SBC - