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Abstract. Being DirectX the Graphics API for Games used by the majority of 

game developers, its newer release poses great relevance for those interested 

in real-time computer graphics and, especially, games. We have been working 

on projects exploring this new API since its first release, and we want to 

enlighten others, as there is still little available documentation. This tutorial 

can cover a broad audience. For those who are beginners in the area of 

computer graphics we advise to avoid low level details and focus on concepts 

(such as the Graphics Pipeline evolution to the present day and the new 

pipeline stages) and applications. Intermediate graphics programmers should 

be especially interested in learning all DirectX 11 features, acquiring 

knowledge of how to implement the new techniques, and making performance 

comparisons. Seasoned graphics programmers that are still unacquainted to 

Shader Model 5.0 should be the individuals that make the best use of this 

tutorial.  

 The tutorial is divided in 3 parts. The first part is an overview of DirectX 11 

highlights with a brief description of applications and scenarios. The second 

part contains a solid insight into Shader Model 5.0 and the new graphics 

pipeline. The last part gives some implementation walkthroughs and some 

code samples. 

 

1. Shader Model Introduction 

1.1 What is a Shader Model 

 Shader Model  is an abstraction to a well defined set of Shader capabilities 

created by DirectX. So, what is a Shader? The direct answer is: A script that tells a 

programmable stage of the graphics hardware what calculations to do to achieve a 

material, transformation, or effect. On DirectX 11 the languade used to create shaders is 

called HLSL, and stands for "High Level Shader Language". The term Shader Model 

has been used ever since the GPUs became programmable, and since then, the available 

features at every new model is dramatically increased . The first shipped graphics card 

to be assigned a Shader Model  was the Geforce 3 with SM1.1. On that former version, 

the shader programmability was reduced to a few assembly instructions and did not 
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have even float data. However, sequential Shader Model versions naturally did much to 

increase the programmability: by allowing the use of a higher level programming 

language, increasing instructions set, flow control, among others. Fig. 1 shows the 

comparison chart between Shader Models. DirectX 11 has brought a Shader Model 5.0 

and a new paradigm in shader programming which will be explained thoroughly 

through this tutorial.  

 

 

 

 

 

 

 

 

 

 

1.2 What has improved in Shader Model 5.0 

 Prior to Shader Model 4.0,  there was no possibility of doing per-primitive 

manipulation, and not also  inserting or removing any primitive inside the graphics 

pipeline. Both the vertex and the Pixel Shader could only apply their program to data 

already in memory. However, DirectX 10 with the Graphics cards supporting SM4 

provided the addition of the new pipeline stage called the Geometry Shader. This new 

feature unlocked a myriad of new Shading algorithms, generating procedural meshes 

on-the-fly, silhouette detection, among others. However, the Geometry Shader has a 

small limit of primitives to add/subtract and these operations are fairly expensive. 

Figure 2 shows the advent of Geometry Shader. 

 In order to understand the purpose of the new DirectX 11 Shader Model 5.0, one 

of the main bottlenecks of the rendering  algorithm must be analyzed, the transfer of 

highly refined meshes between the CPU and the GPU, which will be explained shortly. 

 Models intended to represent real bodies should have smooth and continuous 

surfaces. In order to create them, one has a multitude of algorithms. These, could be 

coarsely subdivided into two groups: The first group would contain the methods that 

have a coarse mesh as its domain, and a refined mesh, real body analogous as its image, 

some examples are: Bézier Surfaces, Catmull-Clark Subdivision Surfaces and surfaces 

with different Levels of Detail. The second group assign the algorithms that have an 

Figure 1 - Shader Models 
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already refined mesh as its domain, and also a refined mesh as its image, these only 

apply transforms in its domain, in contrast with the first group that refine and transform 

its domain, some examples of algorithms are: Parametric Surfaces, height map terrains, 

fluids, among others. 

 Without the possibility of addition and subtraction of primitives, it is obviously 

impossible to execute any algorithm of the first group fully in the GPU, as the only 

place a mesh could be refined would be the CPU, this issue could affect performance 

thoroughly. Aside from this impossibility, there is also the matter of transferring a dense 

model to the Graphics Card, which is needed prior the execution of the second group of 

algorithms in the Graphics Pipeline, as mentioned earlier, the bandwidth between the 

CPU and the GPU is constantly a limiting issue to the rendering algorithm. 

