
Analysis and Implementation of Local Subdivision Algorithms in the GPU
Gustavo Nunes
Rodrigo Braga

Alexandre Valdetaro
Alberto Raposo

Bruno Feijó
Pontifical Catholic University of Rio de Janeiro (PUC-Rio) - Department of Informatics

Abstract

Being able to refine a mesh without comprimising the memory
bandwidth is a powerful tool that might be explored with the new
Tessellator part of the graphics pipeline. In this paper we provide
a detailed implementation of two local subdivision algorithms -
PN-Triangles and Phong Tessellation - using the new Tessellator
pipeline. Moreover, a explicit quality and performance comparison
between both algorithms is made. Our results showed that Phong
Tessellation has a considerable performance gain in comparison
with PN-Triangles when implemented in the current Tessellation
hardware. However, the visual quality of PN-Triangles algorithm is
visually smoother.

Keywords:: Tessellator, Shader Model 5.0, OpenGL4, DirectX11,
Memory Bandwidth, Phong Tessellation, PN-Triangles, Subdivi-
sion Surfaces

Author’s Contact:

{gustavo,rodrigo,alexandre}@xtunt.com
{bfeijo,abraposo}@inf.puc-rio.br

1 Introduction

The subdivision surfaces area is a field that gained attention since
1978 when E. Catmull e J. Clark proposed one of the best works
in the area[Catmull and Clark 1978]. Basicaly, each surface that is
going to be subdivided has an original mesh, called control mesh or
control cage. After the subdivision of the surface the new vertices
are moved according to a series of rules that varies according to the
subdivision surface algorithm. The surface that is generated (called
limit surface) has the same topology of the control mesh.

Although subdivision surfaces algorithms are the standard geomet-
ric representation for off-line rendering, until the beginning of the
90s, they didn’t got much attention from the real-time rendering
industry, specially the games industry. This is due to the fact that
computers at the time didn’t have enough processing power and the
proposed algorithms have a high computational cost. However, in
the end of the 90s, with the launch of new 3D video cards, con-
sumers started to have their PC capabilities increased. With this
increasing capability it also came an increased contrast among the
setups of consumer machines. A game in powerful machines could
have high quality textures and models with a good amount of poly-
gons. But in machines that were less capable the number of poly-
gons should be low. The possibility to create a low-poly model,
animate it and at the end of the construction having an animated
model with any level-of-detail "(LOD)" would be a great help and
relieve for the artists and the assets pipeline. Subdivision surfaces
algorithms could offer that.

Despite of the modeling softwares allowing the use of subdivision
surfaces algorithms it was not practical to insert in a game a sin-
gle model with many LOD levels in order to attend a huge part of
the consumers PCs setups. The media size were limited and also
the hard drive space of the users. The ideal solution would be the
generation of these LOD levels at execution time. Also, the 3D
video cards started to have a great processing capacity and they
were relieving the use of the CPU for other tasks. Nevertheless, the
3D video cards had their architecture towards parallelism, in other
words, all the vertices manipulation is done in parallel. This factor
headed against the existent subdivision surfaces algorithms, all of

Figure 1: Screenshot of the game MAFIA II ([2KGames 2010])

them were based in the adjacency information of the vertices. In
2001, Vlachos[Vlachos et al. 2001] proposed a purely local sub-
division surface algorithm called PN-Triangles. The idea was to
implement this algorithm in the video card hardware and the game
producers would be able to pass a low-poly model that would be
refined by the card. This solution was implemented, but, it was
specific of a single graphics card vendor and it wasn’t much used
because the industry was focused in attend the majority of users and
video cards.

In 2008, Boubekeur[Boubekeur and Alexa 2008] proposed another
subdivision surface algorithm, named Phong Tessellation, it is also
a good candidate for hadware implementation because it is also
purely local.

Despite the major advances in the real-time rendering field, the
problem with low-poly models still exists until today. An exam-
ple of this is the game MAFIA released in August,2010. Although
per-pixel lightning does a good job hiding the low polygon model
at the parts inside the models, at the silhouette the user is able to
see sharp edges(Figure 1). One of the goals of the new Tessellator
pipeline[Drone et al. 2010] and the new graphics APIs(DirectX11
and OpenGL4) is the solution of this problem.

In this work, we propose to implement both algorithms in the GPU
and analyse their quality and performance. Both algorithms are
purely local, interpolatives and they need few hardware instructions
to evaluate the surface, thus they are appropriate for the implemen-
tation in the new Tessellator pipeline and also are strong candidates
to become an industry standard in a near future. To the best of our
knowledge, there is not a previous work that explicitly compares the
GPU implementation, performance and quality of both algorithms
(PN-Triangles and Phong Tessellation).

