
Understanding Shader Model 5.0 with DirectX 11

Alexandre Valdetaro
1
, Gustavo Nunes

1
, Alberto Raposo

1
, Bruno Feijó

2

1
Tecgraf – PUC-RJ

Rio de Janeiro – Brazil

2
Departmento de Informática – PUC-RJ

Rio de Janeiro – Brazil.

xvaldetaro@gmail.com, xnunes@msn.com, abraposo@tecgraf.puc-rio.br,

bfeijo@inf.puc-rio.br

Abstract. Being DirectX the Graphics API for Games used by the majority of

game developers, its newer release poses great relevance for those interested

in real-time computer graphics and, especially, games. We have been working

on projects exploring this new API since its first release, and we want to

enlighten others, as there is still little available documentation. This tutorial

can cover a broad audience. For those who are beginners in the area of

computer graphics we advise to avoid low level details and focus on concepts

(such as the Graphics Pipeline evolution to the present day and the new

pipeline stages) and applications. Intermediate graphics programmers should

be especially interested in learning all DirectX 11 features, acquiring

knowledge of how to implement the new techniques, and making performance

comparisons. Seasoned graphics programmers that are still unacquainted to

Shader Model 5.0 should be the individuals that make the best use of this

tutorial.

 The tutorial is divided in 3 parts. The first part is an overview of DirectX 11

highlights with a brief description of applications and scenarios. The second

part contains a solid insight into Shader Model 5.0 and the new graphics

pipeline. The last part gives some implementation walkthroughs and some

code samples.

1. Shader Model Introduction

1.1 What is a Shader Model

 Shader Model is an abstraction to a well defined set of Shader capabilities

created by DirectX. So, what is a Shader? The direct answer is: A script that tells a

programmable stage of the graphics hardware what calculations to do to achieve a

material, transformation, or effect. On DirectX 11 the languade used to create shaders is

called HLSL, and stands for "High Level Shader Language". The term Shader Model

has been used ever since the GPUs became programmable, and since then, the available

features at every new model is dramatically increased . The first shipped graphics card

to be assigned a Shader Model was the Geforce 3 with SM1.1. On that former version,

the shader programmability was reduced to a few assembly instructions and did not

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 1

have even float data. However, sequential Shader Model versions naturally did much to

increase the programmability: by allowing the use of a higher level programming

language, increasing instructions set, flow control, among others. Fig. 1 shows the

comparison chart between Shader Models. DirectX 11 has brought a Shader Model 5.0

and a new paradigm in shader programming which will be explained thoroughly

through this tutorial.

1.2 What has improved in Shader Model 5.0

 Prior to Shader Model 4.0, there was no possibility of doing per-primitive

manipulation, and not also inserting or removing any primitive inside the graphics

pipeline. Both the vertex and the Pixel Shader could only apply their program to data

already in memory. However, DirectX 10 with the Graphics cards supporting SM4

provided the addition of the new pipeline stage called the Geometry Shader. This new

feature unlocked a myriad of new Shading algorithms, generating procedural meshes

on-the-fly, silhouette detection, among others. However, the Geometry Shader has a

small limit of primitives to add/subtract and these operations are fairly expensive.

Figure 2 shows the advent of Geometry Shader.

 In order to understand the purpose of the new DirectX 11 Shader Model 5.0, one

of the main bottlenecks of the rendering algorithm must be analyzed, the transfer of

highly refined meshes between the CPU and the GPU, which will be explained shortly.

 Models intended to represent real bodies should have smooth and continuous

surfaces. In order to create them, one has a multitude of algorithms. These, could be

coarsely subdivided into two groups: The first group would contain the methods that

have a coarse mesh as its domain, and a refined mesh, real body analogous as its image,

some examples are: Bézier Surfaces, Catmull-Clark Subdivision Surfaces and surfaces

with different Levels of Detail. The second group assign the algorithms that have an

Figure 1 - Shader Models

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 2

already refined mesh as its domain, and also a refined mesh as its image, these only

apply transforms in its domain, in contrast with the first group that refine and transform

its domain, some examples of algorithms are: Parametric Surfaces, height map terrains,

fluids, among others.

