Improving 3D Navigation in Multiscale Environments Using
Cubemap-based Techniques

Daniel R. Trindade
Tecgraf / Department of Informatics
Pontifical Catholic University of Rio de Janeiro
danielrt@tecgraf.puc-rio.br

ABSTRACT

Alberto B. Raposo
Tecgraf / Department of Informatics
Pontifical Catholic University of Rio de Janeiro
abraposo@tecgraf.puc-rio.br

scales of the environment. Multiscale environments are en-

vironments that can provide information in different levels
of detail, from a single screw to an oil field spanning dozens
of miles.

Our goal is to propose techniques that help users navi-
gate through multiscale environments. The solutions pro-
posed should satisfy two main requirements: a) being as
automated as possible, demanding minimal intervention by
the user; and b) being independent from the type of model
to be viewed, so that new types of objects can be viewed in
the future without the need to develop new solutions. More-
over, the solutions are intended to work on desktop setups,
using mouse and keyboard, as this setup is more common to
most users [11].

In this paper, we improve on two well known navigation
techniques. In the case of the fly technique, we added col-
lision support and automatic speed adjustment in relation
to the scale; in the ezamine technique we added a way to
automatically determine the pivot point.

This paper is organized as follows. In Section 2 we present
related work. The cubemap concept is presented in Section
3. In Section 4, the navigation techniques are described,
and in Section 5 the results of usability tests are presented.
Section 6 concludes this article.

Navigation in virtual 3D environments, especially those with
multiscale features, is still a problem for many users. In this
regard, a good design of the navigation interfaces is critical
to ensure that the users navigate with the best possible effi-
ciency and comfort. In this paper, we present improvements
made to two well-known interfaces: fly, including support to
collision treatment and automatic navigation speed adjust-
ment in relation to scale, and examine, with automatic pivot
point. Such techniques are based on the cubemap structure.
Usability tests have shown a significant improvement in the
execution of navigation tasks.

Categories and Subject Descriptors

1.3.6 [Computer Graphics|: Methodology and Techniques—
interaction techniques; 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—uvirtual reality

General Terms

Image Factors, Experimentation

Keywords

navigation, multiscale environments, cubemap

2. RELATED WORK

Multiscale environments were first introduced in the works
by Perlin and Fox [10] and Bederson et al.[3], through the
creation of the Pad and Pad++ interfaces, and have been
the focus of study of many researchers [14, 6, 7]. Kopper et
al. [8] presented a system that allows the user to navigate
through the different scales of an environment. The hierar-
chy of the scene models is used to define the levels of scale.
However, on this approach the user is forced to issue a com-
mand to change between scales. Moreover, the adjustment
of navigation parameters is only made at this time. Thus,
one can say that the method proposed by Kopper et al. [§]
is discrete in the sense that the different scale levels are well
defined regarding their form and their location in the hi-
erarchy of the scene. By contrast, the works presented by
Ware and Fleet [12] and McCrae et al.[9] make continuous
adjustments to the navigation parameters, and therefore the
virtual environments do not require a well defined hierarchy
of levels of scale. Ware and Fleet [12] proposed adjusting
the navigation speed of the fly tool by using the depth in-
formation present in the Z buffer. To this effect, they use
the smallest value resulting from scanning 15 lines of the
Z buffer. McCrae et al. [9] constructed a representation of

1. INTRODUCTION

With the arrival of new technologies and the increasing
processing power of computers, larger and richer in detail 3D
virtual environments are becoming more common. Accord-
ingly, several navigation tools were created to allow users to
explore these environments. However, despite the efforts of
researchers, navigation in virtual environments is still prob-
lematic for many people.

There is a number of reasons for this. A frequent problem
is related to the type of environment to be explored. Mul-
tiscale virtual environments [10], for instance, often require
methods to allow the users to navigate through the different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’ 11 March 21-25, 2011, TaiChung, Taiwan.

Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

1215

the environment called cubemap, which provides information
that allows the adjustment of parameters such as speed and
clipping planes, as well as offering collision support.