2 Related Work

Many techniques were developed for generating subdvision sur-
faces, but many are still inefficient to be implemented in 3D game
engines. This is due to the fact that the majority of the techniques
requires information from the neighborhood of a vertex to apply
the subdivision. Implementing this kind of algorithm in hardware
requires a bigger effort, it can’t be done in a single pass and the
evaluation of the surface is very costly. Boubekeur[Boubekeur et al.
2005] extended the PN-Triangles technique placing three scalar val-
ues in each triangle vertex, in that way it is able to create a pro-
cedural displacement map that enhances the detail quality of the

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

Figure 2: The new graphics pipeline

mesh allowing to build creases in the surface. However, this method
adds an overhead to the artistic pipeline, because the designer has
to setup three aditional values for each vertex in the mesh. With
the lack of feedback from the modeling softwares to support this
technique, it was not largely used.

The solutions that use adjacency information are more diverse.
Catmull and Clark[Catmull and Clark 1978] use a uniform cu-
bic B-Spline in their subdivision method. Doo and Sabin[Doo
1978; Doo and Sabin 1978] based their method in bi-quadratic B-
Splines. Loop[Loop 1987] proposes an approximative algorithm
that is based on triangle meshes and generates limit surfaces with
C2 continuity everywhere except in extraordinary vertices which
has C1 continuity. Kobbelt[Kobbelt 2000] proposes an idea that
offers a natural adaptive refinement if needed. Zorin et al.[Zorin
et al. 1996] proposed an interpolative method based on triangular
meshes. Ni et al.[Yeo et al. 2009] presented a method that im-
itates the shape of Catmull-Clark surfaces using bi-cubic Splines
and a new class of patches, called c-patches. Boubekeur and
Schlick[Boubekeur and Schlick 2007] avoids the recursion in their
method, that is fast, but, geometrically it only guarantees surfaces
with C0 continuity. More recently, Loop and Schaefer[Loop and
Schaefer 2008] used quartic surfaces with separate normal fields
to approximate Catmull-Clark surfaces. This scheme proposed by
Loop and Schaefer works only with quads. Later, Loop et al.[Loop
et al. 2009] proposed a scheme that uses gregorian patches to ap-
proximate subdivision surfaces with triangles.

All those exposed techniques has a basic principle: each polygon is
replaced by a polynomial patch that is evaluated later. The only ex-
ception is Phong Tessellation that doesn’t creates a patch explicitly.

3 The new graphics pipeline

This section will present a quick review of the new graphics
pipeline stages (Hull Shader, Tessellator and Domain Shader), for
detailed information please refer to [Valdetaro et al. 2010]. Figure
2 represents all the available stages in the new video cards.

3.1 Hull Shader

After the Vertex Shader, the Hull Shader is invoked for each prim-
itive transferred. In the Hull Shader it must be declared how many
control points will be output by this stage, the Hull Shader will be
invoked based in the amount of control points declared. This serves
basically for a base change. For example, the Input Assembler may
receive 4 control points per primitive and the Hull Shader may de-
clare an output of 16 control points per primitive in order to do a
basis change from a quad to a Bézier Bi-Cubic. Another task of the
Hull Shader is to compute and output to the Tessellator the tessella-
tion factors for each edge and also for the interior of the primitive.
These factors indicates the amount of subdivision that the Tessella-

tor must subdivide each primitive. It must also be declared in the
Hull Shader which subdivision domain that the Tessellator will use
(quads, triangles or lines).

3.2 Tessellator

The Tessellator is not a programmable part of the pipeline, it is
only configurable. Its duty is to generate vertices according to the
tessellation factors transferred by the Hull Shader. According to
the selected domain(triangles, quads or lines) it creates vertices and
passes its normalized parametric coordinates UV/UVW to the Do-
main Shader. With those coordinates the Domain Shader knows
where the vertices were created and it may move them to where its
necessary.

The tessellation factors for the edges and for the interior of the do-
main varies in the range [1..64]. The Tessellator supports integers
and fractional tesselating methods. The integer method, as the name
suggests, creates vertices only with integers values in the specified
range. This kind method may result in poppings on the meshes, in
other words, the meshes may give a clear impression that they are
being modified in execution time. To solve this issue, the Tessel-
lator also provides the fractional method, in this method the ver-
tices are created in a continuos way with a smooth visual transition
(see geomorphing [Hoppe 1996]). In this way the popping effect is
greatly reduced.

Another important characteristic of the Tessellator is the possibility
to attribute distinct values for each edge and for the interior of the
domain. This guarantees the flexibility of two neighbor primitives
having differents tessellation factors without having discontinuities
in the mesh.

3.3 Domain Shader

In this stage occurs the evaluation of the tesselated domain. The
Domian Shader may be seen as a Vertex Shader after the tessella-
tion. Each invocation of this stage corresponds to a vertex generated
by the Tessellator. The Tesselator passes the coordinates UV/UVW
in normalized space in the interval [0..1] and it is Domain Shader
task to positionate the generated vertices in world space. It’s good
to remember that what the Tessellator does is only subdivide a do-
main for each patch that is pushed into the pipeline, it is the pro-
grammer task to use the coordinates UV/UVW and to positionate
the vertices based on the control cage of a model for example.

