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Abstract: This work describes a methodology that supports the design and implementation of 
software modules, which represent the individual and collaborative three-dimensional 
interaction process phases. The presented methodology integrates three modeling approaches: 
Petri Nets, a collaborative manipulation model based on the combination of single user 
interaction techniques taxonomy, and object-oriented programming concepts. The combination 
of these elements allows for the description of interaction tasks, the sequence of interaction 
processes being controlled by Petri Nets with the codes generated automatically. By the 
integration of these approaches, the present work addresses not only the entire development 
cycle of both individual and collaborative three-dimensional interaction, but also the reuse of 
developed interaction blocks in new virtual environment projects. 

Keywords: collaborative interaction, interaction technique specification, design process. 
Categories: H.5.2, I.3.6, I.3.7, I.6.5 

1 Introduction 

Research on collaborative manipulation of objects in immersive virtual environments 
(VEs) is relevant in many areas, such as simulation and training, as well as in data 
exploration [Ruddle, 02]. Collaborative manipulation, or collaborative 
three-dimensional (3D) interaction, refers to the simultaneous manipulation of a 
virtual object by multiple users in a VE. In simulation and training, simultaneous 
manipulation of objects in VEs can be used to mimic some aspects of real-world 
tasks. For example, in situations like product and equipment design, assembly tasks or 
emergency training, even when the users are not co-located in space, collaborative 
manipulation may provide more realistic interaction. In data exploration, collaborative 
manipulation is an important tool to enhance the interaction process, by moving it 
from being one-sided (“I do this, while you watch”) to being truly collaborative, 
increasing insight exchange and reducing the time for task completion. 

In order to better understand a virtual reality (VR) application, especially its 
possible intricate interaction flow, it is very helpful to use some kind of formal 

Journal of Universal Computer Science, vol. 17, no. 2 (2011), 243-260
submitted: 17/9/09, accepted: 7/12/10, appeared: 28/1/11 © J.UCS



description tool like Petri Nets (PN) that can describe the system function and 
components. This allows not only a better understanding, but also a preliminary 
evaluation of each phase of the system operation, which is especially useful in 
collaborative 3D interaction, since the collaborative metaphor concept needs the 
representation of parallel activities. Moreover, a formal description facilitates the 
automatic generation of the core application code, from graphical representations. 

Besides formal specification tools, some researchers have sought to develop 
taxonomies able to document and specify VEs in an abstraction level closer to the 
user’s conception instead of the designer’s or programmer's views of the 
application [Bowman, 99] [Bowman, 04]. These approaches split the systems into 
smaller parts, identifying behavior patterns and allowing to encapsulate them into 
classes that are able to execute some relevant functionality. This approach allows for 
the reuse of these classes in other projects and also allows for the combination of 
them to build a new interaction technique, for example. 

Both the use of formalisms and taxonomies aim to better define the interaction 
processes, reducing the time spent during the design and implementation of VEs. 
Therefore, an integration of both approaches can gather the best of them: system 
specification according to the user’s level of expertise, evaluation in early stages of 
the development process, and the detailing of each phase of the software development 
process. 

This paper describes a methodology able to model and to implement software 
modules that represent the collaborative interaction process phases. Our methodology 
integrates three modeling approaches: PN formalism [Murata, 89], a collaborative 
manipulation model [Pinho, 08] based on the combination of Bowman’s single user 
interaction techniques taxonomy [Bowman, 99], and object oriented programming 
concepts. The combination of these elements allows for the description of interaction 
tasks, in which the sequence of the interaction processes is controlled by PNs, and 
whose codes are generated automatically. By the integration of a collaborative 
interaction techniques taxonomy, the formalism of PN and automatic code generation, 
the present work addresses the entire development cycle of a collaborative three 
dimensional interaction. 

This paper is organized as follows. Section 2 summarizes work that is related to 
our approach. In Section 3 we present the proposed methodology and in Section 4 we 
present a case study with a collaborative manipulation task. Section 5 concludes the 
paper. 

2 Background 

This section presents related work in five aspects that are related to our approach: 
interaction techniques specification; interaction techniques taxonomies; collaborative 
design; collaborative manipulation; and frameworks and tools for code generation in 
VR applications. 