 All of those previous questions have been addressed by DirectX 11. With the 

Shader Model 5.0, three new stages have been introduced in the Graphics Pipeline, Hull 

Shader, Tessellator and Domain Shader, being the first and the latter programmable. 

There is a new type of primitive called patch, it consists in set of vertices or control 

points. Although a patch primitive is useful on its own, what really makes SM5 so 

special is the Tessellator. This new pipeline stage can create up to 8192 triangles for 

every primitive that it receives. The exact triangle amount is passed as a parameter. All 

these new triangles can be transformed programmatically with HLSL in a shader stage 

that the programmer can access not only the input primitive full vertices data, but also 

the GPU generated triangle's vertices coordinates. The possibility of creating such a 

massive primitive amount and manipulate it with such easy makes this new Pipeline a 

new paradigm in real-time rendering.  

 Shader programming with DirectX 11 is extremely flexible, and tailored to 

create highly complex meshes on-the-fly and easy Level of Detail algorithms. Its 

efficiency is superb, as it trades CPU-GPU bandwidth for GPU ALU operations that are 

rarely limiting during rendering.  

 

2. DirectX 11 Improvements 

2.1 Compute Shader 

 Compute Shaders created a new possibility of creating programs on the graphics 

processor. Programmers are now able to use the GPU as a general processor. With the 

full parallel processing power of modern graphics cards at hand, programmers can 

create new techniques that can assist the existing rendering algorithms, or accelerate a 

variety of general purpose algorithms.  

2.2 Improved Multithreading 

 When older Directc3D versions had been released, there was no real focus on 

supporting multithreading, as multi-core CPUs were not so popular back then. However, 

with the recent growth on CPU cores, there is an increasing need for a better way to 
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control the GPU from a multithreaded scenario. DirectX 11 addressed this matter with 

great concern. 

 Asynchronous graphics device access is now possible in the Direct3D 11 device 

object. Now programmers are able make API calls from multiple threads. This feature is 

possible because of the improvements in synchronization between the device object and 

the graphics driver in DirectX 11. 

 Direct3D 11 device object has now the possibility of extra rendering contexts. 

The main immediate context that controls data flow to the GPU continues, but there is 

now additional deferred contexts, that can be created as needed. Deferred contexts can 

be created on separate threads and issues commands to the GPU that will be processed 

when the immediate context is ready to send a new task to the GPU.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. The new Graphics Pipeline 

3.1 What can now be achieved with the Tessellator? 

  The new graphics pipeline provides a way to adaptively tessellate a mesh on the 

GPU. This capability implies that we will be trading a lot of CPU-GPU bus bandwidth 

for GPU ALU operations, which is a fair trade as moderns GPUs have a massive 

processing power, and the bandwidth is constantly a bottleneck. 

  Aside from this straightforward advantage in performance, the Tessellator also 

enables a faster dynamic computations such as: skinning animation, collision detection, 

morphing and any per vertex transform on a model. These computations are now faster 

Figure 2 - Direct3D 11 device object contexts 
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because they use the pre-tessellated mesh which is going to be tessellated into a highly 

detailed mesh later on. Another advantage of the Tessellator usage, is the possibility of 

applying continuous Level-of-detail to a model, which has always been a crucial issue 

to be addressed in any rendering engine. 

3.2 The new Stages of The Graphics Pipeline 

 We will start describing the purpose of the three new Pipeline stages: the Hull 

Shader, the Tesselator and the Domain Shader. Prior graphics Pipeline knowledge is 

advised for this section. The Hull Shader is a fully programmable stage, it receives the 

output from the Vertex Shader. This stage is divided into two parts, the Constant HS and 

the  Main HS. Both parts have access to full primitive information and their purpose is 

to do any per-primitive calculations. The Constant HS is invoked once per primitive, 

and its mandatory function is to output the Tessellation Factor, which is the parameter 

that will define how much the Tessellator will subdivide the primitive. The Main HS is 

invoked per vertex or per control point, and its purpose is to calculate any basis change 

on the primitive. The Hull Shader outputs the Tessellation Factor to the Tessellator and 

the control points to the Domain Shader. 

 The Tessellator is the stage responsible for subdividing the primitives. Based on 

the Tessellation Factor received from the Constant HS, this stage creates new triangles 

that compose a regular grid with  texture coordinates UV varying from 0 to 1. These 

new triangles are outputted to the Domain Shader still with texture coordinates. The 

tessellation can be achieved in 3 different ways: integer, even-fractional and odd-

fractional. The integer way is just a straightforward symmetric subdivision, whereas the 

fractional ones subdivide on the edges and morph the vertices based on the decimal part 

of the Tesselation Factor which gives a non-popping effect when used in a LOD 

scheme. A comparative view of the tessellations is on Figure 3. 