 Without the possibility of addition and subtraction of primitives, it is obviously

impossible to execute any algorithm of the first group fully in the GPU, as the only

place a mesh could be refined would be the CPU, this issue could affect performance

thoroughly. Aside from this impossibility, there is also the matter of transferring a dense

model to the Graphics Card, which is needed prior the execution of the second group of

algorithms in the Graphics Pipeline, as mentioned earlier, the bandwidth between the

CPU and the GPU is constantly a limiting issue to the rendering algorithm.

 All of those previous questions have been addressed by DirectX 11. With the

Shader Model 5.0, three new stages have been introduced in the Graphics Pipeline, Hull

Shader, Tessellator and Domain Shader, being the first and the latter programmable.

There is a new type of primitive called patch, it consists in set of vertices or control

points. Although a patch primitive is useful on its own, what really makes SM5 so

special is the Tessellator. This new pipeline stage can create up to 8192 triangles for

every primitive that it receives. The exact triangle amount is passed as a parameter. All

these new triangles can be transformed programmatically with HLSL in a shader stage

that the programmer can access not only the input primitive full vertices data, but also

the GPU generated triangle's vertices coordinates. The possibility of creating such a

massive primitive amount and manipulate it with such easy makes this new Pipeline a

new paradigm in real-time rendering.

 Shader programming with DirectX 11 is extremely flexible, and tailored to

create highly complex meshes on-the-fly and easy Level of Detail algorithms. Its

efficiency is superb, as it trades CPU-GPU bandwidth for GPU ALU operations that are

rarely limiting during rendering.

2. DirectX 11 Improvements

2.1 Compute Shader

 Compute Shaders created a new possibility of creating programs on the graphics

processor. Programmers are now able to use the GPU as a general processor. With the

full parallel processing power of modern graphics cards at hand, programmers can

create new techniques that can assist the existing rendering algorithms, or accelerate a

variety of general purpose algorithms.

2.2 Improved Multithreading

 When older Directc3D versions had been released, there was no real focus on

supporting multithreading, as multi-core CPUs were not so popular back then. However,

with the recent growth on CPU cores, there is an increasing need for a better way to

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 3

control the GPU from a multithreaded scenario. DirectX 11 addressed this matter with

great concern.

 Asynchronous graphics device access is now possible in the Direct3D 11 device

object. Now programmers are able make API calls from multiple threads. This feature is

possible because of the improvements in synchronization between the device object and

the graphics driver in DirectX 11.

 Direct3D 11 device object has now the possibility of extra rendering contexts.

The main immediate context that controls data flow to the GPU continues, but there is

now additional deferred contexts, that can be created as needed. Deferred contexts can

be created on separate threads and issues commands to the GPU that will be processed

when the immediate context is ready to send a new task to the GPU.

3. The new Graphics Pipeline

3.1 What can now be achieved with the Tessellator?

 The new graphics pipeline provides a way to adaptively tessellate a mesh on the

GPU. This capability implies that we will be trading a lot of CPU-GPU bus bandwidth

for GPU ALU operations, which is a fair trade as moderns GPUs have a massive

processing power, and the bandwidth is constantly a bottleneck.

 Aside from this straightforward advantage in performance, the Tessellator also

enables a faster dynamic computations such as: skinning animation, collision detection,

morphing and any per vertex transform on a model. These computations are now faster

Figure 2 - Direct3D 11 device object contexts

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 4

because they use the pre-tessellated mesh which is going to be tessellated into a highly

detailed mesh later on. Another advantage of the Tessellator usage, is the possibility of

applying continuous Level-of-detail to a model, which has always been a crucial issue

to be addressed in any rendering engine.

3.2 The new Stages of The Graphics Pipeline

 We will start describing the purpose of the three new Pipeline stages: the Hull

Shader, the Tesselator and the Domain Shader. Prior graphics Pipeline knowledge is

advised for this section. The Hull Shader is a fully programmable stage, it receives the

output from the Vertex Shader. This stage is divided into two parts, the Constant HS and

the Main HS. Both parts have access to full primitive information and their purpose is

to do any per-primitive calculations. The Constant HS is invoked once per primitive,

and its mandatory function is to output the Tessellation Factor, which is the parameter

that will define how much the Tessellator will subdivide the primitive. The Main HS is

invoked per vertex or per control point, and its purpose is to calculate any basis change

on the primitive. The Hull Shader outputs the Tessellation Factor to the Tessellator and

the control points to the Domain Shader.