2.1 Interaction Technique Specification 

Smith and Duke [Smith, 99] point out that the lack of formal descriptions during the 
development process of VEs inhibits the identification of similarities among different 
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interaction techniques, leading to the “reinvention” of existing techniques. Interaction 
technique specification is an important task from the perspective of both users and 
designers. Users require interaction techniques that allow them to complete 
interaction tasks in a particular application and designers like to build systems that 
make the required interaction possible [Smith, 99]. 

Hynet [Wieting, 96] is a specification methodology for interaction techniques that 
integrates three modeling approaches. High-level PNs represent the formal base for 
the specification, defining the application semantics and allowing a graphical 
representation for the application events (the discrete part of the application). 
Differential Algebraic Equations handle the continuous behavior pattern of the 
application, and Object Oriented Concepts allow for the enhancing of the 
methodology expressiveness, generating concise and compact models. 

Based upon HyNet, the Flownet methodology [Willans, 01] was developed for 
describing dynamic behavior patterns in VEs and presents a different graphical 
notation that allows for the specification of both the discrete and continuous behavior 
patterns of the application. 

The Interactive Cooperative Objects (ICO) is a formal notation devoted to the 
specification of interactive systems [Palanque, 97]. It borrows concepts from the 
object-oriented programming to describe the structural or static aspects of systems, 
and uses high-level Petri nets to describe their dynamic aspects. According to the 
authors, the specification created using ICO can be simulated, which gives the 
possibility to prototype and test an application before it is fully implemented. 

The above specification approach provides systematic methods for interaction 
techniques design, test, and refining, facilitating the description of systems. However, 
both HyNet/ Flownet and ICO are not related to any interaction technique taxonomy 
and do not provide any support for the automatic generation of code, which requires a 
deeper knowledge of the used formalisms, both by the designers and  the developers, 
especially in the implementation phase. 

2.2 Interaction Technique Taxonomies 

We can view the development process of VEs under the perspective of the interaction 
techniques used, with the aim of classifying them in order to better understand their 
components, and therefore the possibilities of software reuse in new applications. 

Lindeman [Lindeman, 99], for example, demonstrates a taxonomy that divides 
interaction techniques according to the type of manipulation technique (direct or 
indirect), the system actions (discrete or continuous) and the degrees of freedom 
controlled by the interaction technique. This approach helps to identify the parameters 
involved in each interaction technique, facilitating the building of new forms of 
interaction. 

Bowman et al. [Bowman, 04] present a taxonomy based on task decomposition to 
perform a detailed analysis of the interaction process. According to them, the 
separation of tasks in simpler modules allows each of them to be analyzed and tested 
in an independent way as a tool for evaluating the usability and effectiveness of an 
interaction technique in a particular context or VE. 

Another advantage in the use of a task decomposition taxonomy is the possibility 
of reuse or combination of interaction technique components in new projects. This 
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characteristic allows, besides flexibility, for the conception of new techniques 
adequate for specific situations, such as collaboration. 

Csisinko and Kaufmann [Csisinko, 07] present an approach to standardize the 
development of 3D user interaction techniques. The authors propose to implement the 
techniques directly in the driver that controls the tracking device, using Python 
scripts. This solution uses a variation of the Bowman’s taxonomy, introducing an 
orthogonal property to describe the level of support provided by the driver: full, 
partial or not implemented in the tracking middleware. 

2.3 Collaborative Design 

The use of collaborative methodologies during the design of the graphical user 
interfaces allows the interchange of experience between different development teams, 
and enables the creation of well-detailed system components. 

Memmel and Reiterer [Memmel, 08] provide a model-based specification method 
and an experimental tool that integrates models with different levels of fidelity of 
user-interface prototyping. Users can cooperatively work on requirement models 
during brainstorming sessions, interacting with project artifacts through an electronic 
whiteboard or using their own workspace. 

Another approach, presented by Arroyo et al [Arroyo, 08], proposes the 
integration of collaborative task models into a unique design model for the 
development of ambient intelligence systems. According the authors, the 
implementation of these systems is based on a blackboard architecture, which 
provides a well-defined high-level interface, encapsulating abstract concepts and 
relationships in components that describe an expected behavior or a specific physical 
device. 

The work of Martinéz et al [Martínez, 08] presents a model of interaction for 
collaborative VEs, which allows defining the logic of an application focusing mainly 
on the communication process among the objects. The proposed model, besides being 
based on properties of the real world communication, allows the integration of task 
analysis to the design of the environment. For instance, user actions are mapped as 
channels of communication using the Bowman’s task decomposition 
taxonomy [Bowman, 04]. 

Although these proposals provide robust solutions for the specification of 
conceptual design models, they do not support the description of specific features in 
the design of 3D user interfaces, such as the representation of interaction techniques 
and devices commonly used in immersive virtual environments. 

2.4 Collaborative 3D Interaction 

The need for cooperative manipulation arises from the fact that some object 
manipulation tasks in VEs are difficult for a single user to perform with typical 
3D interaction techniques. One example is when a user, using a ray-casting technique, 
has to place an object far from its current position, which can be difficult if the user 
does not see all the surroundings of the aimed position. Another example is the 
manipulation of a large object without changing to a World-In-Miniature (WIM) 
paradigm. In both cases, two users can perform the task more easily because they can 
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both advise each other while performing cooperative, synchronized movements they 
are not able to perform alone. 

In most of the known collaborative virtual environments, the simultaneous 
manipulation of the same object by multiple users is avoided. True collaborative 
manipulation has been the focus of a few research efforts. Most of these 
efforts used force feedback devices so that each user senses the actions of the 
other [Basdogan, 00] [Sallnäs, 02]. 

Margery et al. [Margery, 99] present an architecture to allow cooperative 
manipulation without the use of force feedback devices. The system is restricted to a 
non-immersive environment, and the commands that can be applied to objects are 
vectors defining direction, orientation, intensity and the point of application of a force 
upon the object. Thus, Margery’s work is based on the simulation of real-world 
cooperative manipulation. 

Earlier research by Ruddle et al. [Ruddle, 02] presented the concept of rules of 
interaction to support symmetric and asymmetric manipulation. In a subsequent 
work [Ruddle, 03], the same authors separated collaborative tasks into two levels of 
control. The high level control activities correspond to those tasks that require 
attention, planning and mental effort by the users to be executed. The low level 
control activities are quasi-autonomous activities that, once learned, are quickly 
executed by the users with no conscious control. 

Duval et al. [Duval, 06] presented a cooperative manipulation technique based on 
“crushing points”, considering the size and the geometry of the object. Two crushing 
points define a “skewer” across the object. According to the authors, the users feel 
like they are pulling the object by a virtual cord. The proposed technique uses only 
the user's hand position to apply translations and orientation changes to the object. 
The only problem reported for this technique is that rotation around the axis of the 
skewer is not allowed. To do so, the users have to release the object and select new 
crushing points, or new controls (like buttons or six degrees of freedom trackers) must 
be added to the interaction process. 

The work of Pinho et al. [Pinho, 08] presents the concept of collaborative 
metaphor for simultaneous interaction in VEs. This metaphor is composed by a set of 
rules that defines how to combine each step of the interaction process, allowing that 
interaction techniques normally used in individual interaction be combined to 
compose a collaborative technique. The steps of the interaction process used are those 
steps defined by Bowman’s task decomposition taxonomy [Bowman, 04]. The 
combination of the steps of interaction techniques is obtained by the distribution of 
the degrees of freedom of the objects’ control among the users. 

Riege et al. [Riege, 06] present a collaborative pointing technique for co-located 
multi-user interaction in VEs called “The Bent Pick Ray”, based on the ray casting 
metaphor. This approach allows users to select and manipulate objects, 
collaboratively or not, without locking objects and preserving the visual feedback. 
Multiple selections and concurrent manipulations are controlled through functions 
that merge the inputs from multiple users. In collaborative tasks, the users are 
continuously informed about their connection to the object through bent pick rays, 
which also provides a direct feedback from the input merging process. 

We use the latter two collaborative 3D interaction methodologies as case studies 
for the PN-based approach proposed in this work. 
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2.5 Tools for Code Generation 

VR Frameworks try to separate functions in modules, allowing for the abstraction of 
the complexities of some system actions, and furthermore, the reuse of these software 
modules, coded by design languages. 

The Unit framework [Olwal, 04] inserts an abstraction layer between the 
applications and its devices, and inserts application units into a data flow. Similarly, 
Figueroa et al [Figueroa, 02] propose an architecture based on pipes and filters, where 
information sources, such as physical devices, generate a flow of data that are 
propagated through interconnected filters. However, the code generation process 
offered by both frameworks results in interpreted code, which may compromise the 
quality of the interaction if the hardware does not support the application demands. 

