in the 
computer and make the necessary exchanges between them, 
enlarging the dependency as a whole to obtain good results. 

6) On Figure 16, it is possible to perceive that the 
projection goes beyond the body area. This happens because: 

a) Since the visualization is made with a point cloud, 
each visualization pixel is a point designed by OpenGL, 
however the drawing of this point by the OpenGL has a 
minimum size, which is bigger that the one needed to properly 
fulfill the whole area. 

b) When this image was made, the pixel size was defined 
as 3, but changing this point to size to 1 made the point cloud 
to look sparse, hindering the visualization. 
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c) Each point in a point cloud is given by the Kinect so, 
aiming to avoid the point cloud to look sparse with a smaller 
point on OpenGL, it would be necessary that the Kinect's IR 
projector could project more points. 

d) Projection error: one of the parameters to verify if the 
calibration went properly is the projection error value, where 
the larger the number the less accurate the calibration was and 
the smaller the overlapping was going to be between the real 
and the virtual scene. Since in order to perform a projection 
mapping it is necessary to perform two calibrations, the final 
reprojection error will be increased in relation to the isolated 
error of each calibration. 

VIII. CONCLUSION 
This work presented a framework capable of reading a 

calibration performed by a Kinect-Projector system and 
validating it. This validation is done as different kinds of 
visualization of data originated in Kinect. Developers will be 
able to check their calibration methods through this framework, 
in addition to study the effects of the visualization methods 
presented here. 

Due to the limitations of Kinect and of the calibration 
methods, future research can be conducted on the use of Kinect 
2.0, which has a better resolution (1080p) and more resources 
than the Kinect 1.0, enabling it to solve various problems found 
here. Additionally, more efficient calibration methods can be 
studied, aiming to achieve better and faster visualizations in 
Mapping Projection. 

Considering that Kinect 2.0 does not have a partnership 
with Primesense, it would be prudent to use a Microsoft driver 
instead of the OpenNI driver in order to reassure that the 
framework works with both Kinect versions, or that the 
required maintenance for both versions is as low as possible. 

The calibration patterns currently used impose a restriction 
to this work, both for its hard maneuvering and for the 
difficulty of finding a light and rigid surface in order to avoid 
folds and distortions to the pattern. It is necessary to search 
smaller patterns and more efficient algorithms, capable of 
detecting them. 
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