 As the Hull Shader, The Domain Shader is also a fully programmable stage. The 

stage has access to full primitive information, and is invoked once per new vertex 

outputted by the Tessellator. It receives the mesh control points from the HS and the 

regular grid with the newly created triangles from the Tessellator. The mandatory 

purpose of the Domain Shader is to interpolate the newly created vertices along the 

control points, in order to transform the parametric UV coordinates into world space 

XYZ coordinates. The Domain Shader outputs the vertices of the fully tessellated mesh 

to the Pixel Shader or optionally the Geometry Shader. Practical examples are going to 

be found in the next Part of this tutorial showing into more detail the functionality 

overviewed in this section. Figure 4 shows a schematic overview of the Pipeline. 
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Figure 3 - Tessellation types.  

Figure 4 - Shader Model 5.0 Pipeline 
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4. Implementation Examples 

4.1 Tessellating a quad 

 Let’s start with a simple example: tessellating a quad in the world. Our quad 

vertices will lie in the plane XZ with world coordinates:               

                                     . The first thing we need to do to enable 

the Tessellator pipeline is setting the Input Assembler primitive topology to accept 

patches through the following line of code ( for simplicity we are not going to describe 

the full source code of a basic DirectX application, you can access the commented 

source code of all examples of this tutorial (http://www.xtunt.com/samples)): 

pd3dImmediateContext->IASetPrimitiveTopology( 

D3D11_PRIMITIVE_TOPOLOGY::D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST); 

 Now the Input Assembler is set and the pipeline assumes that each primitive is a 

patch with 4 vertices (control points). A patch primitive may have from 1 through up to 

32 control points. Now let’s code the shader itself. First we will specify our per frame 

variables through a constant buffer: 

cbuffer cbPerFrame : register( b0 ) 

{ 

    matrix g_mViewProjection; 

    float  g_fTessellationFactor; 

}; 

 

 As you can see, for this example we are going to need only two per-frame 

variables, the View-Projection matrix and a tessellation factor which represents the 

amount of tessellation for our quad. This value goes from 1 up to 64.  

 Now we need to code the Vertex Shader. In this new tessellation pipeline the 

Vertex Shader is mostly used for animation. The programmer may animate a coarse 

mesh and tessellate it later in the pipeline. That way GPU animation effort is saved. For 

this example we are not going to do any animation in the Vertex Shader, so it will be a 

simple pass-through shader. Let’s specify the input and output structs of the Vertex 

Shader. 

struct VS_CONTROL_POINT_INPUT 

{ 

    float3 vPosition        : POSITION; 

}; 

 

struct VS_CONTROL_POINT_OUTPUT 

{ 

    float3 vPosition        : POSITION; 

}; 

  

 Our shader will only receive a position as input and will output the same 

position. Simple enough: 
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 VS_CONTROL_POINT_OUTPUT VS( VS_CONTROL_POINT_INPUT Input ) 

{ 

    VS_CONTROL_POINT_OUTPUT Output; 

    Output.vPosition = Input.vPosition; 

    return Output; 

} 

 

 No big news yet. Now we will code the Hull Shader. This shader is composed of 

two parts: the Constant part and the Hull Shader itself. First let’s see the input and 

output structs of the Hull Shader: 

struct HS_CONSTANT_DATA_OUTPUT 

{ 

    float Edges[4]             : SV_TessFactor; 

    float Inside[2]            : SV_InsideTessFactor; 

}; 

 

struct HS_OUTPUT 

{ 

    float3 vPosition           : POSITION; 

}; 

  

 The input is what is outputted from the Vertex Shader, so in this example the 

input of the Hull Shader is the VS_CONTROL_POINT_OUTPUT structure. Now, the output of 

the constant part is the HS_CONSTANT_DATA_OUTPUT structure, in this struct the 

programmer should output any per-patch parameter. In this example we are outputting 

only the mandatory per-patch parameters, which are the tessellation factors of our quad. 

There are four edge tessellation factors (one per-edge) of the quad. Being able to 

specify per edge factors is important to keep watertight meshes. With these factors the 

programmer is able to guarantee same amount of vertices at the edges of neighbor 

patches. There are also two inner tessellation factors which represent horizontal and 

vertical subdivision for the center of the quad.  