If the Geometry Shader is not enabled, it is Domain Shader task to
put the vertices in screen space for the Pixel Shader.

4 Algorithms Review

This section will present a brief review of both algorithms; for de-
tailed explanation please refer do the original papers([Vlachos et al.
2001; Boubekeur and Alexa 2008]).

4.1 PN-Triangles

The main characteristic of the algorithm is the construction of a
cubic patch using the information of the vertices of a triangle. The
patch b is defined according to the equation 1.

b : <2 → <3, for w = 1− u− v; u, v, w ≥ 0

b(u, v) =
∑

i+j+k=3

bijk
3!

i!j!k!
uivjwk,

= b300w
3 + b030u

3 + b003v
3

+b2103w
2u+ b1203wu

2 + b2013w
2v

+b0213u
2v + b1023wv

2 + b0123uv
2

+b1116wuv. (1)

The normals may be defined in two different ways: a simple lin-
ear interpolation or a quadratic function n evaluated according to
equation 2.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

n : <2 → <3, for w = 1− u− v; u, v, w ≥ 0

n(u, v) =
∑

i+j+k=2

nijku
ivjwk,

= n200w
2 + n020u

2 + n002v
2

+n110wu+ n011uv + n101wv. (2)

Figures 3 and 4 shows the control points bijk and nijk related to
each patch.

Figure 3: Control points of the geometry patch[Vlachos et al.
2001]

Figure 4: Control points of the normal patch([Vlachos et al. 2001])

Given the positions P1, P2, P3 ∈ <3 and the normals
N1, N2, N3 ∈ <3 of a triangle, the control points bijk is made
as follows:

1. Put the coefficients bijk at the intermediary positions (iP1 +
jP2 + kP3)/3.

2. Let the vertices of the triangle in its corresponding control
point(i.e, b300 = P1, b030 = P2, b003 = P3)).

3. For each triangle corner project the two coefficients closer to
that corner in the tangent plane defined by the normal of the
corner.

4. Move the coefficient of the center to the average of the points
b012, b102, b120, b210, b201, b021 and continue its displacement
in the same direction for 1/2 of the lenght already displaced.

The geometry normals of the PN-Triangles generally don’t vary
continously from one triangle to another. In the algorithm it is sug-
gested a linear interpolation or a quadratic variation. The problem
of the linear interpolation is that it ignores inflections as Figure 5
shows.

To capture the inflexions a coefficient in the middle of each edge
is calculated to evaluate the surface n. The average of the normals
of each vertex of an edge is calculated and reflected in the plane
perpendicular to the edge.

Figure 5: Linear interpolation of normals(up) and quadratic vari-
ation(bottom)[Vlachos et al. 2001]

4.2 Phong Tessellation

The Phong Tessellation algorithm was thought in a way to com-
plement the Phong Shading. Computing the Phong Shading algo-
rithm per pixel is not costly and it does a good job shading the
interior of a mesh, however, it is clear to notice the low amount of
polygons when one looks to the silhouette of a low-poly model. In
terms of ALU operations the Phong Tessellation algorithm is very
lightweight.

A linear tessellation with baricentric interpolation may be defined
by the equation 3.

p : <2 → <3, for w = 1− u− v, u, v, w ∈ [0, 1]

p(u, v) = (u, v, w)(pi, pj , pk)
T (3)

The linear interpolation of the normals that occurs between the Do-
main Shader and the Pixel Shader is realized in the same way. The
result just needs to be normalized in the Pixel Shader, this process
is largely used in the Phong Shading. Equation 4 represents this
process.

n′ : <2 → <3, para w = 1− u− v, u, v, w ∈ [0, 1]

n′(u, v) = (u, v, w)(ni, nj , nk)
T ,

n(u, v) = n′/
∥∥n′∥∥ (4)

Around each vertex the tangent plane defined by the normal of the
vertex points indicates how the geometry should behave locally.
The algorithm projects a vertex viin the tangent plane definied by
its normal ni and does a baricentric interpolation with the informa-
tion of the other two vertices of the triangle to define the geometry
around the neighborhood of vi. The geometry related to the other
two vertices of the triangle vj and vk is defined in the same way.

The evaluation of the points generated for each triangle may be
simplified by the following process:

1. Do the tessellation linearly

2. Project each tessellated vertex orthogonally in the three tan-
gent plans defined by the normals of the triangle

3. Do the baricentric interpolation of the projected points. This
is the final position of the vertex.

Figure 6 show the process described above. The algorithm has few
ALU operations, it is necessary only three projection and two linear
interpolations to achieve the final position of a vertex.

Let πi(q) = q− ((q− pi)
Tni)ni be the orthogonal projection of

q in the plane defined by pi e ni. Then Phong Tessellation may be
defined as:

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

Figure 6: Projections and interpolations of Phong Tessella-
tion[Boubekeur and Alexa 2008]

p∗(u, v) = (u, v, w)


πi(p(u, v))

πj(p(u, v))

πk(p(u, v))

 (5)

5 GPU Implementation

For GPU implementation, both algorithms don’t need any pre-
processing step or adaptation by the artists. Thus, any mesh that
was created in the past is able to be used without additional work.
The only requirement is that it must be a triangle mesh. For quad
meshes PN-Triangles analogous please refer to [Peters 2008]. The
Phong Tessellation may also be easily adapted for quad meshes.

