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Abstract 
 
The Oil & Gas industry has seen increasing costs of finding and extracting hydrocarbons, especially in remote locations, 
ultra-deep water reservoirs (400 m or deeper) or in hostile environments. Those new exploration frontiers have been 
increasing the production complexity and logistic costs. In such conditions, oil exploration feasibility depends on new 
technologies to optimize production efficiency.  

One possible solution to this challenge is to increase the degree of automation in production units. New design concepts 
also consider the use of robotic devices in such scenarios. In this paper we present a robotics framework, SimUEP-Robotics 
(Robotics Simulator for Stationary Production Units - Unidades Estacionárias de Produção or UEPs, in Portuguese), aimed to 
enable planning the offshore platform robotizing using virtual reality techniques. 

The SimUEP-Robotics is based on ROS (Robot Operating System), a middleware for exchanging messages between 
different devices and processes that cooperate to accomplish a robotics task. SimUEP-Robotics is designed concerning the 
offshore requirements and is a flexible framework that allows the inclusion of new robots and devices in a virtual operation 
scenario. This capability enables the robotization and automation of offshore facilities that gradually evolve, starting from a 
complete virtual scenario towards a complete robotic system operating on a real platform, progressively including real 
devices.  

SimUEP-Robotics has an integrated Virtual Reality Engine (VR-Engine) specially tailored to provide realistic 
visualization of large offshore scene models in an immersive environment. The monitoring and management of remote 
operations of Stationary Production Units (SPU) is an activity that can also benefit by the usage of virtual reality scenarios 
due to the potential to reduce the complexity and difficulty in visualizing and validating simulations of operations performed 
by robots on a real SPU. The framework supports simultaneous simulation of multiple robots equipped with sensors and 
actuators like cameras, laser range finders and robotic manipulators. SimUEP-Robotics has also some specialized 
visualization tools like trajectory visualizer, ghostview robot animation, point-to-point measurement and a scenario editor 
that allows the user customize the target scenario accordingly. Through the use of those visualization tools it is possible, for 
example, to better understand the quality of the planned robot trajectory and propose new algorithms that can be further 
evaluated in the virtual environment. In conclusion, we argue that the validation process in an immersive virtual environment 
reduces risks and costs of real operation tests scenarios.  

SimUEP-Robotics has also an integrated Robotics-Simulator which is responsible for taking care of task planning and 
execution based on the information of the virtual scenario provided by the VR-Engine. To illustrate the effectiveness of the 
framework, different robotics applications were developed. One is an underwater application that calculates the whole 
dynamics of an operated ROV to simulate and test complex ROV operations in deep waters, like the connection of a flowline 
to a Christmas tree. The other one represents a topside offshore platform scenario where different virtual robots, derived from 
real mechanisms like Motoman DIA10, Puma 560, Seekur and others, operates. Results obtained on a pick and place task 
demonstrate the benefits of the proposed robotics framework for offshore applications. 
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Introduction 
 
The vast majority of new Oil & Gas fields present high production complexity and logistic costs, in addition to several other 
challenges. Several companies explore oil in Alaska and Arctic regions where extreme temperature conditions restrict human 
intervention. In Brazil, exploration in the pre-salt layer represents a mark in the oil industry, breaking production records in 
deep and ultra deep waters. The pre-salt platforms operate far away from the coasts at distances that can exceed 300~km, 
increasing significantly transportation costs, logistics infrastructure and response time, especially in emergency situations. 
Under such conditions, oil exploration feasibility depends on new technologies to optimize production efficiency. 

Robotics and automation can greatly improve the operational quality and productivity of offshore Oil & Gas installations 
(From 2010). Robots can work non-stop without the need for intervals and pauses, are less prone to errors, and also more 
reliable than human workers. This can increase the operation of the platform by reducing down-time and production stops, 
which are main concerns for the platform operators. Introducing robotic and autonomous solutions will also decrease costs 
related to commissioning and logistics, particularly by avoiding flying human operators to distant fields. In addition, 
unmanned platforms imply in reduced construction areas by removing the hotel services, restaurants, and other living 
facilities (S. O. Johnsen 2005) (S. O. Johnsen 2007). 

Another highlighted point is the improvement of Health, Safety and Environment (HSE) conditions, as robots can replace 
humans in tasks performed in unhealthy, hazardous, or confined areas (Moghaddam 2012). Substituting human workers with 
robots in hazardous environments will reduce the risk of accidents, and also reduce the exposure of the workers to toxic gases 
and other damaging substances. Robots are believed to alleviate humans from dangerous tasks such as drilling and PIG 
operations, and time-consuming and repetitive tasks such as inspection, surveillance, and maintenance of the offshore 
platform. This will greatly improve the overall HSE as the operators can monitor and remotely control the operations from a 
safe location.  

In the specific Brazilian case, the Oil & Gas industry is growing at a high pace, mainly due to recent discoveries of big oil 
reserves in the pre-salt layer off the Brazilian coast. These oil reservoirs are located farther away from the shore (300 km or 
more) and at depths of 5000 to 7000 m. These factors, especially the large distances, motivate the development of offshore 
production systems with a high degree of automation based on advanced robotics systems, eventually leading to unmanned 
platforms. 