To deal with collisions, Baciu et al. [1, 2] presented im-
age space based techniques which consist of projecting the
geometry onto an image using graphics hardware and then
checking for interference, usually by analyzing the Z buffer.
Calomeni and Celes [4] proposed the construction of a con-
nectivity graph in preprocessing time. Through this graph,
they are able to move the camera in order to avoid collisions
with the environment. This concept was also explored by
Xiao and Hubbold [13], who used force fields rather than
a connectivity graph. Nonetheless, a preprocessing stage is
still required to compute the fields. McCrae et al. [9] pro-
posed using a new structure, which they call cubemap, to
help construct the force map with higher resolution while
eliminating the preprocessing stage altogether.

The techniques introduced in the present paper are also
based on the cubemap. However, the approach taken to
construct the cubemap and the navigation techniques based
on it had to be modified in order to fulfill the requirements
of our applications, as will be described in the following
sections.

3. THE CUBEMAP

The purpose of the cubemap, as proposed by McCrae et al.
[9], is to provide information about the virtual environment
at a given moment. Given a camera position, this structure
is constructed from 6 rendering passes, each in a different
direction in order to cover the whole environment. The FOV
of the camera is 90°, therefore the combination of the 6
resulting frustums yields a cube. At each pass, a shader is
used to calculate the distance from the fragment generated
to the camera. The computed distance values are normalized
in relation to the near and far values, and stored in the alpha
channel of the positions related to the fragments. Rendering
is made in 32-bit float images. Such procedure is performed
at each frame, or each time the camera position changes.
The image resolution used for rendering does not have to be
high, since only an estimation needs to be obtained.

The cubemap construction process we implemented differs
from the one described by McCrae et al. [9] in two aspects:
1 - the orientation of the cubemap is the same as that of the
camera (McCrae et al. always used canonical directions); 2 -
the RGB channels of the images in the cubemap store a unit
vector pointing from the position of the generated fragment
to the camera. The first change was necessary to simplify
the obtainment of the distance from the viewer to the center
of the screen, which will be important for the automatic
speed adjustment techniques of fly (Section 4.1) and for the
automatic definition of the pivot point in ezamine (Section
4.3). The second change simplifies the construction of the
force map to detect collisions (Section 4.2).

4. NAVIGATION TECHNIQUES

In this section we will present the three improved naviga-
tion techniques.

4.1 Fly with Automatic Speed Adjustment

Navigation speed is related to the scale of the environ-
ments to be explored. Larger environments require faster
speeds, while the opposite is more convenient on smaller

scales.

In several applications, the scale of the virtual world does
not change much and is well known, allowing a fixed navi-
gation speed to be used. This is the case of many games, for
instance. Multiscale environments, however, require a way
to estimate the current scale in order to adjust the naviga-
tion speed accordingly.

McCrae et al. [9] use minDist, the minimum distance
in the cubemap, as an estimation to determine the current
scale the camera is at. Based on that, first we developed a
fly tool which could be controlled by the user by pressing the
arrow keys of the keyboard to move the camera while guid-
ing the direction of the motion with the mouse movements.
Navigation speed was adjusted automatically according to
equation 1.

Viav = k minDist (1)

where Vi,q. is the adjusted navigation speed and k is a pa-
rameter of unit 1/s that causes an increase or reduction in
the acceleration applied to the camera. We noticed that
two situations caused discomfort and disorientation for some
users. The first situation is when £ is too high. In this situ-
ation, when users move away from the geometry, the camera
accelerates too quickly, producing an effect similar to tele-
porting and making users lose their location. The second
situation happens for low k values, which can considerably
increase the time required to reach the intended destina-
tion, making the navigation tedious. Thus, the value of k
should be selected in a way that it balances these extreme
situations.

In face of the difficulty of determining a value for k that
suited all users, we decided to let the users define it man-
ually, using the scroll button of the mouse. However, this
led to other problems. When navigating very close to an
object, some users increased the k value to move faster but
forgot to readjust it when the camera was distant from the
geometry, falling into the case where k is too high.

The situations described reveal a disadvantage of using
only minDist as an estimation to adjust the speed: when
minDist is too low, it works as a break even when the
user wishes to move faster. For instance, when navigating
through a corridor, the user may experience slow navigation
due to the closeness of the walls. Thus, it is convenient to
use some other type of estimation.

With that goal in mind, we attempted to use the distance
to the central point of the screen. This seemed reasonable
since this point represents momentarily the location the user
wants to reach. Therefore, navigation speed started to be
adjusted using center Dist, the distance from the camera to
the center of the screen, rather than minDist.

However, the use of centerDist resulted in a strange be-
havior. The motion of the camera ceased to be smooth and
started to present peaks of speed, giving the impression that
it stopped or accelerated instantly. The reason for this can
be understood by observing the graph in Figure 1. This
graph shows the behavior of the curves of the minDist and
center Dist estimations for one path followed by the camera
in a time interval of around 6 seconds. It can be seen that
the minDist curve is smooth while the center Dist curve is
noisier, displaying some peak values that are completely in-
consistent with the general behavior of the curve. This is
related to the freedom the fly tool gives to the user, who
can turn the camera to any direction at any time. At a

1216

1600
1200
800 nterDist
400 inDist
0 (s)

0.0 1 2 3 4 5 6
Distance x Time

Figure 1: Graph representing the behavior of the
minDist and centerDist curves.

given moment, the central point of the screen may fall on an
object that is distant from the camera. The user then can
turn the camera almost instantly toward a close-by object,
leading the value of centerDist to drop abruptly. This is
reflected in the speed adjustment, creating a steep decelera-
tion. These effects do not happen when minDist is used as
estimation because it is independent from the orientation of
the camera.

To avoid the situations caused by the peak values of the
center Dist curve, we smoothened it by applying an expo-
nential moving average (EMA):

EMA;, =EMA;,_1+ A (centerDisti — EMAifl) (2)

In equation 2, EM A; is the smoothed value of center Dist;
at instant i, EM A;_1 is the value smoothed at instant i — 1,
and A is a constant that influences how smooth the new
curve will be and how quickly this curve will converge to
the center Dist values. The smaller A is, the smoother the
curve will be and the higher the time needed for such con-
vergence to take place. The maximum value of A = 1 is
equivalent to the original curve. Figure 2 shows the results
of smoothening an interval of the centerDist curve (repre-
sented by the darker line) for three different values of A. By

1500 |
1400

T T <A =001

1300
1200 A =004
1100 A =0.1
Original Curve
1000 (s)
2.0 2.4 2.8 3.2 3.6 4.0

Distance x Time

Figure 2: Effect of applying the EMA to a curve.

smoothening the center Dist curve, we can use it to adjust
the speed.

But one last problem remained: when the camera was
close to a geometry but pointed to a location at a great
distance, the navigation speed tended to increase, albeit
smoothly, until it converged to centerDist again. In some
situations this can be undesirable from the user’s point of
view, such as when the camera is inside an object but the
user wishes to view its outer parts. In this case, the user
has to navigate out of the object and then point the camera
toward this object. During the procedure of navigating out
of the object, the camera might point to a location far away

from the object for a time span long enough to increase
the speed too much. This is because the scale perception
provided by minDist is no longer present. In such cases,
minDist acts as a break, preventing the camera from mov-
ing far away too quickly.

To solve this final issue, values of center Dist higher than
n X minDist were discarded. This way, minDist serves as
a criterion to decide when a center Dist value should or not
be considered inconsistent.

This solution reflects a hybrid use of the minDist and
center Dist estimations: while center Dist ensures that speed
adjustment is closer to what the user intends, minDist acts
as a break in cases when the speed would be too high. The
result is an increased comfort for the user when using this
tool, as will be demonstrated by the usability tests.

4.2 Collision Detection and Treatment

Not allowing the camera to cut through objects in a vir-
tual environment can be crucial in some situations [5].