 Next is the Hull Shader constant part: 

HS_CONSTANT_DATA_OUTPUT ConstantHS( InputPatch<VS_CONTROL_POINT_OUTPUT, 4> ip, 

                                          uint PatchID : SV_PrimitiveID ) 

{     

    HS_CONSTANT_DATA_OUTPUT Output; 

 

    Output.Edges[0] = Output.Edges[1] = Output.Edges[2] = Output.Edges[3] = 

g_fTessellationFactor; 

    Output.Inside[0] = Output.Inside[1] = g_fTessellationFactor; 

 

    return Output; 

} 

  

 As you can see this part outputs a HS_CONSTANT_DATA_OUTPUT structure and 

receives as input a patch with 4 control points and each control point is represented by 

the structure VS_CONTROL_POINT_OUTPUT which in our case it only contains a position. It 

also receives a PatchID that is an identifier number of the patch generated by the Input 

Assembler. This part is invoked once per-patch. Basically in this part we are passing to 

all edges and inner parts of the quad the same tessellation factor, so we expect as output 
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an uniformly tessellated quad. It is the constant part of the Hull Shader that the 

programmer may do calculations for tessellating meshes adaptively based for example 

on: distance to the camera, gradient map, screen space edge size, if the patch is on the 

silhouette, etc… Moreover, there is another important property of this shader part: if a 

tessellation factor for a patch is set to zero, the patch is culled from the rest of the 

pipeline. This is important to avoid tessellating patches that are out of the view frustum 

range or back-faced patches. Now let’s see the Hull Shader main part:  

 
 
 

[domain("quad")] 

[partitioning("integer")] 

[outputtopology("triangle_cw")] 

[outputcontrolpoints(4)] 

[patchconstantfunc("ConstantHS")] 

HS_OUTPUT HS( InputPatch<VS_CONTROL_POINT_OUTPUT, 4> p,  

                    uint i : SV_OutputControlPointID, 

                    uint PatchID : SV_PrimitiveID ) 

{ 

    HS_OUTPUT Output; 

    Output.vPosition = p[i].vPosition; 

    return Output; 

} 

  

 There is a lot of new information in this part. First of all, this part is invoked 

once per-output control point, but the programmer is able to consult the whole patch 

information. So, it receives as parameters the patch with four control points, a 

SV_OutputControlPointID that represents the current control point invocation ( for our 

quad this integer will vary from 0 to 3 ) and a PatchID that is an identifier number of the 

patch generated by the Input Assembler. This Hull Shader part is commonly used for a 

coordinate basis change, for example changing from a quad to a Bezier bi-cubic. The 

other parameters shown are: 

 domain(quad, tri, isoline): Specifies what are you tessellating: quad, triangle 

or isoline. In our example we must chose quad. 

 partitioning(integer,  fractional_even, fractional_odd, pow2):  This 

attribute tells the Tessellator how to interpret our tessellation factors. Integer 

partitioning means the tessellation factors are interpreted as integral values. The 

vertices are not created in a smooth manner. Parameters fractional_even and 

fractional_odd creates “in-between” tessellated vertices, so the vertices are 

created on a smooth manner. In the June 2010 SDK pow2 is behaving just like 

integer partitioning. 

 outputtopology(triangle_cw, triangle_ccw, line): This attribute tells the 

Tessellator where the output primitives should face. The triangle_cw generates 

triangles in a clockwise manner, triangle_ccw generates triangles in a counter-

clockwise manner and line generates lines. 
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 outputcontrolpoints(1..32): The amount of times this Hull Shader part will be 

called. For example if you are changing basis from a quad to a bi-cubic Bezier 

patch, this parameter should be 16. Because you would be receiving four 

control-points for the quad and outputting sixteen for the bi-cubic Bezier patch. 

For our example we will output the same amount of control points as the input. 

 patchconstantfunc(string):  The name of the function that represents your Hull 

Shader constant function. In our example it is ConstantHS. 