The next generation of offshore platforms will present high degree of automation. New design concepts consider the use 
of robotic systems to accomplish autonomous or teleoperated tasks on production plants, even though there are several 
technological challenges that should be overcome to have feasible robotics technology available offshore. In this paper, we 
propose an offshore robotics framework as a first step to enable the planning of offshore platform robotizing, using auxiliary 
virtual reality tools and techniques aiming to improve the understanding of the planned task throughout its execution in an 
immersive environment. 

The proposed robotics framework is formulated concerning the offshore requirements. It is a flexible framework that 
allows rapid prototyping development of new applications through the addition of customized robots and devices in the target 
scenario. The proposed framework also simplifies the development and validation of the control algorithms by integrating 
virtual and real robots, sensors and different scenarios. This capability enables the robotization and automation of offshore 
facilities that gradually evolve, starting from a complete virtual scenario towards a complete robotic system operating on a 
real platform, progressively including real devices.  

Virtual Reality (VR) technologies can improve the understanding of any engineering project. Particularly, VR 
environments and new techniques for 3D visualization and interaction are being used in engineering applications for 
recreating environments with a high degree of realism for design review, HSE training, etc. In the present work those 
techniques are used for visualizing the offshore platform robotizing activities.  

Immersive visualization environments for robotics simulation have the potential to reduce the complexity and difficulty in 
visualizing and validating simulations of operations performed by robots on a real SPU. The visualization tools manage data 
and present visual information that enables professionals to observe and acquire a better understanding of problems, such as 
robot motion planning. Without visualization, it is hard to understand the quality of the solution found for the movement of 
the robot based only on simulation results. Validation reduces risks and costs of testing operations in real scenarios. 

Besides the security and productivity gain due to a high degree of automation, the addition of teleoperated robots enables 
the execution of a non-programmed task. It is also possible to share workers with specific knowledge and skills across 
multiple platforms without the need for transportation. In that way, several different production fields may be attended by the 
same personal on a single day. 
 
Related Work 
 
Different robotic frameworks and simulation platforms have been developed both for research purposes and industrial 
applications. However some important functionalities present in our proposed framework are absent in the existing ones. 
Before starting the development of SimUEP-Robotics we made a thoroughly comparison among the most advanced tools 
available in the market at that time (2011), such as Webots (Cyberbotics 1996), Microsoft Robotics Developer Studio 
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(Microsoft Corp. 2010), V-REP (Coppelia Robotics 2010) and ROS (Quigley 2009); and other industrial application tools 
such as RobotStudio (ABB 2001) and ROS industrial (ROS-Industrial™ Consortium 2012). 

Webots is a fast prototyping and simulation software for mobile robotics that has been under development since 1996 by 
Cyberbotics. Complex robotic scenarios can be designed, with different robots that can be equipped with simulated sensors 
and actuators. The advantages are that the robot controller can be programmed with other development environments and that 
it is available on any operation system (OS). The main disadvantage is that it requires a paid license to have full capabilities 
and an annual renewal license for software update. The ability to build a customized scenario is a feature also presented in 
SimUEP-Robotics. In our solution the robot controller can also be programmed by external Robotics Simulators as long as 
they are compatible with ROS (Figure 1).   

Robotics Developer Studio (RDS) is a Windows-based environment for robot control and simulation developed since 
2006 by Microsoft. RDS is based on Concurrency and Coordination Runtime (CCR) and Decentralized Software Services 
(DSS) concepts. The first one is a .NET-based concurrent library implementation that manages asynchronous parallel tasks. 
The second is a lightweight state-oriented service model which allows multiple services to run on a single node achieving 
complex behaviors. The current version, RDS 4, is free. However, it only works with Windows. In our solution we also use 
ROS and its ecosystem’s components. 

V-REP is a virtual robot experimentation platform that was first public released in March 2010 by Coppelia Robotics. V-
REP has an integrated development environment and is based on a distributed control architecture. In this way, objects can be 
controlled via an embedded script, a plugin, a ROS node, a remote API client or a custom solution. V-REP is open-source, 
but requires payment to have all functionalities. We also perceived the V-REP integration with ROS as a promised solution 
that we decided to pursuit. 

RobotStudio is a simulation and offline programming software that was developed by ABB Robotics. RobotStudio is 
built on top of the ABB VirtualController, which is an exact copy of the software that runs on the robots from ABB. In this 
way tasks like training can be performed without disturbing production. The program requires a paid license to have all 
functionalities and is restricted to ABB models. 

The Robot Operating System (ROS) is a multiplatform meta OS which establishes a communication layer and some 
services and applications provided through a package framework. It is a software framework for robot software development, 
providing operating system-like functionality on a heterogeneous computer cluster. Willow Garage maintains the core system 
with an open-source free software license. An extensive worldwide community efficiently expands it. As an OS it provides 
hardware abstraction, low-level device control, user transparent inter process connection and communication based on the 
message passing paradigm. The process nodes are identified by its corresponding IP address, so network nodes integration is 
automatically implemented. It also provides tools and libraries for obtaining, building, writing, and running code across 
multiple computers. ROS is similar in some respects to a “robot framework”. 