5.1 PN-Triangles

The PN-Triangles implementation fits well in the new Tessellator
pipeline. Basically we have to calculate the control points of the
geometry and normal fields in the Hull Shader and evaluate the sur-
face in the Domain Shader.

The Vertex Shader just repasses the information to the Hull Shader,
it will receive the data for each vertex(Position, Normal and Tex-
Coords) and will send to the Hull Shader. Due to space purpose the
Vertex Shader code will be omitted in this paper. Of course that, if
there are any animation to be made to the mesh it should be done
by the Vertex Shader.

The Hull Shader will receive the Vertex Shader output and it will be
executed once per primitive. The patch coefficients for the geome-
try and the normals should be calculated according to proceedings
explained in the previous section. Also, the Hull Shader must out-
put for the Tessellator the tessellation factors for each edge and for
the interior of the domain.

Please refer to code listing 1 for the entire Hull Shader code.

With the calculated control points and the new vertices generated by
the Tessellator, the Domain Shader evaluates the surface according
to equations 1 and 2. Also, as there is no use of the Geometry
Shader, the Domain Shader must output the vertices to screen space
for rasterization. The texture coordinates are linearly interpolated.
Please refer to code listing 2 for the entire Domain Shader code.

The Pixel Shader does a basic per-pixel lightning Phong Shading
and, for this paper, it will be omitted.

5.2 Phong Tessellation

Just like PN-Triangles, the Phong Tessellation algorithm doesn’t
require any changes in the assets pipeline to use it. Models that
weren’t done with Phong Tessellation in mind may be used with-
out problems. However, in case that the subdivision doesn’t visu-
ally satisfy the author suggests a control factor α per vertex of the
model, in such case the artists would had to do a big re-work and the

algorithm would be less practical. The objective here is to analyse
the raw algorithm, without any need of artistic intervention.

Phong Tessellation also fits well in the new Tessellator pipeline.
Basically all the work will be done by the Domain Shader. The
Vertex Shader, just like PN-Triangles, will just pass forward the
data given by the Input Assembler. As there is no explicitly patch
created by the algorithm, thus the Hull Shader just needs to output
the Tessellation factor to the Tessellator. Please refer to code listing
3 for the entire Hull Shader code.

In The Domain Shader we will first create an auxiliary function that
defines a orthogonal projection in a plan. The function receives the
normal of the plane to project, a point in the plane, the point to
be projected and it returns the point projected. Then we must fol-
low the steps described in the previou section. First a baricentric
linear interpolation in the triangle plane, three orthogonal projec-
tions using the auxiliar function described above and then another
linear interpolation based in the projections to find the final vertex
position. The normals and the texture coordinates follows a linear
interpolation also. Please refer to code listing 4 for the auxiliary
projection function and the listing 5 for the entire Domain Shader.

6 Results

In this section we are going to analyse the algorithms both in terms
of image quality and performance.

6.1 Quality

All the figures in this section were taken without any anti-aliasing
correction or image post-effect. Also, a per-pixel lightning pixel
shader with Phong Shading was used to light the models presented.
Both algorithms were compared with the same tessellation factors
for the edges and the interior of a primitive. However, we used
both quadratic patch and linear interpolation for normals in the PN-
Triangles algorithm. For the Phong Tessellation algorithm we did a
linear interpolation of the normals.

Although both algorithms have only guaranteed C0 continuity, Fig-
ure 9 - using PN-triangles - shows a much more smooth continuity
when compared do Figure 8 - using Phong Tessellation and also to
the original mesh(Figure 7).

Figures 10 and 11 shows some difference between the quality of
shadows generated by the lightning. The red circles shows more
sharp shadows in the figure with linear interpolation of the normals
and in the case of quadratic normals a more smooth shadow may be
noticed. The green circles shows a characteristic case of a inflection
point of the triangles normals. The cloth in the green circle seems
to be slightly wrinkled in the quadratic normals case. However, in
the linear interpolation case, this wrinkle is not taken into account.

Figures 14 and 13 shows clearly the better smooth of the PN-
Triangles algorithm when compared to the Phong Tessellation and
to the original mesh(Figure 12). Because this tiger model doesn’t
have much curvature, the linear interpolation didn’t have any major
loss when compared to the quadratic interpolation of the normals.
A really minor deviation might be seen in the red circles of Figures
15 and 16.

Once again, looking at Figures 17, 18 and 19 we may see that the
triangles created by Phong Tessellation present a less smooth con-
tinuity when compared to PN-Triangles algorithm. However, due
to the fact that this is an organic model, the deformation made by
Phong Tessellation provided a visually good result.