Vitzhum [Vitzthum, 06] presents a visual design language that focuses on the 
formal specification and supports the use of model-driven implementation. Although 
this approach is task-focused domain and generates less code than the traditional 
concepts, it is essential a previous experience with software engineering principles. 

From a different perspective, Ying and Gračanin [Ying, 04] aim to understand the 
interaction process of existing VR applications. Analyzing an existing code, the 
information related to the user interaction is extracted and organized in an XML file 
that serves as a base for building a PN model representing the target application. By 
simulating the PN, one can “view” the interaction process through the PN behavior 
pattern, while the user is interacting with the VR application. Nevertheless, this 
approach is restricted to the test phase and does not contemplate previous steps of the 
software development process, because reverse code engineering is used to create 
description files. 

3 The Proposed Methodology 

From the literature review, it is possible to conclude that the approaches presented 
above have specific advantages and goals. However, in general, they do not address 
the entire computer application development cycle, especially concerning the final 
phases of debugging and code generation. Towards this goal, we developed a 
methodology for hierarchical development of a VR collaborative interaction process 
using Petri Nets, beginning from the design stage, based upon Bowman’s interaction 
taxonomy, up to the implementation phase, relying on the object oriented 
programming paradigm.  

The main goal of the proposed methodology is to model and implement modules 
that represent the steps of the interaction process. The use of formalism in conjunction 
with an interaction taxonomy allows for the detailed specification of the system, as 
well as facilitating the structuring and implementation process, encapsulating 
functionalities. These characteristics enable the generated modules to be tested in 
advance and reused later, simplifying and accelerating the development of VEs. 

The graphical representation adopted here is based on Colored Petri 
Nets (CPNs) [Jensen, 97] because, during the modeling process, we need an easy way 
to differentiate the various types of data that are manipulated in a VR application. For 
simplification, this work refers to CPNs simply by the expression Petri Nets (PN). 
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The methodology presented in this paper aims to approximate the user’s 
conception of the application from the designer and developer’s point of view, 
modeling the application under the perspective of tasks which the user has or wishes 
to perform inside the VE. These tasks can be decomposed in elementary tasks that can 
be easily identified in most VR applications [Bowman, 99]. These elementary tasks 
split the interaction process into three phases: selection, manipulation and release. 
Our work adapts this taxonomy dividing the selection phase into selection and 
attachment. The former represents the indication of the object which the user wishes 
to manipulate, while the latter deals with the confirmation of this selection. Both 
provide feedback to the user in order to confirm their execution. 

The designer needs to follow three steps to apply the methodology: 1) identify the 
VE tasks, according to Bowman’s taxonomy, as well as the main states reached by the 
application after executing each task; 2) define a PN with the tasks and states 
identified in the previous step; 3) implement the model, using a set of classes 
specially developed to build the PN and to control its execution. Each of the above 
phases is detailed below. 

Considering PNs, our methodology assigns to each basic element used in the PNs 
(places, transitions, arcs and tokens) a specific role or function during the interaction 
process in a VR application.  Places define the current application state, transitions are 
elements that perform actions to modify the application’s behavior pattern, arcs define 
the execution sequence and tokens are the resources available for executing the VE.  

In order to illustrate the use of our methodology in the specification process of a 
VE, we built a virtual rotary engine application (Figure 1) in which the user’s primary 
goal is to assembly the engine, connecting its parts. In this section we present a single 
user interaction, and in the following section we extend it to collaborative interaction. 

3.1 Identifying Interaction and Building the PN Model 

The first phase of our methodology identifies the application phases based on 
Bowman’s taxonomy. The application starts in the Selection State (Figure 2, on the 
left) in which the user can move the pointer, looking for an object to select. From this 
point the Selection Task tests whether there is a virtual object indicated by pointer. 
If so, the Selection Task transition is fired, and the Attachment State is established. 

At this point if the user presses and holds the selection button, the Attachment 
Task is fired attaching the selected object to the pointer and establishing the 
Manipulation State. Once this state is established the PN fires the Manipulation Task 
which allows the user to relocate the object using the pointer. If the user releases the 
selection button, the Release State place enables the firing of Release Task, separating 
the pointer from the previous selected object. 