For robotics simulation, ROS ecosystem integrates the Gazebo project, which is a three dimensional multi robot simulator 
providing sensor data and physical interaction between objects. The Gazebo integration with ROS inspired very much our 
solution indeed. In fact, we decided to create the SimUEP-Robotics due to the lack of powerful VR tools and techniques in 
the ROS ecosystem. 

When considering industrial applications, ROS-Industrial is a BSD-licensed software library which extends the 
capabilities of the ROS software to industrial applications. It is a recent initiative from Southwest Research Institute (SwRI), 
being supported by the ROS-IndustrialTM Consortium (RIC). 

 
SimUEP-Robotics Architecture 
 
In robotics applications, the classic programming approach of writing a specific code to each project is being modified. The 
new programming paradigm is the use of multiple reusable subtask programs to accomplish current and future tasks. This not 
only decreases the rework of researchers but also reduce the project development time.  

In this context, a flexible architecture that permits rapid prototyping of different scenarios and applications is a valuable 
tool for the industry. Additionally, integrating virtual and real robots, environments, sensors and objects improves the 
development capacities. 

As mentioned earlier ROS framework establishes a communication layer between different process and devices, 
providing broadcast topics with periodic messages and on demand services. Furthermore, ROS focuses on the message 
content, letting the sender and receiver be transparent to each other. In virtual and real environment integration scenarios, this 
transparency permits to change between resources without code reimplementation. To increase the portability of applications, 
standard messages to common required resources such as laser range finders, robot’s joint state and odometry, are available, 

Figure 1 shows the SIMUEP-Robotics architecture, which is component-based having among other components, the VR-
Engine, which is responsible for the visualization of the simulation of actual operations performed with robots in offshore 
scenarios. Other components of the framework provide resources for manipulating different 3D input devices (spaceball, 
flystick, wiimote, tablets, etc), 3D interaction techniques, audio and video streaming, collaboration and a communication 
interface bridge to the ROS system, named ROS-Bridge. 
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Figure 1. Diagram representing the SimUEP’s component based architecture 

 
In the following sections, we present further information about ROS Bridge and the Robotics-Simulator Modules 

currently available: Topside Offshore Simulator and Underwater ROV Simulator.  
 

ROS Bridge 
The ROS Bridge is responsible for exchanging data between ROS compatible robotics simulators and the virtual robots 

created by the VR-Engine according to the target virtual scenario where the robotic task is being executed. The main goal of 
development of ROS Bridge is to make the data from the VR-Engine available to ROS compatible simulators. Data 
communication between the VR-Engine and ROS applications are controlled by ROS Nodes, which are processing units 
capable of establishing communication with each other through topics or services: 

 
 Topics: structures that store messages in an asynchronous communication model (public/subscribe). The nodes 

publish and receive information in topics that are identified by names.  
 

 Services: asynchronous communication with client/server architecture (one provider, multiple users). 
 
The integration of ROS in SimUEP-Robotics allows the creation of a communication layer between the visualization of a 

virtual scene and the simulation of real robot’s tasks. The exchanged messages are similar to those used to control real robots. 
The SIMUEP component based approach enables the creation of new "bridges" to other robot frameworks, like Rock 

(ROCK 2012) that is in our near future development plans. 
 

Robotics-Simulator Modules 
At present, the SimUEP-Robotics has two robotics simulator modules implemented allowing us to instantiate two 

different applications: one for topside offshore operations and another for sub-sea engineering, proving the effectiveness and 
value of the proposed framework. For the topside, the robot simulation strategy depends on the used virtual device and the 
task that should be planned. As a proof-of-concept we have developed a pick-and-place task in a typical offshore scenario 
(Figure 14). In the second application, the ROV simulator module implements the dynamic motion equations for an 
underwater ROV vehicle from Liu Hsu et. al. (2000). It is also clear that the SimUEP-Robotics can be extended with other 
ROS compatible robotic simulators addressing other operation problems. 

The robotics-simulator modules implementation integrate seamlessly some open-source community maintained ROS 
packages according to its needs. This integration is driven by the definition of the robots on the Unified Robot Description 
File (URDF) associate3d to its virtual robot used in the target scenario. The URDF is a XML file format that provides 
information about robots and associated sensors (e.g., laser, camera), trough joints and links definition at different levels such 
as kinematic, dynamic and visual. A simple URDF example is shown in Table 2 with a robot containing a revolute and a 
prismatic joint. Sensors can be incorporated using the Gazebo interface, which will be described later. 
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Table 1.  Relations of Sensor & Actuators with Ros Messages. 
 