 The Tessellator is the stage responsible for subdividing the primitives. Based on

the Tessellation Factor received from the Constant HS, this stage creates new triangles

that compose a regular grid with texture coordinates UV varying from 0 to 1. These

new triangles are outputted to the Domain Shader still with texture coordinates. The

tessellation can be achieved in 3 different ways: integer, even-fractional and odd-

fractional. The integer way is just a straightforward symmetric subdivision, whereas the

fractional ones subdivide on the edges and morph the vertices based on the decimal part

of the Tesselation Factor which gives a non-popping effect when used in a LOD

scheme. A comparative view of the tessellations is on Figure 3.

 As the Hull Shader, The Domain Shader is also a fully programmable stage. The

stage has access to full primitive information, and is invoked once per new vertex

outputted by the Tessellator. It receives the mesh control points from the HS and the

regular grid with the newly created triangles from the Tessellator. The mandatory

purpose of the Domain Shader is to interpolate the newly created vertices along the

control points, in order to transform the parametric UV coordinates into world space

XYZ coordinates. The Domain Shader outputs the vertices of the fully tessellated mesh

to the Pixel Shader or optionally the Geometry Shader. Practical examples are going to

be found in the next Part of this tutorial showing into more detail the functionality

overviewed in this section. Figure 4 shows a schematic overview of the Pipeline.

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 5

Figure 3 - Tessellation types.

Figure 4 - Shader Model 5.0 Pipeline

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 6

4. Implementation Examples

4.1 Tessellating a quad

 Let’s start with a simple example: tessellating a quad in the world. Our quad

vertices will lie in the plane XZ with world coordinates:

 . The first thing we need to do to enable

the Tessellator pipeline is setting the Input Assembler primitive topology to accept

patches through the following line of code (for simplicity we are not going to describe

the full source code of a basic DirectX application, you can access the commented

source code of all examples of this tutorial (http://www.xtunt.com/samples)):

pd3dImmediateContext->IASetPrimitiveTopology(

D3D11_PRIMITIVE_TOPOLOGY::D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST);

 Now the Input Assembler is set and the pipeline assumes that each primitive is a

patch with 4 vertices (control points). A patch primitive may have from 1 through up to

32 control points. Now let’s code the shader itself. First we will specify our per frame

variables through a constant buffer:

cbuffer cbPerFrame : register(b0)

{

 matrix g_mViewProjection;

 float g_fTessellationFactor;

};

 As you can see, for this example we are going to need only two per-frame

variables, the View-Projection matrix and a tessellation factor which represents the

amount of tessellation for our quad. This value goes from 1 up to 64.

 Now we need to code the Vertex Shader. In this new tessellation pipeline the

Vertex Shader is mostly used for animation. The programmer may animate a coarse

mesh and tessellate it later in the pipeline. That way GPU animation effort is saved. For

this example we are not going to do any animation in the Vertex Shader, so it will be a

simple pass-through shader. Let’s specify the input and output structs of the Vertex

Shader.

struct VS_CONTROL_POINT_INPUT

{

 float3 vPosition : POSITION;

};

struct VS_CONTROL_POINT_OUTPUT

{

 float3 vPosition : POSITION;

};

 Our shader will only receive a position as input and will output the same

position. Simple enough:

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 7

 VS_CONTROL_POINT_OUTPUT VS(VS_CONTROL_POINT_INPUT Input)

{

 VS_CONTROL_POINT_OUTPUT Output;

 Output.vPosition = Input.vPosition;

 return Output;

}

 No big news yet. Now we will code the Hull Shader. This shader is composed of

two parts: the Constant part and the Hull Shader itself. First let’s see the input and

output structs of the Hull Shader:

struct HS_CONSTANT_DATA_OUTPUT

{

 float Edges[4] : SV_TessFactor;

 float Inside[2] : SV_InsideTessFactor;

};

struct HS_OUTPUT

{

 float3 vPosition : POSITION;

};

 The input is what is outputted from the Vertex Shader, so in this example the

input of the Hull Shader is the VS_CONTROL_POINT_OUTPUT structure. Now, the output of

the constant part is the HS_CONSTANT_DATA_OUTPUT structure, in this struct the

programmer should output any per-patch parameter. In this example we are outputting

only the mandatory per-patch parameters, which are the tessellation factors of our quad.