After identifying the application tasks in a high abstraction level, it is necessary to 
perform a task subdivision process, splitting them into smaller parts (see Table 1), 
based upon the operations each of them has to execute. 
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Figure 1: The virtual rotary engine application. 

 

Figure 2: A high-level PN for the application. 

High-Level Tasks Basic Operations 

Selection Indication Subtask 
Indication Feedback Subtask 

Attachment Confirmation Subtask 
Confirmation Feedback Subtask 

Manipulation Positioning Subtask 
Repositioning Subtask 

Release Detachment Subtask 
Detachment Feedback Subtask 

Table 1: Detailing the high-level tasks. 
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Following the methodology, the identification of the necessary resources (data) 
for each interaction phase should be initiated, which is represented as tokens in the 
PN. For this, PN arcs should be labeled with the token types, graphically represented 
by icons. 

The places Selection State, Attachment State, Manipulation State, and Release 
State need to be constantly updated with information about the devices and control 
variables from the application. Therefore, tokens with these data must be inserted into 
them, as can be seen in Figure 3 that presents the complete PN model for the 
application. 

Utilizing formalism, interaction devices and the application can be represented as 
source transitions in the PN model, as they don’t have input places, being always 
enabled to fire and to produce tokens to the net (in this case, information about the 
user physical interaction and the VE state). In Figure 3 the devices are represented by 
triangles, while the application is represented by hexagons. These shapes are merely 
illustrative and serve only to help understanding the network. 

 

Figure 3: PN model and data resources for the modeled interaction process. 
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The pace of the PN simulation is controlled by the application, which tests each 
transition every time the user’s view needs to be modified, guiding the execution of 
actions. In this step, the simulator fires the transitions that have their pre-conditions 
fulfilled. A transition’s firing generates a call to a function previously assigned to the 
task. In other words, all the transitions are checked on every rendering cycle and fired 
or not, depending on the existence of the pre conditions (the necessary tokens). 
Therefore, it is possible to analyze the process logic together with the system and 
devices behavior patterns. 

A complete PN cycle, presented at Figure 3 and representing the virtual rotary 
engine application, can be interpreted as follows: tokens are sent to the Selection, 
Attachment, Manipulation and Release states. When the Indication Subtask transition 
receives all the necessary tokens, a function is fired, unpacking its data and testing 
whether some engine part is being pointed by the user. In positive case, the transition 
creates a new token to represent this situation and passes it to the Indication state. 
After this, the Indication Feedback Subtask transition is fired, calling a function that 
highlights the pointed engine part. 

Immediately, the Attachment state accepts a token that represents the selected 
object, and waits for the token that indicates a button being pressed by the user. When 
this happens, the Confirmation Subtask transition is fired, calling a function that 
attaches the engine part to the user’s pointer. Confirmation state receives this 
information, which allows the firing of Confirmation Feedback Subtask transition, 
responsible for communicating the success of the attachment process using an alert 
sound. 

A token encapsulating the attached object is sent to the Manipulation state, which 
defines the start of the manipulation process. Positioning Subtask transition is fired, 
requesting a function to update the object’s position, according to the tracker data. 
This transition generates a new token, and sends it to the Release state as well as back 
to the Manipulation state, through the Repositioning Subtask transition. While the 
selection button remains pressed, the Positioning Subtask transition is repeatedly 
fired, allowing the user to freely move the engine part around the VE. 

If the button is released, the Manipulation state will no longer fire Positioning 
Subtask transition. Concurrently, the Release state receives tokens informing the 
user’s action and the manipulated engine part. Detachment Subtask transition is fired, 
releasing the object in its new VE position. Immediately, the Detachment state 
receives a token that fires the Detachment Feedback Subtask transition, which 
communicates the success of the detachment process. A token is then sent to the 
Selection state, allowing for a new engine part selection to be initiated. 

3.2 Implementation Phase 

In order to derive the implementation, we start with the graphical description of the 
PN, created in Dia editor [Dia, 10]. From this diagram, an XML specification is 
obtained which, in turn, originates a C++ code. 