Sensor Data Description ROS Message Type 
Proximity Name of the link being reached std_msgs/String 
Collision Array of 3D intersection points sensor_msgs/PointCloud2 
LaserScan Array of distances captured sensor_msgs/LaserScan 
Image 2D Image sensor_msgs/lmage 
Joint Set of joints values sensor_msgs/JointState 

 
Actuator Data Description ROS Message Type 

Pose 3D position and orientation geometry_msgs/PoseStamped 
Joint Set of joints values sensor_msgs/JointState 

 
Upon reading the robot URDF files in the scene the Robotics-Simulator configures the necessary standard messages to 

interact with sensors and robots (see Table 1).  In addition, it uses different ROS integrated libraries and packages to perform 
tasks like: navigate with mobile robots (navigation stack), transform data through different coordinate systems (TF package), 
build 3D maps (OctoMap) and process images (OpenCV). 

After selecting one of the SimUEP-Robotics available applications (instantiated by selecting an specific Robotics-
Simulator module according to the addressed task), the VR-Engine reads the scene description defined by the user and the 
related URDF files to create the virtual environment together with the visual representations of the robots ( 

Figure 2, steps 1 to 3). The ROS-Bridge is responsible for creating a ROS’s root node and exchanging information 
through its associated ROS topics and services. Some of those created topics are the sensor’s camera and laser information 
for each virtual sensor instantiated in the virtual scenario according to its URDF definition. After that, the VR-Engine starts 
the corresponding simulation module that communicates with robots controllers and read sensor data ( 

Figure 2, steps 4 to 7). Besides that, it also starts services to calculate robot's dynamics and kinematic under request of 
other nodes (see  

Figure 2, step 8). The robot's behavior in virtual environment (yellow side) is the same in the real environment (red side). 
In fact, we have conducted some experiments in the university’s lab confirming this assumption using the same Robot 
Simulator Module. 

 
 

Figure 2. Diagram representing the Robotics Modules interaction with SimUEP’s ROS Bridge 
 
 

In the following section, we describe the SimUEP-Robotics Virtual Environment main features and VR tools available to 
Robotics-Simulator modules. 
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In any instantiated SimUEP-Robotics application, the virtual environment is loaded from a scene description file. This file 
contains a scene description of the target scenario. A scenario is basically composed by an observer, environment objects, 
lights and robots. 

SimUEP-Robotics uses the game engine Unity3D as its graphic engine component. Unity3D is a tool for developing 
games created by Unity Technologies (Unity3D s.d.). This engine was chosen due to resources and graphic quality it 
provides, enabling the creation of realistic environments.  
3D Scene Description 

The scene description is a XML file that describes the target scenario. It has a hierarchical structure describing all items in 
the environment. The first item of this file is displaySettings, which defines the properties of virtual camera (near and far 
planes) and output settings to enable visualization modes for immersive systems, e.g., CAVEs, PowerWalls and other 
projection systems. Global settings of the physics engine, such as update frequency and gravity vector are specified in item 
physicsSettings. The user visualizes the scene by specifying the observer item, which has properties such as position, 
orientation, height and speed. All the lights are defined inside the item lights. They can be of type point, spot and directional. 
Common attributes are position, orientation, color, intensity and type of shadow. The scene objects are specified by 
envObjects items. For each envObject the following attributes are required: position, orientation, bounding box, mesh, and 
some physical properties, such as mass, inertia matrix and material information (friction, bounciness, etc). 

 
<robots  prefix="SimUEP">    
 <services>    
  <draw3DLines name="drawPathService"/> 
  <enableSensor name="enableSensorService"/> 
  <cameralnfo name="setCameralnfoService"/> 
 </services>    
 <robot name="Puma560">   
  <urdf fileName="Data/Urdfs/Puma_560.urdf"> 
  <transform position="0.0 0.0 -0.363" rotation="0 0 0" scale="l l l"> 
  <actuators>   
   <joint>  
    <topicName name="jointState"/> 
   </joint>  
  </actuators>   
  <sensors>   
   <joint>  
    <topicName name="jointStateReal"/> 
   </joint>  
   <collision>  
    <topicName name="collision"> 
    <precision mode="high" defaultValue="1.5"/> 
   </collision>  
   <proximity>  
    <topicName name="proximity"/> 
    <range value="0.10"> 
   </proximity>  
  </sensors>   
 </robot>    
</robots>     

Figure 3. Example of a simplified robot URDF file. 
 

Each robot in the scenario file is defined by a URDF, a position and a set of actuators and sensors (Figure 3). Some of 
these sensors are also defined in the URDF, for example, cameras and lasers. For each sensor and actuator, it is necessary to 
define a topic name to identify the associated ROS message. 

 
Virtual Robotic Systems  
We have implemented six different ROS compatible robots, namely, Motoman DIA10, Motoman SDA10, Grant Crane, 
Seekur and a generic ROV (see Figure 4). Any robot can be instantiated in any application and positioned (position, attitude 
and scale) defined in the 3D scene file of the target scenario. 