McCrae et al. [9] used information from the distance
cube to obtain a collision factor that causes the camera to
smoothly dodge the closest objects. The idea is that each
point in the cubemap located at a distance smaller than a
given radius r produces a repulsion factor given by:

F(z,y,1) = w(dist(z,y,1)) norm(pos(z,y,i) — camPos)
(3)
(r=d)?
w(d) =e (4)
where F(z,y,1) is the repulsion factor produced by point p
referring to position (z,y) of image i of the cubemap. Value
dist(z,y,1) is the distance from p to the camera. The term
pos(z,y,1) is the position of p in world space, and camPos
is the camera position. Function norm(v) indicates the nor-
malized vector of v. In equation 4, o is a parameter that
indicates the smoothness of the collision factor. The higher
o is, the smoother will be the calculated factor. Considering
a spherical region with radius r and centered on the cam-
era position, equation 4 results in determining a collision
penalty that grows exponentially from the moment when
point p enters this region.
The repulsion factors referring to equation 3 are computed
for each position in the cubemap where d < r and then are
combined into a single factor:

1 .
Fcollision = m ZZyl F(m7 Y, Z) (5)
where cubeRes is the resolution of the distance cube.
When we applied the factor given by equation 5 to the
camera, the fly tool behaved as described in the previous
section: as the camera moves, Fcoiision ensured that it
smoothly deviate the objects that crossed its path. The
behavior obtained is similar to the assisted navigation de-
scribed previously [13, 4], whereby the user can navigate
through the environment without worrying about choosing
a collision-free path as the system is in charge of this task.
It is a different approach from the one used by McCrae et
al. [9], who employ Feourision combined with the POI tech-
nique, a more restrictive solution which does not give the
user total control over the camera when navigation is being
performed.

4.3 Examine with Automatic Pivot Point

1217

The examine tool allows any object or location in the
scene to be inspected. Basically, its functioning corresponds
to rotating the camera around a point, called pivot point. In
our test application, drag movements using the left mouse
button made the camera rotate around the pivot point, which
can be chosen by the user. Dragging vertically or horizon-
tally with the right mouse button caused the camera to zoom
in or zoom out, respectively. When the scroll mouse button
is present, it can also be used for zoom operations.

The location of the pivot point is crucial for the proper
functioning of the ezamine tool. If it is not specified cor-
rectly, the camera can display behaviors which, from the
user’s point of view, would seem confusing. Figure 3 illus-
trates two of these cases. In case (i), the pivot point (referred

(i) ((ii) &

e

* pivot * pivot

Figure 3: Problems related to the pivot point: (i)
pivot point located outside the field of vision; (ii)
pivot point mapped beyond the object.

to as pivot in the image) is located outside the user’s field of
vision, too distant from the object to be inspected. When
the examine tool is used, a rotation (from camera position
1 to 2) is made around the pivot which is mathematically
correct. For the user, however, this operation leads to a
completely unexpected motion. This problem is worse when
the pivot is located at a great distance from the model: the
greater the distance, the higher the angular speed of the
camera and, as a consequence, the bigger will be the error
perceived by the user. Informal observations showed that
this situation occurred rather often in our test application.
In the case of (ii), the pivot is within the viewing angle of
the camera but is located outside the object of interest. As
can be seen in the image, pivot is beyond the model, and
the rotation around it has the effect of a pan operation.

Analyzing these situations, it can be concluded that they
are basically caused by one reason: the pivot point is not
located at a point corresponding to the object to be exam-
ined.

Usually, 3D visualization applications that make use of the
examine tool include a button (or any other interface item)
that, when selected, allows a new pivot point to be cho-
sen. We observed that some people, even more experienced
users, at some point forgot to select an adequate pivot point
before starting to rotate around the object of interest.This
occurred especially when some users switched from the fly
to the examine tool, as they attempted to rotate the camera
around the object located in front of them before readjust-
ing the pivot point. And, even when the users did not forget
to perform this last operation, they reported feeling upset
with the fact that they had to do it explicitly.