6.2 Performance

The PC setup that held the tests was an Intel Core2Quad Q6600
with 4GB of RAM and a RadeonHD 8450 video card. We tested a
scene with many models of the same type(Tiger or Person) without
the utilization of geometry instancing. We avoided to place a single
model with a high tesselation factor to prevent an overload in the
rastezirer due to the creation of micropolygons[Fatahalian 2010].
The lightning was also turned off to avoid a pixel shader overload.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

Person - Number of tri-
angles (million)

Phong Tes-
sellation
(FPS)

PN-
Triangles
(FPS)

0.103 82 54
0.616 65 43
1.33 51 33
2.46 31 20
3.80 22 14
5.54 16 10
7.49 12 8
9.85 9 6
12.40 8 5
15.40 7 4
18.60 6 3

Table 1: FPS of the Person mesh using both algorithms

Person - Number of tri-
angles (million)

Gain (%) Gain (FPS)

0.103 51.85% 28
0.616 51.16% 22
1.33 54.55% 18
2.46 55.00% 11
3.80 57.14% 8
5.54 60.00% 6
7.49 50.00% 4
9.85 50.00% 3
12.40 60.00% 3
15.40 75.00% 3
18.60 100.00% 3

Table 2: Percentage and Absolute gain of Phong Tessellation under
PN-Triangles for person mesh

The objective was to let the ALU operations of both algorithms be
the main bottleneck.

Tables 1 and 3 shows the FPS and the amount of triangles for the
Person and the Tiger models respectively.

Figures 20 and 21 shows the results expressed in tables 1 and 3.

Tables 4 and 2 shows the percentual and absolute gain (in FPS) of
the Phong Tessellation algorithm against the PN-Triangles.

7 Conclusion and Future Works

This paper presented a detailed GPU implementation of two prac-
tical algorithms for Real-Time model refinement. The performance

Tiger - Number of tri-
angles (million)

Phong Tes-
sellation
(FPS)

PN-
Triangles
(FPS)

0.036 135 107
0.47 101 74
0.87 72 50
1.30 53 37
2.00 42 28
2.60 32 22
3.50 26 17
4.40 22 14
5.40 18 11
6.50 15 9
7.80 12 8
9.1 11 7
11.0 9 6
12.0 8 5
14.0 7 4
16.0 6 4

Table 3: FPS of the Tiger mesh using both algorithms

Tiger - Number of tri-
angles (million)

Gain (%) Gain (FPS)

0.036 26.17% 28
0.47 36.49% 27
0.87 44.00% 22
1.30 43.24% 16
2.00 50.00% 14
2.60 45.45% 10
3.50 52.94% 9
4.40 57.14% 8
5.40 63.64% 7
6.50 66.67% 6
7.80 50.00% 4
9.1 57.14% 4
11.0 50.00% 3
12.0 60.00% 3
14.0 75.00% 3
16.0 50.00% 2

Table 4: Percentage and Absolute gain of Phong Tessellation under
PN-Triangles for tiger mesh

and quality analysis of both algorithms on modern GPUs poses a
powerful tool for developers to choose which algorithm to use in a
specific situation.

Based on the Figures and the results presented in the previous sec-
tion, it is noticed that the Phong Tessellation has a considerable per-
formance gain when compared against the PN-Triangles algorithm
(40% gain in average). However, Figures 8 and 9 shows a much
better quality of the PN-Triangles method. Moreover, in some cases
(Figure 11) the quadratic interpolation showed better results.

For games or very dynamic applications where the user won’t be
able to pay attention to minor details the Phong Tessellation algo-
rithm might be a great option, specially for silhouette refinement,
where a minor increase of the tessellation factor at the silhouette
would solve cases like Figure 1. But for applications or games that
require a better visual quality the PN-Triangles algorithm should be
considered because of its high subdivision quality. One might even
consider an option of using Phong Tessellation for a lower end game
configuration and PN-Triangles for a higher game setting.

Acknowledgment

The authors would like to thank CNPq, CAPES, FAPERJ, Tecgraf,
ICAD/VisionLab and Petrobras for the financing support.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

Figure 7: Original model without any subdivision

Figure 8: Model using the Phong Tessellation algorithm

Figure 9: Model using the PN-Triangles algorithm

Figure 10: PN-Triangles with linearly interpolated normals

Figure 11: PN-Triangles with quadratic normals interpolation

Figure 12: Original model without any subdivision

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

Figure 20: Phong Tessellation vs PN-Triangles - Person mesh

Figure 21: Phong Tessellation vs PN-Triangles - Tiger mesh

Figure 13: Model using the Phong Tessellation algorithm Figure 14: Model using the PN-Triangles algorithm

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

Figure 15: PN-Triangles with linearly interpolated normals

Figure 16: PN-Triangles with quadratic normals interpolation

Figure 17: Original model without any subdivision

Figure 18: Model using the Phong Tessellation algorithm

Figure 19: Model using the PN-Triangles algorithm

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

Listing 1: PN-Triangles Hull Shader
s t r u c t HS_Input
{

f l o a t 3 P o s i t i o n : POSITION ;
f l o a t 3 Normal : NORMAL;
f l o a t 2 TexCoord : TEXCOORD;