There are four edge tessellation factors (one per-edge) of the quad. Being able to

specify per edge factors is important to keep watertight meshes. With these factors the

programmer is able to guarantee same amount of vertices at the edges of neighbor

patches. There are also two inner tessellation factors which represent horizontal and

vertical subdivision for the center of the quad.

 Next is the Hull Shader constant part:

HS_CONSTANT_DATA_OUTPUT ConstantHS(InputPatch<VS_CONTROL_POINT_OUTPUT, 4> ip,

 uint PatchID : SV_PrimitiveID)

{

 HS_CONSTANT_DATA_OUTPUT Output;

 Output.Edges[0] = Output.Edges[1] = Output.Edges[2] = Output.Edges[3] =

g_fTessellationFactor;

 Output.Inside[0] = Output.Inside[1] = g_fTessellationFactor;

 return Output;

}

 As you can see this part outputs a HS_CONSTANT_DATA_OUTPUT structure and

receives as input a patch with 4 control points and each control point is represented by

the structure VS_CONTROL_POINT_OUTPUT which in our case it only contains a position. It

also receives a PatchID that is an identifier number of the patch generated by the Input

Assembler. This part is invoked once per-patch. Basically in this part we are passing to

all edges and inner parts of the quad the same tessellation factor, so we expect as output

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 8

an uniformly tessellated quad. It is the constant part of the Hull Shader that the

programmer may do calculations for tessellating meshes adaptively based for example

on: distance to the camera, gradient map, screen space edge size, if the patch is on the

silhouette, etc… Moreover, there is another important property of this shader part: if a

tessellation factor for a patch is set to zero, the patch is culled from the rest of the

pipeline. This is important to avoid tessellating patches that are out of the view frustum

range or back-faced patches. Now let’s see the Hull Shader main part:

[domain("quad")]

[partitioning("integer")]

[outputtopology("triangle_cw")]

[outputcontrolpoints(4)]

[patchconstantfunc("ConstantHS")]

HS_OUTPUT HS(InputPatch<VS_CONTROL_POINT_OUTPUT, 4> p,

 uint i : SV_OutputControlPointID,

 uint PatchID : SV_PrimitiveID)

{

 HS_OUTPUT Output;

 Output.vPosition = p[i].vPosition;

 return Output;

}

 There is a lot of new information in this part. First of all, this part is invoked

once per-output control point, but the programmer is able to consult the whole patch

information. So, it receives as parameters the patch with four control points, a

SV_OutputControlPointID that represents the current control point invocation (for our

quad this integer will vary from 0 to 3) and a PatchID that is an identifier number of the

patch generated by the Input Assembler. This Hull Shader part is commonly used for a

coordinate basis change, for example changing from a quad to a Bezier bi-cubic. The

other parameters shown are:

 domain(quad, tri, isoline): Specifies what are you tessellating: quad, triangle

or isoline. In our example we must chose quad.

 partitioning(integer, fractional_even, fractional_odd, pow2): This

attribute tells the Tessellator how to interpret our tessellation factors. Integer

partitioning means the tessellation factors are interpreted as integral values. The

vertices are not created in a smooth manner. Parameters fractional_even and

fractional_odd creates “in-between” tessellated vertices, so the vertices are

created on a smooth manner. In the June 2010 SDK pow2 is behaving just like

integer partitioning.

 outputtopology(triangle_cw, triangle_ccw, line): This attribute tells the

Tessellator where the output primitives should face. The triangle_cw generates

triangles in a clockwise manner, triangle_ccw generates triangles in a counter-

clockwise manner and line generates lines.

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 9

 outputcontrolpoints(1..32): The amount of times this Hull Shader part will be

called. For example if you are changing basis from a quad to a bi-cubic Bezier

patch, this parameter should be 16. Because you would be receiving four

control-points for the quad and outputting sixteen for the bi-cubic Bezier patch.