The solution we found for this was to automatically de-
termine a pivot point at the moment the ezamine tool is
activated. Using the point corresponding to the center of

the screen as the new pivot, it is possible to establish a
behavior that seems natural from the user’s point of view.
All the user needs to do is point the camera to the object
of interest and then select the examine tool. It is reason-
able to expect this to happen, as in most cases the users
only decide to examine an object once it is in front of them.
However, the object might not necessarily be located exactly
in the direction of the center of the screen; in fact, the pivot
point could be mapped to an object behind the one the user
wishes to examine. In this case, the user would experience
the effect of a pan operation, as shown in (ii) in Figure 3.
Another possibility is that the central point of the screen
does not correspond to any valid point in the geometry, and
thus determining pivot is impossible.

To avoid these problems, the smallest distance present
on the front face of the distance cube, minFront, is used.
When the central point is not valid, pivot is adjusted to the
point that is minFront away from the camera. This way,
the angular speed of the rotation of the examine tool will
be coherent with the scale in which the camera is located,
preventing it from making excessively quick movements.

The minFront estimation is also used when the pivot
point is mapped to a distant point located behind the object.
In this case, minF'ront can act as a restriction in the sense
of identifying and correcting situations that could lead to
an odd camera behavior. The idea is not to allow pivot
to be adjusted to a point whose distance is greater than
k x minFront. This solution does not solve the problem
definitively, but reduces its effects adequately.

5. USER TESTS

The techniques presented in the previous section have as
their main goal on assisting the users in the task of exploring
virtual environments. From the user’s point of view, this
should result in a more comfortable navigation experience
and less prone to errors.

To verify this, usability tests were carried out with two
groups of users, with the purpose of gathering their opinions
about the solutions developed.

5.1 Test Environment

The tests were performed using the SiVIEP viewer, a
project under development by TecGraf in cooperation with
Petrobras. SiVIEP supports a comprehensive visualization
of several types of models comprising an oil exploration and
production enterprise. For example, it is possible to load
from oil platforms to wells and reservoirs in a single scene
(Figure 4). The main characteristic of the virtual environ-
ments resulting from this integration is that they are multi-
scale.

5.2 User Profiles

Twelve people were selected to carry out the tests. They
were divided in two groups: advanced users, with experience
in the use of 3D visualization and 3D modeling applications
who use this type of software at least once in a month; and
non-advanced users, with little experience with 3D visual-
ization applications, except for some electronic games, and
who do not use 3D visualization applications frequently.

From the 12 individuals, 7 were allocated in the first group
and 5 in the second group. All of them had the following
characteristics in common: they were between 20 and 30
years old, were males, and did not have any previous contact

1218

@u 4wl b +

w17
s J

Figure 4: SiVIEP: visualization of an oil enterprise. In the first image, a complete oil field can be seen. Then
the camera reaches the scale of a platform. Finally, the interior of the platform can be navigated.

with the application used in the tests. The individuals in the
advanced group of users are herein called PA1 to PA7, while
the test users in the non-advanced group are identified as
PN1 to PN5.

5.3 Procedures Adopted

Each person was first asked to read and sign a consent
agreement to confirm their commitment to taking the test.
They were then given an overview of SiVIEP, seeing a pre-
sentation of the application and its functionalities. The test
consisted basically in asking the subjects to use two different
versions of SiVIEP:

e Automated: this version supports the solutions dis-
cussed in the preceding sections. The user does not
have to worry about speed adjustment, collisions are
prevented automatically, and the explicit use of the
pivot-point tool is not necessary.

e Manual: this version does not include any of the im-
proved techniques previously mentioned. The speed
in the fly tool must be adjusted manually with the
mouse scroll button, the user must be careful to not
collide with the models, and the pivot-point tool has to
be used always before beginning to inspect an object
with the examine tool.

Before each person started to use one of the versions, some
instructions were given about the functioning of the nav-
igation tools in that version. In the manual version, for
instance, the users were asked to avoid crossing through the
models in the scene and instructed on how to make manual
speed adjustments and to operate the pivot-point tool.