} ;

s t r u c t HS_Cons tan tOutpu t
{

/ / T e s s e l l a t i o n f a c t o r s
f l o a t f T e s s F a c t o r [3] : SV_TessFac to r ;
f l o a t f I n s i d e T e s s F a c t o r : S V _ I n s i d e T e s s F a c t o r ;

/ / Geometry c o n t r o l p o i n t s
f l o a t 3 B210 : POSITION3 ;
f l o a t 3 B120 : POSITION4 ;
f l o a t 3 B021 : POSITION5 ;
f l o a t 3 B012 : POSITION6 ;
f l o a t 3 B102 : POSITION7 ;
f l o a t 3 B201 : POSITION8 ;
f l o a t 3 B111 : CENTER;

/ / Normal c o n t r o l p o i n t s
f l o a t 3 N110 : NORMAL3;
f l o a t 3 N011 : NORMAL4;
f l o a t 3 N101 : NORMAL5;

} ;

HS_Cons tan tOutpu t HS_Constant (I n p u t P a t c h <HS_Input ,3 > i n p u t)
{

HS_Cons tan tOutpu t o u t p u t = (HS_Cons tan tOutpu t) 0 ;

/ / Same T e s s f a c t o r
o u t p u t . f T e s s F a c t o r [0] = o u t p u t . f T e s s F a c t o r [1] =
o u t p u t . f T e s s F a c t o r [2] = o u t p u t . f I n s i d e T e s s F a c t o r =
g _ c p u T e s s F a c t o r ;

/ / C o n t r o l p o i n t s o f p o s i t i o n s and normals
/ / o f t h e c o r n e r s are t h e same o f t h e t r i a n g l e

f l o a t 3 B003 = i n p u t [0] . P o s i t i o n ;
f l o a t 3 B030 = i n p u t [1] . P o s i t i o n ;
f l o a t 3 B300 = i n p u t [2] . P o s i t i o n ;
f l o a t 3 N002 = i n p u t [0] . Normal ;
f l o a t 3 N020 = i n p u t [1] . Normal ;
f l o a t 3 N200 = i n p u t [2] . Normal ;

/ / C a l c u l a t e t h e c o n t r o l p o i n t s f o r t h e geome t ry
o u t p u t . B210 = ((2 . 0 f∗B003)+ B030−

(d o t ((B030−B003) , N002)∗N002)) / 3 . 0 f ;
o u t p u t . B120 = ((2 . 0 f∗B030)+ B003−

(d o t ((B003−B030) , N020)∗N020)) / 3 . 0 f ;
o u t p u t . B021 = ((2 . 0 f∗B030)+ B300−

(d o t (B300−B030) , N020)∗N020)) / 3 . 0 f ;
o u t p u t . B012 = ((2 . 0 f∗B300)+ B030−

(d o t ((B030−B300) , N200)∗N200)) / 3 . 0 f ;
o u t p u t . B102 = ((2 . 0 f∗B300)+ B003−

(d o t ((B003−B300) , N200)∗N200)) / 3 . 0 f ;
o u t p u t . B201 = ((2 . 0 f∗B003)+ B300−

(d o t ((B300−B003) , N002)∗N002)) / 3 . 0 f ;
/ / C e n t r a l c o n t r o l p o i n t
f l o a t 3 E = (o u t p u t . B210+ o u t p u t . B120+ o u t p u t . B021

+ o u t p u t . B012+ o u t p u t . B102
+ o u t p u t . B201) / 6 . 0 f ;

f l o a t 3 V = (B003+B030+B300) / 3 . 0 f ;
o u t p u t . B111 = E + ((E−V) / 2 . 0 f) ;

/ / C o n t r o l p o i n t s f o r t h e normal f i e l d
f l o a t V12 = 2 . 0 f∗d o t (B030−B003 , N002+N020)

/ d o t (B030−B003 , B030−B003) ;
o u t p u t . N110 = n o r m a l i z e (N002+N020−V12∗

(B030−B003)) ;
f l o a t V23 = 2 . 0 f∗d o t (B300−B030 , N020+N200)

/ d o t (B300−B030 , B300−B030) ;
o u t p u t . N011 = n o r m a l i z e (N020+N200−V23∗

(B300−B030)) ;
f l o a t V31 = 2 . 0 f∗d o t (B003−B300 , N200+N002)

/ d o t (B003−B300 , B003−B300) ;
o u t p u t . N101 = n o r m a l i z e (N200+N002−V31∗

(B003−B300)) ;

re turn o u t p u t ;
}

Listing 2: PN-Triangles Domain Shader

s t r u c t DS_Output
{

f l o a t 4 P o s i t i o n : S V _ P o s i t i o n ;
f l o a t 2 TexCoord : TEXCOORD0;

f l o a t 3 Normal : NORMAL0;
} ;