Now we will look at the Domain Shader. This shader part should be looked like 

a “Vertex Shader after the tessellation”. In this shader you are able to manipulate all the 

vertices that were created by the Tessellator. First let’s declare the struct that the 

Domain Shader will output: 

 
 
 
struct DS_OUTPUT 

{ 

    float4 vPosition        : SV_POSITION; 

}; 

 

As you can see our output to the Pixel Shader will be just the position of the 

vertex after the conversion by the View and Projection matrices. The Domain Shader 

itself is as follows:  

[domain("quad")] 

DS_OUTPUT DS( HS_CONSTANT_DATA_OUTPUT input,  

                    float2 UV : SV_DomainLocation, 

                    const OutputPatch<HS_OUTPUT, 4> quad ) 

{ 

    DS_OUTPUT Output; 

    float3 verticalPos1 = lerp(quad[0].vPosition,quad[1].vPosition,UV.y); 

    float3 verticalPos2 = lerp(quad[3].vPosition,quad[2].vPosition,UV.y); 

    float3 finalPos = lerp(verticalPos1,verticalPos2,UV.x); 

     

    Output.vPosition = mul( float4(finalPos,1), g_mViewProjection ); 

    return Output;     

} 

 

The Domain Shader receives as input the HS_CONSTANT_DATA_OUTPUT structure 

that has any per-patch parameter passed by the Hull Shader constant part and we need 

to specify the same domain attribute that we chose at the Hull Shader, which in our case 

is “quad”. It also receives the patch control points data and a float2 UV coordinate that 

is where the Tessellator created the new vertices through the domain in a parametric 

space from 0 to 1. Suppose a Domain Shader invocation with UV = (0.5, 0.5), that 

means that the Domain Shader is being invoked for a vertex that was created in the 

middle of the quad by the Tessellator as shows figure 5: 
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                  Figure 5 

  

The UV parameter represents the vertices created by the Tessellator, but we 

need to put those vertices in world space according to our quad. To do that we have to 

make three linear interpolations as figure 6 shows for an UV = (0.5, 0.5) invocation: 

 

 

       Figure 6 

 

For each vertex generated by the Tessellator those linear interpolation are made 

and the vertex is placed at the right place in the world. Now, to complete the pipeline 

we need a simple Pixel Shader: 

float4 SolidColorPS( DS_OUTPUT Input ) : SV_TARGET 

{ 

    return float4( 1,1,1, 1 ); 

} 

 

This Pixel Shader just outputs a solid white color. If we needed a Geometry 

shader for our technique it would be placed after the Domain Shader in the pipeline, but 

we are not going to use it for this example. This is the final result of our sample, our 

tessellated quad: 
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Figure 7 - Tessellated Quad 

 

That is a simple screenshot but it means a lot. There are 8192 triangles generated 

by the hardware in this screenshot. We had to pass just 48 bytes of information from the 

CPU to the GPU. Doing this screenshot with a traditional CPU tessellation approach we 

would have spent 8192*3*12 = 294,91 Kbytes of bandwidth, which is the most 

expensive resource of today’s rendering pipeline. 

 

4.2 Tessellating a triangle 

Now let’s follow the same example above but this time we are going to tessellate 

a triangle instead of a quad. We are going to pass-through this example quicker than the 

previous one because they are very similar in most parts. Please refer to the tutorial 

sample source code if you have any doubts. Our triangle will have world coordinates: 

                                     First we need to set the Input Assembler 

to accept a patch with three control points ( our triangle ): 

pd3dImmediateContext->IASetPrimitiveTopology( 

D3D11_PRIMITIVE_TOPOLOGY::D3D11_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST); 

 

  

 Now we will code the shader. The constant buffer and Vertex Shader are the 

same of the previous example, we just need the tessellation factor, the View*Projection 

matrix and a pass-through Vertex Shader: 

//---------------------------------------------------------------------------- 

// Constant Buffers 

//---------------------------------------------------------------------------- 

cbuffer cbPerFrame : register( b0 ) 

{ 

    matrix g_mViewProjection; 

    float  g_fTessellationFactor; 

}; 
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//---------------------------------------------------------------------------- 

// Vertex shader section 

//---------------------------------------------------------------------------- 

struct VS_CONTROL_POINT_INPUT 

{ 

    float3 vPosition        : POSITION; 

}; 

struct VS_CONTROL_POINT_OUTPUT 

{ 

    float3 vPosition        : POSITION; 

}; 

 

VS_CONTROL_POINT_OUTPUT VS( VS_CONTROL_POINT_INPUT Input ) 

{ 

    VS_CONTROL_POINT_OUTPUT Output; 

    Output.vPosition = Input.vPosition; 

    return Output; 

} 

  