For our example we will output the same amount of control points as the input.

 patchconstantfunc(string): The name of the function that represents your Hull

Shader constant function. In our example it is ConstantHS.

Now we will look at the Domain Shader. This shader part should be looked like

a “Vertex Shader after the tessellation”. In this shader you are able to manipulate all the

vertices that were created by the Tessellator. First let’s declare the struct that the

Domain Shader will output:

struct DS_OUTPUT

{

 float4 vPosition : SV_POSITION;

};

As you can see our output to the Pixel Shader will be just the position of the

vertex after the conversion by the View and Projection matrices. The Domain Shader

itself is as follows:

[domain("quad")]

DS_OUTPUT DS(HS_CONSTANT_DATA_OUTPUT input,

 float2 UV : SV_DomainLocation,

 const OutputPatch<HS_OUTPUT, 4> quad)

{

 DS_OUTPUT Output;

 float3 verticalPos1 = lerp(quad[0].vPosition,quad[1].vPosition,UV.y);

 float3 verticalPos2 = lerp(quad[3].vPosition,quad[2].vPosition,UV.y);

 float3 finalPos = lerp(verticalPos1,verticalPos2,UV.x);

 Output.vPosition = mul(float4(finalPos,1), g_mViewProjection);

 return Output;

}

The Domain Shader receives as input the HS_CONSTANT_DATA_OUTPUT structure

that has any per-patch parameter passed by the Hull Shader constant part and we need

to specify the same domain attribute that we chose at the Hull Shader, which in our case

is “quad”. It also receives the patch control points data and a float2 UV coordinate that

is where the Tessellator created the new vertices through the domain in a parametric

space from 0 to 1. Suppose a Domain Shader invocation with UV = (0.5, 0.5), that

means that the Domain Shader is being invoked for a vertex that was created in the

middle of the quad by the Tessellator as shows figure 5:

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 10

 Figure 5

The UV parameter represents the vertices created by the Tessellator, but we

need to put those vertices in world space according to our quad. To do that we have to

make three linear interpolations as figure 6 shows for an UV = (0.5, 0.5) invocation:

 Figure 6

For each vertex generated by the Tessellator those linear interpolation are made

and the vertex is placed at the right place in the world. Now, to complete the pipeline

we need a simple Pixel Shader:

float4 SolidColorPS(DS_OUTPUT Input) : SV_TARGET

{

 return float4(1,1,1, 1);

}

This Pixel Shader just outputs a solid white color. If we needed a Geometry

shader for our technique it would be placed after the Domain Shader in the pipeline, but

we are not going to use it for this example. This is the final result of our sample, our

tessellated quad:

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 11

Figure 7 - Tessellated Quad

That is a simple screenshot but it means a lot. There are 8192 triangles generated

by the hardware in this screenshot. We had to pass just 48 bytes of information from the

CPU to the GPU. Doing this screenshot with a traditional CPU tessellation approach we

would have spent 8192*3*12 = 294,91 Kbytes of bandwidth, which is the most

expensive resource of today’s rendering pipeline.

4.2 Tessellating a triangle

Now let’s follow the same example above but this time we are going to tessellate

a triangle instead of a quad. We are going to pass-through this example quicker than the

previous one because they are very similar in most parts. Please refer to the tutorial

sample source code if you have any doubts. Our triangle will have world coordinates:

 First we need to set the Input Assembler

to accept a patch with three control points (our triangle):

pd3dImmediateContext->IASetPrimitiveTopology(

D3D11_PRIMITIVE_TOPOLOGY::D3D11_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST);

 Now we will code the shader. The constant buffer and Vertex Shader are the

same of the previous example, we just need the tessellation factor, the View*Projection

matrix and a pass-through Vertex Shader:

//--

// Constant Buffers

//--

cbuffer cbPerFrame : register(b0)

{

 matrix g_mViewProjection;

 float g_fTessellationFactor;

};

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 12

//--

// Vertex shader section

//--

struct VS_CONTROL_POINT_INPUT

{

 float3 vPosition : POSITION;

};

struct VS_CONTROL_POINT_OUTPUT

{

 float3 vPosition : POSITION;

};

VS_CONTROL_POINT_OUTPUT VS(VS_CONTROL_POINT_INPUT Input)