The test environment for both versions consisted of a scene
containing two oil extraction platforms, A and B, a certain
distance apart from each other. The camera was initially
placed in a position where both platforms could be seen.
The users were asked to navigate to platform A using the
fly tool. Once there, they had to explore the internal areas
of the platform in order to select any three objects to be
inspected with the ezamine tool. Finally, the users were
asked to navigate from platform A to platform B.

After using each version, the users were asked to answer
a questionary aimed at gathering their impressions about
the tools used. This questionary consisted of the following
statements:

e S1: [did not have any difficulty with the speed adjust-
ment of the fly tool.

e S2: [was able to perform the tasks without colliding
with the environment.

e S3: I did not have any difficulty with the pivot-point
tool.

e S4: [did not feel disoriented at any moment when
navigating in the virtual environment.

e S5: [felt comfortable using the navigation tools.

Below each of these statements there was a scale of ten num-
bers, from 1 to 10, 1 meaning that the user disagrees com-
pletely with the statement and 10 meaning that the user
fully agrees with it. At the end of the form there was a
blank space where the users could textually describe their
general impressions and justify the grades given.

After both versions had been used, the users were asked
to fill out a final survey consisting of two written questions:

o Q1: Which of the two approaches did you prefer: the
automated navigation techniques or the manual tech-
niques? Why?

e Q2: With regard to the approach you preferred, in your
opinion could something be improved? If affirmative,
what is it and why would it need to be improved?

Lastly, the order in which the versions were presented to
each user was not the same. The first person to take the
test used the manual version first, and then the automated
one. The second took the test in the opposite order. This
pattern was followed until the last user. This measure was
taken with the purpose of minimizing the learning effect of
using the first version over the second.

5.4 Results

54.1 Non-Advanced Group

Tables 1 and 2 show the results obtained after the appli-
cation of the tests to the group of non-advanced users. They
include the grades given by each individual to the 5 state-
ments presented in the previous section. Table 1 provides
the grades referring to the use of the manual version, while
Table 2 contains the grades given to the automated version.
The final column in each table shows the average grade for
each statement. For a better view of the general results,
these averages are presented side by side in Figure 5. The
confidence interval used in the generation of this graph was
90 %.

We applied a two-tailed paired t-test to compare the av-
erage of the results for both versions. We obtained ¢(4) =
—6.43,p = 0.001, which allows us to affirm that this group
preferred the automated version of the navigation. When us-
ing the manual version, users complained especially about

1219

PN1 PN2 PN3 PN4 PN5 | Avg
S1 7 8 10 5 7.8
S2 6 5 7 2 5.4
S3 6 9 8 3 6.6
S4 4 8 7 1 5.8
S5 5 8 9 10 4 7.2

Table 1: Results of the usability test for the manual

version (group of non-advanced users).

PN1 PN2 PN3 PN4 PN5 | Avg
S1 9 10 10 10 9 9.6
S2 10 10 10 10 10 10.0
S3 10 8 10 10 10 9.6
S4 10 10 9 10 10 9.8
S5 10 9 10 10 10 9.8

Table 2: Results of the usability test for the
mated version (group of non-advanced users).

auto-

N

ORr NWHGUON®UOO

LT

Al

A2
= Manual

A3
Automatic

A4 A5

Figure 5: Comparative results between the manual
and the automated version (non-advanced users.)

the difficulty to control the camera speed in order not to col-
lide with the environment. One of the users, for instance, re-
ported that “the program is somewhat abrupt, which makes
its use difficult for someone who is not used to or does not
have enough dexterity for 3D games and software”. The lack
of collision treatment caused situations in which some peo-
ple felt lost. When these situations occurred, 2 of the 5 users
mentioned that they would like to quit the task.

The written answers confirm the statistic results. For
question @1, all users in this group replied that they pre-
ferred the automated version rather than the manual one. In
the justifications, most users mentioned that the techniques
provided by the automated version made navigation simpler,
less prone to errors, and easier to control. As for question
@2, none of these users considered that any improvement
was necessary to their preferred version.