 The Hull Shader changes slightly from the previous sample. Now the 

HS_CONSTANT_DATA_OUTPUT structure has three edge tessellation factors ( one per triangle 

edge ) and one inside tessellation factor. Also the patch now has only three control 

points instead of four. The domain attribute must be set to "tri" and 

outputcontrolpoints attribute must be set to "3": 

struct HS_CONSTANT_DATA_OUTPUT 

{ 

    float Edges[3]             : SV_TessFactor; 

    float Inside            : SV_InsideTessFactor; 

}; 

 

struct HS_OUTPUT 

{ 

    float3 vPosition           : POSITION; 

}; 

 

HS_CONSTANT_DATA_OUTPUT ConstantHS( InputPatch<VS_CONTROL_POINT_OUTPUT, 3> ip, 

                                          uint PatchID : SV_PrimitiveID ) 

{     

    HS_CONSTANT_DATA_OUTPUT Output; 

    Output.Edges[0] = Output.Edges[1] = Output.Edges[2] = 

g_fTessellationFactor; 

    Output.Inside = g_fTessellationFactor; 

    return Output; 

} 

 

[domain("tri")] 

[partitioning("fractional_odd")] 

[outputtopology("triangle_cw")] 

[outputcontrolpoints(3)] 

[patchconstantfunc("ConstantHS")] 

HS_OUTPUT HS( InputPatch<VS_CONTROL_POINT_OUTPUT, 3> p,  

                    uint i : SV_OutputControlPointID, 

                    uint PatchID : SV_PrimitiveID ) 

{ 

    HS_OUTPUT Output; 

    Output.vPosition = p[i].vPosition; 

    return Output; 

} 

 In the Domain Shader the vertices created by the Tessellator  must be 

transformed to world space just like in the previous sample. However there is a 
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difference. Now the Tessellator provides the vertices positions as normalized 

barycentric coordinates instead of the previous regular UV texture coordinates. The 

barycentric coordinates have three variables UVW, each represents the weight of a 

control point for the generated vertex coordinate where U+V+W = 1 and W = 1 - U - V. 

Figure 8 illustrates an example for U=V=W= 0.333, which means that each triangle 

control point has an even amount of contribution for this vertex coordinate. So, it will 

produce a vertex at the middle of the triangle. 

                            

 

                                                   Figure 8 

 

 The same interpolation can be used to find texture coordinates or normals inside 

the triangle. Also, we have to change the domain attribute to "tri". This is the Domain 

Shader snippet: 

struct DS_OUTPUT 

{ 

    float4 vPosition        : SV_POSITION; 

}; 

 

[domain("tri")] 

DS_OUTPUT DS( HS_CONSTANT_DATA_OUTPUT input,  

                    float3 UVW : SV_DomainLocation, 

                    const OutputPatch<HS_OUTPUT, 3> quad ) 

{ 

    DS_OUTPUT Output; 

 

    float3 finalPos = UVW.x * quad[0].vPosition + UVW.y * quad[1].vPosition + 

UVW.z * quad[2].vPosition; 

     

    Output.vPosition = mul( float4(finalPos,1), g_mViewProjection ); 

 

    return Output;     

} 
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 The Pixel Shader is the same as the previous example: 

float4 SolidColorPS( DS_OUTPUT Input ) : SV_TARGET 

{ 

    return float4( 1, 1, 1, 1 ); 

} 

  

 This is final result of this example, the triangle tessellated by the hardware: 

  

                           Figure 9 - Tessellated Triangle 

  

4.3 Creating parametric surfaces in the GPU 

 In this example we will use the new pipeline to create parametric surfaces in the 

GPU. We are going to pass just one vertex to the GPU. This vertex is just to enable the 

pipeline and do a draw call. Also, if the programmer wants to place the surface created 

somewhere that's not the origin, a properly world matrix should be passed to the shader. 

A quad domain will be tessellated by the Tessellator and in the Domain Shader we will 

displace each vertex created according to the parametric equation of the surface desired. 