 

Virtual Environment  
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Figure 4. Six Robots available in SimUEP-Robotics (Puma560, Motoman DIA10, MotoMan SDA10, Grant Crane, SeekUR and ROV) 

 
Actuators 
The actuators are used to modify some positional aspects of the robots. There are two actuators available: the first one is 
based on the use of joint values; and the second on the absolute position of the whole robot. Table 1, previously presented, 
shows the relationship between ROS messages and sensors and actuators available in the SimUEP-Robotics. 

 
Sensors 
Sensors are used for a robot to perceive the environment and, through them, being able to react to its surroundings. Each 
robot may be composed of one or more types of sensors. In SimUEP Robotics, four different types of sensors are available: 
lasers, cameras, proximity sensors, and collision sensors. 
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Figure 5. (a) Camera and (b) Laser sensors description in URDF file. 

 
Camera sensors are able to generate images from the virtual environment. A robot can have multiple camera sensors that 

are normally positioned along its links. This positioning allows the visualization of different views of the same robot at the 
same time. Each camera is described (within the URDF file) following the description format SDF (from Gazebo Project) 
and has attributes such as image size, lens aperture, pixel format, among others (Figure 5a). The Virtual Environment camera 
sensor component is responsible for capturing data from the camera and sending them to the Robotics-Simulator Module 
through the associated ROS topic defined in the robot URDF file. A feature that generates a visual representation of these 
cameras is available (Figure 6a). 

Robots can also use sensors like lasers. These are used to recognize the environment through a one-dimensional scan. As 
a result of this scan a vector containing values corresponding to the distance between the laser and the obstacle of the 
corresponding scenario is obtained. Figure 6b shows the visual representation of two lasers in SimUEP, as well as images 
that represent the distance vector captured by each one. The laser sensor is also defined in the robot URDF file. Its parameters 
contain information such as the initial position of the sensor, resolution and maximum and minimum angles, topic name of 
the message, as well as parameters that control their display in virtual scene (Figure 5b).  

 

  
Figure 6. (a) Camera and  (b) Laserscan visualization in SimUEP-Robotics. 

 
Collision sensors are sensors that allow the robot to identify when an object is close to some of its physical components 

(links).This allows the robot to be able to avoid obstacles, and enable the measurement of these obstacles to a certain part of 
the robot. This sensor is implemented by using bounding boxes. When any object penetrates a bounding box, all interception 
points are informed (Figure 7) using the message sensor_msg/PointCloud2. The description of this sensor is present in the 
scene description file and it has a parameter for the precision. 

 

<!-- Camera --> 

<gazebo reference="linkCamera1"> 
<sensor:camera name="linkCameral"> 

<imageSize>512 512</imageSize> 
<imageFormat>R8G8B8</imageFormat> 
<hfov>0.7853982</hfov> 
<nearClip>0.01</nearClip> 
<farClip>4.5</farClip> 
<updateRate>0.25</updateRate> 

</sensor:camera> 
</gazebo> 

 

 

 

<!-- Laser --> 

<gazebo reference="linkLaserl"> 

<sensor:ray name="linkLaserl"> 

<rayCount>512</rayCount> 

<minAngle>-0.6981317</minAngle> 

<maxAngle>0.6981317</maxAngle> 

<minRange>0.1</minRange> 

<maxRange>3.0</maxRange> 

<resRange>0.03490658</resRange> 

<updateRate>0.2</updateRate> 

</sensor:ray> 

</gazebo> 
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Figure 7. Collision Sensor, the red dots are the intersections points detected in the link’s bounding box. 

 
Proximity sensors are similar to collision sensors; however, they only inform the name of the link hit. Basically, when 

something enters a bounding of this sensor, a message is sent to ROS. Figure 8 shows a robot’s proximity sensor (green box). 
 

  
Figure 8. Proximity Sensors visualization using green boxes. 

Visualization Tools 
SimUEP has a tool that allows the creation of measurements between points (Figure 9Error! Reference source not found.). 
The creation of a measurement is done by selecting two points, which are connected visually by a line segment. Each 
measurement has a label which displays the distance between the points. Moreover, the measurements have a dynamic 
behavior. Thus, if the position of the objects (comprising measurement) changes the measurement is automatically 
recalculated. 
 

  
Figure 9. Measurement Tool. 

 
Another important aspect is the visualization support to evaluate the simulation results as well as to validate different 

offshore scenarios composed of robots, valves and other equipment defined in the scene description file. In this scope, the 
following visualization data can be mentioned: Bounding Boxes and Axis Joints (Figure 10). 

 



10  OTC 24484 

  
Figure 10. Bounding Box and Axis features. 

 
The SimUEP-Robotics has two extra features, Ghostview and 3D Point Trajectory, which allow the visualization of the 

entire motion path performed by robots. In Ghostview the viewer captures successive snapshots of the robot along the 
trajectory movement. Thus, it may be used to visualize the robot at different points in the simulation. The later feature, Point 
Trajectory, allows visualization of the trajectory of a point, such as a joint or a link. Figure 11 presents examples of 
visualization of trajectories through functionalities Ghostview and 3D Point Trajectory, respectively. 
 

  
Figure 11. Robot Trajectory visualization modes: SnapShot3D and Lines3D. 