{

 VS_CONTROL_POINT_OUTPUT Output;

 Output.vPosition = Input.vPosition;

 return Output;

}

 The Hull Shader changes slightly from the previous sample. Now the

HS_CONSTANT_DATA_OUTPUT structure has three edge tessellation factors (one per triangle

edge) and one inside tessellation factor. Also the patch now has only three control

points instead of four. The domain attribute must be set to "tri" and

outputcontrolpoints attribute must be set to "3":

struct HS_CONSTANT_DATA_OUTPUT

{

 float Edges[3] : SV_TessFactor;

 float Inside : SV_InsideTessFactor;

};

struct HS_OUTPUT

{

 float3 vPosition : POSITION;

};

HS_CONSTANT_DATA_OUTPUT ConstantHS(InputPatch<VS_CONTROL_POINT_OUTPUT, 3> ip,

 uint PatchID : SV_PrimitiveID)

{

 HS_CONSTANT_DATA_OUTPUT Output;

 Output.Edges[0] = Output.Edges[1] = Output.Edges[2] =

g_fTessellationFactor;

 Output.Inside = g_fTessellationFactor;

 return Output;

}

[domain("tri")]

[partitioning("fractional_odd")]

[outputtopology("triangle_cw")]

[outputcontrolpoints(3)]

[patchconstantfunc("ConstantHS")]

HS_OUTPUT HS(InputPatch<VS_CONTROL_POINT_OUTPUT, 3> p,

 uint i : SV_OutputControlPointID,

 uint PatchID : SV_PrimitiveID)

{

 HS_OUTPUT Output;

 Output.vPosition = p[i].vPosition;

 return Output;

}

 In the Domain Shader the vertices created by the Tessellator must be

transformed to world space just like in the previous sample. However there is a

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 13

difference. Now the Tessellator provides the vertices positions as normalized

barycentric coordinates instead of the previous regular UV texture coordinates. The

barycentric coordinates have three variables UVW, each represents the weight of a

control point for the generated vertex coordinate where U+V+W = 1 and W = 1 - U - V.

Figure 8 illustrates an example for U=V=W= 0.333, which means that each triangle

control point has an even amount of contribution for this vertex coordinate. So, it will

produce a vertex at the middle of the triangle.

 Figure 8

 The same interpolation can be used to find texture coordinates or normals inside

the triangle. Also, we have to change the domain attribute to "tri". This is the Domain

Shader snippet:

struct DS_OUTPUT

{

 float4 vPosition : SV_POSITION;

};

[domain("tri")]

DS_OUTPUT DS(HS_CONSTANT_DATA_OUTPUT input,

 float3 UVW : SV_DomainLocation,

 const OutputPatch<HS_OUTPUT, 3> quad)

{

 DS_OUTPUT Output;

 float3 finalPos = UVW.x * quad[0].vPosition + UVW.y * quad[1].vPosition +

UVW.z * quad[2].vPosition;

 Output.vPosition = mul(float4(finalPos,1), g_mViewProjection);

 return Output;

}

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 14

 The Pixel Shader is the same as the previous example:

float4 SolidColorPS(DS_OUTPUT Input) : SV_TARGET

{

 return float4(1, 1, 1, 1);

}

 This is final result of this example, the triangle tessellated by the hardware:

 Figure 9 - Tessellated Triangle

4.3 Creating parametric surfaces in the GPU

 In this example we will use the new pipeline to create parametric surfaces in the

GPU. We are going to pass just one vertex to the GPU. This vertex is just to enable the

pipeline and do a draw call. Also, if the programmer wants to place the surface created

somewhere that's not the origin, a properly world matrix should be passed to the shader.

A quad domain will be tessellated by the Tessellator and in the Domain Shader we will

displace each vertex created according to the parametric equation of the surface desired.