54.2 Advanced Group

Tables 3 and 4 show the results obtained after the ap-
plication of the tests to the group of advanced users. The
results are presented in the same format as those in the pre-
vious section. Figure 6 also shows a comparison between the
grades given to the manual version and those given to the
automated version. The confidence interval was 90 %.

We applied a two-tailed paired t-test to compare the av-
erage of the results for both versions. We obtained ¢(4) =
—2.1,p = 0.09, which does not allow us to affirm that this
group preferred the automated version of the navigation.
Nevertheless, as can be observed, the automated version re-

1220

PA1 PA2 PA3 PA4 PA5 PA6 PAT7 | Avg
S1 10 9 7 7 10 9 9 8.7
S2 3 7 7 7 10 8 7 7.0
S3 7 8 10 3 5 5 7 6.4
S4 3 9 6 5 10 6 8 6.7
S5 6 8 8 8 10 8 7 7.8

Table 3: Results of the usability test for the manual
version (group of advanced users).

PA1 PA2 PA3 PA4 PA5 PA6 PA7 | Avg
S1 7 5 10 5 9 9 9 7.7
S2 10 9 9 10 10 9 10 9.6
S3 10 6 6 10 10 9 10 8.7
S4 6 9 7 10 10 8 9 8.4
S5 10 6 9 9 10 9 9 8.9

Table 4: Results of the usability test for the auto-
mated version (group of advanced users).

o

ORNWARGUON®OO

Al

A2

A3
= Manual

A4
Automatic

AS

Figure 6: Comparative results between the manual
and the automated version (advanced users.)

ceived higher grades in all statements with the exception
of S1, which sought to evaluate the automatic speed ad-
justment of the fly tool. Analyzing the justifications to the
grades and the general comments made by each of these
users revealed some interesting points.

Almost all advanced users who gave a lower grade to the
automatic speed adjustment reported that, when getting
very close to an object, the camera would become too slow
and it would take a while until they were able to move away
from the object again. These users felt impatient about this
situation, and this feeling was made worse by the fact that
no control option was provided to allow them to momentar-
ily increase the speed. Nonetheless, the same users noted
that the automatic adjustment was good because it allowed
them to be less concerned with the controls and helped them
avoid some errors, which is in agreement with the general
comments made by the non-advanced users. In summary,
the advanced users wished they were offered some sort of
control which allowed them to make a more “customized”
adjustment at certain moments, while at the same time in-
cluding automatic speed adjustment.

The greatest contributions of the automated version were
related to statements S2 and S3, which aimed at evaluat-
ing the efficacy of collision treatment and automatic pivot
point, respectively. The users could easily notice the effects
provided by these techniques and were very satisfied with
their results. Some users expressly stated that, thank to
these techniques, they did not make certain errors and were
able to focus less on interface issues. Finally, the grades

given by the users in the advanced group to statements S4
and S5 demonstrate that they felt more comfortable and
experienced less moments of disorientation while using the
automated version.

Regarding the final survey answered by the users, 6 out
of the 7 advanced users stated in Q1 that they preferred the
automated version rather than the manual one. Only user
PA2 preferred the latter. In the justification, this user men-
tioned the problem with the automatic speed adjustment
and the lack of feedback to the user about the location of
the pivot point when using automatic adjustment.

Finally, in question Q2, which asks for suggestions about
what could be improved in the preferred version, all of them
asked for some kind of control that allows them to momen-
tarily increase the speed. This leads us to assume that ad-
vanced users have a greater tendency to prefer solutions that
make the tools simple to use but that are not completely au-
tomated. The opposite might be said of non-advanced users:
due to their lack of experience, they prefer approaches that
minimize the need to adjust the parameters of the naviga-
tion tools.

6. CONCLUSIONS

This work presented some techniques to assist and facili-
tate the task of navigating 3D virtual environments. They
were based on the construction and maintenance of a data
structure called cubemap [9]. Improvements were proposed
for the examine tool, with the addition of a way to auto-
matically determine the pivot point, and for the fly tool, in
which collision support and automatic speed adjustment in
relation to the scale were implemented.