 
The SimUEP-Robotics can be used in desktop environments as well as in immersive environments such as CAVE (Figure 

13), PowerWalls and other projection systems. One can navigate in the environment by means of specific controls such as 3D 
trackers. 

In the next section we describe the TopSide Robotics Simulator main characteristics and algorithms used for trajectory 
planning with avoidance obstacle. 
 
Topside Robotics Simulator Module Cognition and Control 
 
The robot cognition is based on image and point cloud information using ROS packages and integrated external libraries. 
Some examples are the OpenCV (Bradski 2000) library for image processing, TF package to coordinate system transform 
tracking and the 3D mapping library OctoMap (Hornung 2013). 
 
Image Processing 
OpenCV is used for camera calibration, distance and size measurement and featuring recognition. The distance measurement 
make use of  a disparity image (stereo_msgs/DisparityImage) provided by OpenCV tools fed with images 
(sensor_msgs/Image) of two cameras disposed side by side with known relative configuration, cameras calibration and 
extrinsic information (sensor_msgs/CameraInfo). This distance can feed the image space to Cartesian space conversion of 
any camera with known position, also others than the two already mentioned, using the frame coordinate transformations 
provided by the TF package. To measure object size other image processing are performed to recognize features like valves, 
square pattern surfaces and colored objects. 

The feature recognition uses combinations of OpenCV functions taking advantage of pre-known information of the 
scenario. Images could be converted between different color models, filtered, blurred and mixed. Objects can be selected by 
color, area, shape and surface pattern. A specific case of use on offshore robotics is a valve identification procedure. For this 
consider a yellow circle valve commonly present in Brazilian platforms. Recognizing this valve consist in a yellow 
identification on a hue, value and saturation, HSV, color model (cvtColor, code=CV\_RGB2HSV), find contours 
(findContours) and then fit a circle (fitEllipse). Figure 15 shows steps of this image processing. 
 
Point Cloud and Mapping 
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Information provided as point cloud (sensor_msgs/PointCloud2) is used to produce two different types of maps. The first one 
is used for obstacle avoidance, i.e., the filtered point cloud to take out the robot and out-of-workspace points. The second is 
an Octomap, a probabilistic map that extend to 3D the concept of 2D occupancy grid representing the environment as 
occupied, free and on an unknown state voxels (a 3D pixel) (Hornung 2013), se Figure 16 for an example. 

The map in Figure 16 is a representation of the scene in Figure 14, produced by a laser range finder attached to the robot 
end-effector scanning the environment. The sensor readings (sensor_msgs/LaserScan) are continuously grouped on a buffer 
and transmitted by a service as point clouds when requested. These clouds are transmitted periodically by another ROS node 
and then used by the mapping algorithm. All the data is transformed to an inertial coordinate system using TF and the 
kinematic chain provided in the URDF file. 
 
Trajectory Planning with Obstacle Avoidance 
The idea of using robots in dynamic and partially unknown environments is only possible by ensuring that it does not collide 
with anything or anyone. In this way, accidents can be prevented guaranteeing the safety of the operators and the 
completeness of the task. 

One way to ensure that the robot will not harm the environment around it is by making it able to accomplish tasks by 
moving the end-effector through collision-free trajectories while the joints avoid obstacles without breaking their mechanical 
limits. This is in many cases only be possible if the robot has more degrees of freedom (DoF) than the task requires, so it can 
uses the remaining DoF for obstacle avoidance. When the robot has extra DoF, they are called redundant robots. 

This obstacle avoidance is achieved by obtaining joint velocities 𝑢𝑢 from a control law that ensures desired Cartesian 
linear and angular velocities to the end-effector with additional terms that could satisfy possible joints restrictions of 
movement. This leads to the following control law: 
 

𝑢𝑢 =    𝐽𝐽
𝐾𝐾 𝐸𝐸 + 𝑥𝑥 + 𝑉𝑉
𝐾𝐾 𝐸𝐸 +   𝜔𝜔 +   α   𝐼𝐼 −    𝐽𝐽   𝐽𝐽   𝑊𝑊 ∇𝐻𝐻 𝜃𝜃 , (1) 

 
where 𝐽𝐽   is the weighted pseudoinverse of the Jacobian J which satisfies 𝐽𝐽  𝐽𝐽 = 𝐼𝐼 (Bjerkeng, et al. 2011), 𝐾𝐾  and 𝐾𝐾  are the 
position and orientation gains, 𝐸𝐸  and 𝐸𝐸 are the position and orientation errors (Siciliano, et al. 2009), 𝑥𝑥  is the derivative of 
the desired position, 𝑉𝑉  is a repulsive vector pointing in the opposite direction of the obstacle (Flacco, et al. 2012), 𝜔𝜔  is the 
desired angular velocity, α is a negative constant, 𝑊𝑊  is a diagonal positive definite weighing matrix (Bjerkeng, et al. 2011) 
and ∇𝐻𝐻 𝜃𝜃  is the subtask to be performed. 