[domain (" t r i ")]
DS_Output DS(HS_Cons tan tOutpu t HSC,
c o n s t OutputPatch <HS_Output , 3> i n p u t ,
f l o a t 3 UVW : SV_DomainLocation)
{

DS_Output o u t p u t = (DS_Output) 0 ;

/ / E v a l u a t e s t h e p o s i t i o n based on c o n t r o l p o i n t s
/ / and on b a r i c e n t r i c p a r a m e t e r s

f l o a t 3 P o s i t i o n = i n p u t [0] . P o s i t i o n ∗
UVW. z∗UVW. z∗UVW. z+

i n p u t [1] . P o s i t i o n ∗ UVW. x ∗ UVW. x ∗ UVW. x +
i n p u t [2] . P o s i t i o n ∗ UVW. y ∗ UVW. y ∗ UVW. y +
HSC . B210 ∗ 3 ∗ UVW. z ∗ UVW. z ∗ UVW. x +
HSC . B120 ∗ UVW. z ∗ 3 ∗ UVW. x ∗ UVW. x +
HSC . B201 ∗ 3 ∗ UVW. z ∗ UVW. z ∗ 3 ∗ UVW. y +
HSC . B021 ∗ 3 ∗ UVW. x ∗ UVW. x ∗ UVW. y +
HSC . B102 ∗ UVW. z ∗ 3 ∗ UVW. y ∗ UVW. y +
HSC . B012 ∗ UVW. x ∗ 3 ∗ UVW. y ∗ UVW. y +
HSC . B111 ∗ 6 . 0 f ∗ UVW. y ∗ UVW. x ∗ UVW. z ;

/ / E v a l u a t e Normals
f l o a t 3 Normal =

i n p u t [0] . Normal ∗ UVW. z ∗ UVW. z +
i n p u t [1] . Normal ∗ UVW. x ∗ UVW. x +
i n p u t [2] . Normal ∗ UVW. y ∗ UVW. y +
HSC . N110 ∗ UVW. z ∗ UVW. x +
HSC . N011 ∗ UVW. x ∗ UVW. y +
HSC . N101 ∗ UVW. z ∗ UVW. y ;

/ / N o r m a l i z e s
o u t p u t . Normal = n o r m a l i z e (Normal) ;

/ / L i n e a r l y i n t e r p o l a t e t e x c o o r d s
o u t p u t . TexCoord = i n p u t [0] . TexCoord ∗ UVW. z

+ i n p u t [1] . TexCoord ∗ UVW. x
+ i n p u t [2] . TexCoord ∗ UVW. y ;

/ / Send t o s c r e e n space
o u t p u t . P o s i t i o n = mul (f l o a t 4 (P o s i t i o n . xyz , 1 . 0) ,

g _ V i e w P r o j e c t i o n) ;

re turn o u t p u t ;
}

Listing 3: Phong Tessellation Hull Shader

HS_CONSTANT_DATA_OUTPUT B e z i e r C o n s t a n t H S
(I n p u t P a t c h <VS_CONTROL_POINT_OUTPUT ,
INPUT_PATCH_SIZE> ip ,
u i n t Pa tchID : SV_Pr imi t i ve ID)
{

HS_CONSTANT_DATA_OUTPUT Outpu t ;

Outpu t . Edges [0] = Outpu t . Edges [1] =
Outpu t . Edges [2] = Outpu t . I n s i d e =
g _ f T e s s e l l a t i o n F a c t o r ;

re turn Outpu t ;
}

Listing 4: Auxiliary function for orthogonal projection

f l o a t 3 p r o j I n t o P l a n e (f l o a t 3 planeNormal ,
f l o a t 3 p l a n e P o i n t ,
f l o a t 3 p o i n t T o P r o j e c t)
{

f l o a t 3 r e s ;
r e s = p o i n t T o P r o j e c t −
d o t (p o i n t T o P r o j e c t−p l a n e P o i n t , p laneNormal)∗ planeNormal ;

re turn r e s ;
}

Listing 5: Phong Tessellation Domain Shader

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 9

s t r u c t DS_OUTPUT
{

f l o a t 4 v P o s i t i o n : SV_POSITION ;
f l o a t 3 vNormal : NORMAL0;
f l o a t 2 vTexCoord : TEXCOORD0;

} ;

[domain (" t r i ")]
DS_OUTPUT B e z i e r (HS_CONSTANT_DATA_OUTPUT i n p u t ,

f l o a t 3 UV : SV_DomainLocation ,
c o n s t OutputPatch <HS_OUTPUT,
OUTPUT_PATCH_SIZE> p a t c h)

{
DS_OUTPUT Outpu t ;

/ / L i n e a r i n t e r p o l a t i o n o f t h e t r i a n g l e
f l o a t 3 p = UV. x∗p a t c h [0] . v P o s i t i o n +

UV. y∗p a t c h [1] . v P o s i t i o n +
UV. z∗p a t c h [2] . v P o s i t i o n ;