 First of all we need to configure the Input Assembler to accept a patch with one 

control point. This control point is just to be able to do a draw call, since you are can't 

have a patch with no control points. 

 pd3dImmediateContext->IASetPrimitiveTopology( 

D3D11_PRIMITIVE_TOPOLOGY::D3D11_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST); 

 

  

 Now we will code the shader. Once again the Vertex Shader will be just a pass-

through shader and the constant buffer has the tessellation factor and the 

View*Projection matrix: 
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cbuffer cbPerFrame : register( b0 ) 

{    

    matrix g_mViewProjection; 

    float  g_fTessellationFactor; 

}; 

struct VS_CONTROL_POINT_INPUT 

{    

    float3 vPosition        : POSITION; 

}; 

struct VS_CONTROL_POINT_OUTPUT 

{ 

    float3 vPosition        : POSITION; 

}; 

VS_CONTROL_POINT_OUTPUT BezierVS( VS_CONTROL_POINT_INPUT Input ) 

{ 

    VS_CONTROL_POINT_OUTPUT Output; 

    Output.vPosition = Input.vPosition; 

    return Output; 

} 

 

 The Hull Shader output structures will be the same as the first example. At the 

constant part we will set all edges and inner tessellation factors with the value that is in 

the constant buffer. It is nice to change this tessellation factor value with a slider in the 

GUI so you are able to see the parametric surface being "built" on the GPU. Here is the 

Hull Shader snippet: 

struct HS_CONSTANT_DATA_OUTPUT 

{ 

    float Edges[4]             : SV_TessFactor; 

    float Inside[2]            : SV_InsideTessFactor; 

}; 

 

struct HS_OUTPUT 

{ 

    float3 vPosition           : BEZIERPOS; 

}; 

 

 

 

 

HS_CONSTANT_DATA_OUTPUT ConstantHS( InputPatch<VS_CONTROL_POINT_OUTPUT, 4> ip, 

                                          uint PatchID : SV_PrimitiveID ) 

{     

    HS_CONSTANT_DATA_OUTPUT Output; 

    float TessAmount = g_fTessellationFactor; 

    Output.Edges[0] = Output.Edges[1] = Output.Edges[2] = Output.Edges[3]= 

TessAmount; 

    Output.Inside[0] = Output.Inside[1] = TessAmount; 

 

    return Output; 

} 

 

[domain("quad")] 

[partitioning("fractional_odd")] 

[outputtopology("triangle_cw")] 

[outputcontrolpoints(4)] 

[patchconstantfunc("ConstantHS")] 

HS_OUTPUT HS( InputPatch<VS_CONTROL_POINT_OUTPUT, 4> p,  

                    uint i : SV_OutputControlPointID, 

                    uint PatchID : SV_PrimitiveID ) 
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{ 

    HS_OUTPUT Output; 

    Output.vPosition = p[i].vPosition; 

    return Output; 

} 

  

 Now the Domain Shader. Here you have to choose a parametric surface that you 

want to create in the GPU. Let's choose a sphere. The parametric equation of a sphere 

is: 

                                         

 Where   is the radius of the sphere and                     Remember that 

the UV coordinate that comes from the Tessellator to the Domain Shader is with the 

range       . What we are going to do is       and         and apply the 

above equation. Also, let's put a color in the Domain Shader output  so the surface will 

be colored even in the wireframe mode. The color will simply be the position of the 

vertex normalized plus a bias to avoid the black color. That's because our background is 

black and we do not want our mesh to be with the same color of the background. 

[domain("quad")] 

DS_OUTPUT DS( HS_CONSTANT_DATA_OUTPUT input,  

                    float2 UV : SV_DomainLocation, 

                    const OutputPatch<HS_OUTPUT, 4> quad ) 

{   

    DS_OUTPUT Output; 

     

    float pi2 = 6.28318530; 

    float pi = pi2/2.0f; 

    float R = 1.0; 

    float fi = pi*UV.x; 

    float theta = pi2*UV.y; 

    float sinFi,cosFi,sinTheta,cosTheta; 

    sincos( fi, sinFi, cosFi); 

    sincos( theta, sinTheta,cosTheta); 

  

    float3 spherePosition = float3(R*sinFi*cosTheta, R*sinFi*sinTheta, 

R*cosFi); 

    Output.vColor = float3(normalize(spherePosition) + 0.4); 

     

    Output.vPosition = mul( float4(spherePosition,1), g_mViewProjection ); 

 

    return Output;     

} 

 

  

 The Pixel Shader just outputs the color of the input vertex. 

float4 SolidColorPS( DS_OUTPUT Input ) : SV_TARGET 

{ 

    return float4( Input.vColor, 1 ); 

} 
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 This is the picture of our GPU generated sphere: 

                 

                             Figure 10 - Sphere 

 Others parametric surfaces generated with the same technique as shown on 

Figure 11: 

           

           

                       

                       Figure 11 - Parametric Surfaces 
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