The first term makes the end-effector move from a starting position to the goal, while avoiding obstacles and the second 
term uses the null space of the Jacobian to satisfy an addition subtask without modifying the position and orientation of the 
end-effector. The chosen subtask, in this case, uses repulsive artificial potential fields (𝑈𝑈 , 𝜃𝜃 ) around the obstacles, 
repelling the robot from them, such as (Siciliano, et al. 2009): 

 

𝑈𝑈 , 𝜃𝜃 =   
𝑘𝑘 ,

𝛾𝛾
1

𝜂𝜂 𝜃𝜃
−   

1
𝜂𝜂 ,

, 𝜂𝜂 𝜃𝜃 ≤   𝜂𝜂 ,   ,

                                    0                                  ,                 𝜂𝜂 𝜃𝜃   ≥   𝜂𝜂 ,   ,
 (2) 

 
where 𝑘𝑘 ,   > 0, 𝜂𝜂 𝜃𝜃  is the minimum distance between a point of interest (𝑟𝑟) on the robot and one obstacle (𝑖𝑖), 𝜂𝜂 ,  is the 
range of influence of the obstacle (the maximum distance in which the robot senses the obstacle and  is a scaling factor (a 
typical choice is 2). To simplify, we can choose the joints to be the points of interest of the robot. 

The repulsive potential is zero outside and positive inside the range of influence and tends to infinity as the distance 
approaches zero. To reduce the computational effort, the obstacles are considered directly as point clouds obtained from 
sensors. This way each point can be avoided separately. The subtask is then formed by the contribution of all points near each 
of the joints of the robot, given by: 

∇𝐻𝐻 𝜃𝜃 =    ∇𝑈𝑈 , 𝜃𝜃
,

,

, (3) 

 
where 𝑛𝑛 is the number of points of interest on the robot, 𝑜𝑜 is the number of obstacles and ∇𝑈𝑈 , 𝜃𝜃  is the gradient of the 
repulsive potential (Siciliano, et al. 2009) that can be defined as: 

 

∇𝑈𝑈 , 𝜃𝜃 =   
𝑘𝑘 ,

𝜂𝜂 𝜃𝜃
1

𝜂𝜂 𝜃𝜃
−   

1
𝜂𝜂 ,

∇𝜂𝜂 𝜃𝜃 , (4) 
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using γ = 2. Note that by using this approach the task is prioritized, so collisions can in principle happen. But after some 
simulation and practical tests this wasn’t a problem and the robot could safely complete all his tasks. Some results are 
presented in the next section. 
 
Case Study 1: Pick-and-place task in a virtual offshore scenario 
 
In order to illustrate the utilization of the proposed framework, we used a pick-and-place task in an offshore scenario. For this 
class of tasks the robot is supposed to grasp an object and move it from one location to another. The robot should then follow 
a collision free path, preserving the transported object and itself. To accomplish this, the task is performed in four steps: 
 

1. Environment mapping; 
2. Object grasping; 
3. Path planning; 
4. Path following. 

 
These subdivisions of the pick-and-place task are good examples of the different capabilities that are necessary for a 

robotics system to operate in cluttered environments like offshore platforms. Mapping is used for robot localization and 
motion planning. Grasping is not only important for the load transport task, but in almost any operation demanding 
interaction between the robot and the process, like valve manipulation and pig launch/recovery. A collision free path 
planning is needed for every task demanding robot displacement in the presence of obstacles. 

In the simulated example, the robot must follow consecutive desired positions to transport a red rectangular prism 
between two tables placed at the platform section showed in Figure 14. The four steps that compose the task are represented 
in Figure 17. 

The mapping is performed using laser ranger finders like the one showed in Figure 17a. The resulted map is shown in 
Figure 16. Figure 17b displays the sensed contact between the gripper fingers and the object. This information is transmitted 
as a point cloud, simulating a proximity sensor, and used to ensure that the gripper reaches the object during closure.  

The planned paths for each robot joint are represented by the colored lines on Figure 17Figure 17c; these are calculated 
according to the previous section employing the map generated during the first step. Finally, Figure 17d shows the robot 
following the planned path with Snapshot3D visualization. 

Results showed hereafter are obtained using properly tuned controllers and range of influence equals to 0.30 m. For 
comparison purposes, the same task is performed with and without the proposed collision avoidance control strategy. Figure 
18 shows the distance from each link to its corresponding closest obstacle and Figure 19 presents the position errors of the 
end effector. 

Using the proposed control strategy, the links are generally farther from the obstacles than without collision avoidance.  
As the controller attempts to avoid collision between obstacles and all robot links simultaneously, some movements can make 
a part of the robot approach an obstacle. However, except for the initial position, each link has a distance to the closest 
obstacle greater than approximately 0.10 m. Without avoidance, the minimum distance from the robot to an obstacle reaches 
approximately 0.065 m. 

In Figure 19, one can notice that obstacle avoidance doesn’t intervene with the task execution, as the error converges to 
zero in both graphs. The peaks in the position error happen when the point denoting the desired position changes. While these 
points are the same in both tests, the path that the robot follows in each one is different, as expected. With obstacle 
avoidance, a faster convergence occurs. 
 