To verify the efficacy of the solutions proposed, usabil-
ity tests were performed. The results allow us to conclude
that the techniques presented here improve the navigation
experience of the users. From the 12 subjects of the us-
ability tests, 11 preferred the version of the application that
included the techniques proposed. In particular, the auto-
matic adjustment of the pivot point in the examine tool
and the collision support implemented in the fly tool had a
significant positive impact in user experience.

Navigation in 3D environments still presents issues and is
plenty of challenges. Multiscale environments, which are be-
coming more common, bring further problems to be solved
in terms of navigation. We believe the techniques showed in
this work contribute toward providing solutions to some of
the problems identified regarding navigation in these envi-
ronments.

7. ACKNOWLEDGMENTS

The authors thank Petrobras for this research support
and for the software used in this research (SiVIEP). D.
Trindade thanks CAPES and A. Raposo, FAPERJ (#E-
26/102.273/2009) for the individual support granted to this
research.

8. REFERENCES

[1] G. Baciu and W. S.-K. Wong. Rendering in object
interference detection on conventional graphics
workstations. In Proceedings of the 5th Pacific
Conference on Computer Graphics and Applications,
pages 51-58. IEEE Computer Society, 1997.

1221

[2] G. Baciu, W. S.-K. Wong, and H. Sun. Recode: an
image-based collision detection algorithm. In
Proceedings of the 6th Pacific Conference on
Computer Graphics and Applications, 1998.

B. B. Bederson, L. Stead, and J. D. Hollan. Pad++:
advances in multiscale interfaces. In CHI ’9/:
Conference companion on Human factors in
computing systems, pages 315-316. ACM, 1994.

A. Calomeni and W. Celes. Assisted and automatic
navigation in black oil reservoir models based on
probabilistic roadmaps. In 18D ’06: Proceedings of the
2006 symposium on Interactive 3D graphics and
games, pages 175-182. ACM, 2006.

R. de Sousa Rocha and M. A. F. Rodrigues. An
evaluation of a collision handling system using
sphere-trees for plausible rigid body animation. In
SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, pages 1241-1245. ACM, 2008.

G. W. Furnas and B. B. Bederson. Space-scale
diagrams: understanding multiscale interfaces. In CHI
’95: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 234—241. ACM
Press/Addison-Wesley Publishing Co., 1995.

S. Jul and G. W. Furnas. Critical zones in desert fog:
aids to multiscale navigation. In UIST ’98:
Proceedings of the 11th annual ACM symposium on
User interface software and technology, pages 97-106.
ACM, 1998.

R. Kopper, T. Ni, D. A. Bowman, and M. Pinho.
Design and evaluation of navigation techniques for
multiscale virtual environments. In VR ’06:
Proceedings of the IEEE conference on Virtual Reality,
pages 175-182. IEEE Computer Society, 2006.

J. McCrae, I. Mordatch, M. Glueck, and A. Khan.
Multiscale 3D navigation. In 18D ’09: Proceedings of
the 2009 symposium on Interactive 3D graphics and
games, pages 7-14. ACM, 2009.

K. Perlin and D. Fox. Pad: an alternative approach to
the computer interface. In SIGGRAPH ’93:
Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages
57-64. ACM, 1993.

B. Sousa Santos, P. Dias, A. Pimentel, J.-W.
Baggerman, C. Ferreira, S. Silva, and J. Madeira.
Head-mounted display versus desktop for 3d
navigation in virtual reality: a user study. Multimedia
Tools Appl., 41(1):161-181, 20009.

C. Ware and D. Fleet. Context sensitive flying
interface. In SI8D ’97: Proceedings of the 1997
symposium on Interactive 3D graphics, pages 127-130.
ACM, 1997.

D. Xiao and R. Hubbold. Navigation guided by
artificial force fields. In CHI ’98: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 179-186. ACM Press/Addison-Wesley
Publishing Co., 1998.

X. L. Zhang. Multiscale traveling: crossing the
boundary between space and scale. Virtual Reality,
13(2):101-115, 20009.

3]

[4]

[5]

(6]

7]

8]

[9]

(10]

(11]

(12]

(13]