/ / Three o r t h o g o n a l p r o j e c t i o n i n t h e t a n g e n t p l a n s
f l o a t 3 pProjU =
p r o j I n t o P l a n e (p a t c h [0] . vNormal , p a t c h [0] . v P o s i t i o n , p) ;
f l o a t 3 pProjV =
p r o j I n t o P l a n e (p a t c h [1] . vNormal , p a t c h [1] . v P o s i t i o n , p) ;
f l o a t 3 pProjW =
p r o j I n t o P l a n e (p a t c h [2] . vNormal , p a t c h [2] . v P o s i t i o n , p) ;

/ / Ano ther i n t e r p o l a t i o n t o f i n d t h e f i n a l p o s i t i o n
f l o a t 3 pNovo = UV. x∗pProjU + UV. y∗pProjV + UV. z∗pProjW ;

/ / S c r ee n Space o u t p u t f o r t h e r a s t e r i z e r
Outpu t . v P o s i t i o n =mul (f l o a t 4 (pNovo , 1) , g_mViewPro jec t ion) ;
/ / L i n e a r l y i n t e r p o l a r e d Normals
Outpu t . vNormal = n o r m a l i z e (UV. x∗p a t c h [0] . vNormal +

UV. y∗p a t c h [1] . vNormal +
UV. z∗p a t c h [2] . vNormal) ;

/ / L i n e a r l y i n t e r p o l a t e d t e x t u r e c o o r d i n a t e s
Outpu t . vTexCoord = UV. x∗p a t c h [0] . vTexCoord +
UV. y∗p a t c h [1] . vTexCoord +
UV. z∗p a t c h [2] . vTexCoord ;

re turn Outpu t ;
}

References

2KGAMES, 2010. http://www.mafia2game.com/.

BOUBEKEUR, T., AND ALEXA, M. 2008. Phong tessellation.
ACM Trans. Graphics (Proc. SIGGRAPH Asia) 27, 139–143.

BOUBEKEUR, T., AND SCHLICK, C. 2007. Qas: Real-time
quadratic approximation of subdivision surfaces. Computer
Graphics and Applications, Pacific Conference on 1, 453–456.

BOUBEKEUR, T., REUTER, P., AND SCHLICK, C. 2005. Scalar
tagged pn triangles. In EUROGRAPHICS 2005 (Short Papers),
Eurographics.

CATMULL, E., AND CLARK, J. 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes. Computer Aided
Design 10, 350–355.

DOO, D., AND SABIN, M. 1978. Behaviour of recursive division
surfaces near extraordinary points. Computer Aided Design 10,
6, 356–360.

DOO, D. 1978. A subdivision algorithm for smoothing down irreg-
ularly shaped polyhedrons. In Int’l Conf. Ineractive Techniques
in Computer Aided Design, IEEE Computer Soc., Bologna, Italy,
157–165.

DRONE, S., LEE, M., AND ONEPPO, M. 2010. Direct3d 11 tes-
sellation. In Microsoft Gamefest 2008.

FATAHALIAN, K. 2010. Evolving the Direct3D Pipeline for Real-
time Micropolygon Rendering. SIGGRAPH 2010 Course. In
ACM SIGGRAPH 2010.

HOPPE, H. 1996. Progressive Meshes. In SIGGRAPH96, ACM
Press/ACM SIGGRAPH, New York, H. Rushmeier, Ed., 99–
108.

KOBBELT, L. 2000. sqrt(3)-subdivision. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’00, 103–112.

LOOP, C., AND SCHAEFER, S. 2008. Approximating catmull-clark
subdivision surfaces with bicubic patches. ACM Trans. Graph.
27 (March), 8:1–8:11.

LOOP, C., SCHAEFER, S., NI, T., AND CASTAÑO, I. 2009. Ap-
proximating subdivision surfaces with gregory patches for hard-
ware tessellation. ACM Trans. Graph. 28 (December), 151:1–
151:9.

LOOP, C. 1987. Smooth subdivision surfaces based on triangles.
In PhD Thesis - University of Utah.

PETERS, J. 2008. PN-Quads. Technical Report 2008-421. In Dept
CISE, University of Florida.

VALDETARO, A., NUNES, G., RAPOSO, A., FEIJO, B., AND
DE TOLEDO, R. 2010. Understanding shader model 5.0 with
directx11. IX Brazilian symposium on computer games and dig-
ital entertainment.

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. L.
2001. Curved pn triangles. In SI3D ’01: Proceedings of the
2001 symposium on Interactive 3D graphics, ACM Press, New
York, NY, USA, 159–166.

YEO, Y. I., NI, T., MYLES, A., GOEL, V., , AND PETERS, J.
2009. Parallel smoothing of quad meshes. The Visual Computer
25, 8 (Aug), 757–769.

ZORIN, D., SCHRODER, P., AND SWELDENS, W. 1996. Interpo-
lating subdivision for meshes with arbitrary topology. In SIG-
GRAPH96, 189–192.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 10