Using Dia, it is possible to add support for new types of diagrams by writing 
simple XML files, thereby creating specific libraries with elementary objects called 
“shapes”. This feature also allows diagrams to be stored in XML files, facilitating the 
conversion of models to other codification forms, such as Java and C++ 
languages, or other markup languages, such as PNML (Petri Net Markup 
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Language) [Billington, 03]. The flexibility of the conversions allows for designers the 
reuse of models in new projects or different development platforms, and the use of 
other tools able to validate the syntactical structure of PNs, since Dia has no native 
support to formal validation. 

In order to support the PN modeling, new shapes have been created to represent 
the PN elements place, transition, arc and token, organized in a library called Petri 
Net Interaction Process Diagram. This library, besides facilitating diagram drawing, 
also enables the generation of C++ code from a PN model. Figure 4 presents this 
library incorporated in the Dia environment. 

Dia uses an XSLT (eXtensible Stylesheet Language Transformation) file format 
that allows conversion of XML tags to construction of a programming language, such 
as C++. We created two XSLT files that facilitate this conversion. The first file 
defines rules to generate an XML file from the graphical diagram, whereas the second 
contains rules to convert from the PN elements to C++ classes. These classes run the 
modeled PN and may be connected to a VE, coordinating its interaction. 

 

Figure 4: PN Interaction Process Diagram Sheet loaded inside the Dia environment. 

4 Collaborative Manipulation Case Studies 

We adapted the model of the virtual rotary engine application in order to support 
collaborative manipulation tasks. Figure 5 presents the new model, including two new 
tokens responsible for the objects’ translation and rotation tasks. This way, for 
instance, during the manipulation step an user may control the positioning of an 
object in the X-Y plane, while another user may control its orientation in the Y axis. 
This first case study is based on the Pinho’s methodology [Pinho, 08]. 

Each user interacting in the application has his own tokens, since the PN 
represents the behavior of the system as a whole. In Figure 6, for example, tokens 
representing each user have a specific border color (thick blue and thin red), while the 
shared token, representing the object has a different border style (dotted magenta). In 
this example, the thick blue user is responsible for the object’s translation in the 3D 
space, while the thin red user is responsible for the rotation of the same object. For 
this example, we considered the arcs label definition presented in Figure 5. 
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In this case study, the Manipulation state receives the shared object, the tasks that 
each user may execute, and continuous information about the devices and the 
application. The existence of the tokens enables the PN execution in parallel, 
determining which task the user may perform (positioning or orienting the engine 
parts). 

 

Figure 5: PN with parallel activities. “Rotation active” and “Translation active” 
tokens define the task to be executed. 

 

Figure 6: PN state during the cooperative manipulation. 
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Figure 6 still illustrates, in places Position State and Orientation State, the 
distribution of these activities between the users. Note that the tokens responsible for 
the user’s decision to continue or not with the object manipulation (pressed button) 
are forwarded directly to places Translate State and Rotate State, as a means to wait 
for the conclusion of the translation and rotation tasks. When both users complete the 
concurrent activities, the interaction process is enabling to continue as before. 

It is possible to show that the net also provides support for the representation of 
individual interaction. Figure 7 presents interactions of two users with different 
objects, in distinct steps of the interaction process (selection and attachment). 

 

Figure 7: PN state representing the interaction with two distinct objects, 
in different tasks. 

In order to validate our methodology with tasks and techniques applied in realistic 
settings, we present a second case study that illustrates our approach. In doing so, we 
model a bent pick ray [Riege, 06], a collaborative pointing technique discussed in 
Section 2.4. Part of the specification could be seen in Figure 8, which highlights the 
functioning of the technique during manipulation tasks. 

According to the description of technique, the object could be moved 
simultaneously by two or more users. Techniques for merging the users’ input are 
used, which weight the influence of interaction according to the amount of hand 
movement a user does. Figure 8 also shows these features, encapsulated in the 
transitions Offsets Subtask, Weights Subtask and Merging Subtask, which represent 
the required functions to combine the users’ movement, determining a new position 
for the object.  

This way, a user may perform the translation of an shared object in the X-Y 
plane, while another user perform the translation in the X-Z plane, at the same time. 
The merging process is started after this. Figure 9 shows this situation, considering 
the arcs label definition presented in Figure 8. 

Rotation tasks also may occur in parallel with the translation activities, as well as 
specific technique steps. Figure 10 complements the previous situation, showing that 
orientation actions could be performed at the same time that the visual feedback of the 
technique, when the bending of the pick rays is defined. 
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Figure 8: PN model representing the Bent Pick Ray interaction technique during 
the manipulation task. 