Case Study 2: ROV navigation 
 

The ROV simulator module implements the dynamics equation for an underwater ROV vehicle. Thus, SimUEP-Robotics 
can be used to animate the ROV motion in 3D. The main module functionalities are: 6 DoF ROV model simulation, xml-
based ROV parameters configuration, static or dynamic thrusters model. The general dynamic model allows the simulation of 
practically any commercial ROV actuated by thrusters with speed control. Multiple ROVs can be simulated concurrently. An 
almost real time simulation allows the use of this module for operator training as an important application. This module was 
developed with a modular concept, which makes maintenance and future extension very simple. In the model 
implementation, the function used to describe hydrodynamic coefficients, thrusters characteristics, etc., are represented using 
lookup tables, since in general these parameters are obtained from experimental test in wind tunnel. The solution of the 
Euler-Lagrange differential equations, which governs the ROV motion, is calculated using integration methods such as Euler 
or Runge-Kutta. Other integration algorithm could be easily added without rewriting the ROV model. 
 
The ROV model which is now embedded in the SimUEP-robotics opens possibilities to test different type of localization 
systems for dynamic positioning, advanced control strategies and autonomous navigation algorithm (Figure 12). 
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Figure 12. ROV navigation in a virtual Christmas tree scenario. 

 
 

Conclusion 
 
Hostile environments are seen as one of the greatest challenges for oil & gas companies developing new fields. The use of 
robots in these situations is foreseen as a great opportunity for the robotics industry. Thus a lot of effort and investments are 
being pushed on the development of specialized robots for those environments. This development can be extremely improved 
if proper tools and methodologies are used.  

Tools such as simulators and immersive visualization is a very promising development strategy, providing an 
environment for testing and visual debugging. The ability to compare different simulations with the support of different 
visualization tools can help in the interpretation of virtual simulated tasks allowing the development of new robots and, 
eventually, more appropriate offshore scenarios and tools to accomplish the proposed tasks. Furthermore, development 
methodologies that focus on the reuse of resources are extremely important to give flexibility in the process of developing 
new products. 

The work presented here is based on the above mentioned development strategies by creating flexible development 
environment to support the modeling and visualization of the simulation of actual operations performed with robots in 
Stationary Production Units. ROS as communication middleware provides a powerful framework to create and reuse 
different robot algorithms. In the same way, the use of SimUEP-Robotics component-based platform resulted in the 
development of a flexible and useful framework, which can be considered as a rich visual debugger to support the 
development process and to analyze the results of the simulations. Such component approach gave the possibility to develop 
different offshore robot applications paving the way towards platform robotizing furnishing the robotization and automation 
of offshore facilities. 
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Appendix 
 

Table 2. Example of URDF. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Virtual reality visualized on a CAVE immersive environment. 

 

<robot name="robot"> 
<link name="baseLink"> 

<visual> 
<geometry> <sphere radius="0.2"/> </geometry> 
<material name="blue"> <color rgba="0 0 0.8 l"/> </material> 

</visual> 
</link> 
<link name="link1"> 

<visual> 
<origin rpy="0 0 0" xyz="0 0 0.45"/> 
<geometry> <cylinder length="0.6" radius="0.15"/> </geometry> 

</visual> 
<inertial> 

<mass value="10"/> 
<inertia ixx="l" ixy="0" ixz="0" iyy="l" iyz="0" izz="l"/> 

</inertial> 
</link> 
<link name="link2"> 

<visual> 
<origin rpy="0 -1.5708 0" xyz="0.15 0 0"/> 
<geometry> <cylinder length="0.3" radius="0.10"/> </geometry> 
<material name="blue"/> 

</visual> 
</link> 
<joint name="jointl" type="revolute"> 

<parent link="baseLink"/> 
<child link="linkl"/> 
<limit effort=" 1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

</joint> 
<joint name="joint2" type="prismatic"> 

<parent link="linkl"/> 
<child link="link2"/> 
<origin rpy="0 -1.5708 0" xyz="0 0 0.45"/> 
<limit effort=" 1000.0" lower="0" upper="0.3" velocity="0.5"/> 

</joint> 
</robot> 
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Figure 14. Virtual scene representation of a platform section. 

 
 

Figure 15. Valve recognition image processing. Original simulated camera image (a), yellow objects identification (b), circle fitting 
filter (c) and original figure with valve marked (d). 

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 
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Figure 16. Visualization of occupied and free OctoMap voxels. 

 
 

Figure 17. Representation of the four steps that compose the pick-and-place task. 
 

 

 

 
(a) Occupied voxels  (b) Free voxels 

 

 

 

(a) Environment mapping  (b) Objects grasping 

 

 

 

(c) Path Planning  (d) Path following 
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Figure 18. Distance from each link to its corresponding closest obstacle without collision avoidance (green line) and with obstacle 

avoidance (blue line). 
 
 
 

 
Figure 19. Position errors with and without collision avoidance. The blue line, the green line and the red line refers to the first, 

second and third dimensions of the respective errors. 
 
 
 