 First of all we need to configure the Input Assembler to accept a patch with one

control point. This control point is just to be able to do a draw call, since you are can't

have a patch with no control points.

 pd3dImmediateContext->IASetPrimitiveTopology(

D3D11_PRIMITIVE_TOPOLOGY::D3D11_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST);

 Now we will code the shader. Once again the Vertex Shader will be just a pass-

through shader and the constant buffer has the tessellation factor and the

View*Projection matrix:

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 15

cbuffer cbPerFrame : register(b0)

{

 matrix g_mViewProjection;

 float g_fTessellationFactor;

};

struct VS_CONTROL_POINT_INPUT

{

 float3 vPosition : POSITION;

};

struct VS_CONTROL_POINT_OUTPUT

{

 float3 vPosition : POSITION;

};

VS_CONTROL_POINT_OUTPUT BezierVS(VS_CONTROL_POINT_INPUT Input)

{

 VS_CONTROL_POINT_OUTPUT Output;

 Output.vPosition = Input.vPosition;

 return Output;

}

 The Hull Shader output structures will be the same as the first example. At the

constant part we will set all edges and inner tessellation factors with the value that is in

the constant buffer. It is nice to change this tessellation factor value with a slider in the

GUI so you are able to see the parametric surface being "built" on the GPU. Here is the

Hull Shader snippet:

struct HS_CONSTANT_DATA_OUTPUT

{

 float Edges[4] : SV_TessFactor;

 float Inside[2] : SV_InsideTessFactor;

};

struct HS_OUTPUT

{

 float3 vPosition : BEZIERPOS;

};

HS_CONSTANT_DATA_OUTPUT ConstantHS(InputPatch<VS_CONTROL_POINT_OUTPUT, 4> ip,

 uint PatchID : SV_PrimitiveID)

{

 HS_CONSTANT_DATA_OUTPUT Output;

 float TessAmount = g_fTessellationFactor;

 Output.Edges[0] = Output.Edges[1] = Output.Edges[2] = Output.Edges[3]=

TessAmount;

 Output.Inside[0] = Output.Inside[1] = TessAmount;

 return Output;

}

[domain("quad")]

[partitioning("fractional_odd")]

[outputtopology("triangle_cw")]

[outputcontrolpoints(4)]

[patchconstantfunc("ConstantHS")]

HS_OUTPUT HS(InputPatch<VS_CONTROL_POINT_OUTPUT, 4> p,

 uint i : SV_OutputControlPointID,

 uint PatchID : SV_PrimitiveID)

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 16

{

 HS_OUTPUT Output;

 Output.vPosition = p[i].vPosition;

 return Output;

}

 Now the Domain Shader. Here you have to choose a parametric surface that you

want to create in the GPU. Let's choose a sphere. The parametric equation of a sphere

is:

 Where is the radius of the sphere and Remember that

the UV coordinate that comes from the Tessellator to the Domain Shader is with the

range . What we are going to do is and and apply the

above equation. Also, let's put a color in the Domain Shader output so the surface will

be colored even in the wireframe mode. The color will simply be the position of the

vertex normalized plus a bias to avoid the black color. That's because our background is

black and we do not want our mesh to be with the same color of the background.

[domain("quad")]

DS_OUTPUT DS(HS_CONSTANT_DATA_OUTPUT input,

 float2 UV : SV_DomainLocation,

 const OutputPatch<HS_OUTPUT, 4> quad)

{

 DS_OUTPUT Output;

 float pi2 = 6.28318530;

 float pi = pi2/2.0f;

 float R = 1.0;

 float fi = pi*UV.x;

 float theta = pi2*UV.y;

 float sinFi,cosFi,sinTheta,cosTheta;

 sincos(fi, sinFi, cosFi);

 sincos(theta, sinTheta,cosTheta);

 float3 spherePosition = float3(R*sinFi*cosTheta, R*sinFi*sinTheta,

R*cosFi);

 Output.vColor = float3(normalize(spherePosition) + 0.4);

 Output.vPosition = mul(float4(spherePosition,1), g_mViewProjection);

 return Output;

}

 The Pixel Shader just outputs the color of the input vertex.

float4 SolidColorPS(DS_OUTPUT Input) : SV_TARGET

{

 return float4(Input.vColor, 1);

}

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 17

 This is the picture of our GPU generated sphere:

 Figure 10 - Sphere

 Others parametric surfaces generated with the same technique as shown on

Figure 11:

 Figure 11 - Parametric Surfaces

Proceedings do SBGames 2010 Tutoriais - Computação

IX SBGames - Florianópolis - SC, 8 a 10 de Novembro de 2010 18