 

Figure 9: PN state during the simultaneous manipulation. 
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Figure 10: Parallel activities, such as interaction tasks and technique steps, could be 
represented using our methodology. 

4.1 Discussion 

With regard to the case studies, compared with the standard approach to deal with 
collaborative 3D manipulation, our methodology approximates the application 
modeling to the user’s conception, allowing effective communication between 
designers, developers and end-users during the entire development cycle. The PN 
interaction process representation also facilitates the identification of the parts of the 
system that could be parallel or support similar situations, such as individual and 
collaborative interaction. This can result, for example, in simplification of the system 
and reduction of the design-time and development-time, since our methodology is 
based on the top-down development approach, which allows breaking down a system 
to gain insight into compositional sub-systems. So, it is possible to create interaction 
technique components from generic parts, and reuse them in future projects. 

For this reason, our methodology also supports the interaction technique 
representation at different levels of abstraction, in design time, allowing basic 
elements to be used in new projects. The PN decomposition technique, combined with 
the code generation process, allows for the interaction technique features to be 
elucidated to the developers, who can dedicate their time and attention to improve 
them and optimize their codes. Moreover, the use of levels of abstraction in projects 
can also hide technical features from end-users, facilitating the understanding of the 
interaction technique during their interaction in VEs. 

On the other hand, our methodology requires designers to know the basic PN 
concepts and rules in order to draw and revise their models, since Dia has no native 
support to PN projects. Depending on the system's complexity, or the development 
team's knowledge level, a training step may be required to prepare the professionals to 
design and review the PN model. 

5 Conclusions 

This work has presented a methodology to specify interaction tasks for VR 
applications using the Petri Net formalism as a base for the software design. Our 
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methodology aims to facilitate the application development from the conception and 
design phases to the implementation, test and documentation processes. The option of 
code generation from the graphical model helps the communication between 
designers and developers, avoiding the breaking of paradigms, and speeding up the 
development process. Moreover, an application built with our methodology can offer 
optimized functions, allowing users to complete their interaction tasks in an intuitive 
way. 

Even though we have adopted the C++ language for the code generation process 
as described in Section 3.2 (Implementation phase), there is no restriction on the use 
of another programming language as default for this process. Our approach has 
adopted the C++ language because the majority of VR applications is developed in 
this language or uses resources from graphics/scene libraries written in it. However, if 
the designer needs to export PN models (stored in XML files) to another language, 
such as Java, he must create an XSLT file containing rules to convert the PN elements 
into Java classes. 

Since the control of the PN simulation stages is autonomous, it would be 
interesting to show the application running process in a graphical animation 
superimposed over the PN graph itself, parallel with the application usage. Currently 
we only generate a textual output during the application's execution. Our intention is 
to use the XML specification file as input to a PN simulator, parsing the PNML 
language. By doing this, we intend to present another method to analyze and visualize 
the behavior pattern of each stage of the interaction process, mainly to solve problems 
in complex VEs. However, this graphical animation is only possible if there is a 
mechanism able to verify the correctness of the PN model. The use of this resource 
would allow performing PN validation before the automatic code generation and the 
PNML specification, providing consistency and completeness to the created model. 

We are analyzing ways to verify the correctness during the model export process, 
since Dia is a general graphical editor and does not let the structural analysis take 
place in design time. This approach could allow for error detection within the editor, 
avoiding redraws and recoding during run-time and simulation-time stages. As a 
result, an accurate model could be generated, allowing the specific tools to verify the 
PN properties, through formal techniques to certify the absence of undesired system 
behaviors, such as deadlocks. Next, it would be necessary an evaluation session to 
validate these models, using one of the PN tools to analyze formally the system. 

Another interesting idea would be to incorporate our methodology to a VR 
framework, presenting a complete development platform. Resources for analysis, 
project, development and evaluation of VE prototypes could be integrated in a single 
tool, allowing for the detection of faults in project time. With this in mind, 
frameworks such as VR Juggler [Vrjuggler, 10], MORGAN [Morgan, 10], and 
DIVERSE [Diverse, 10] are being analyzed, as they already use an extensive set of 
software modules that abstract devices, avatars and VEs. Our methodology could be 
adapted to function as one interaction framework integrated to existing resources, 
becoming an important feature of these tools. 
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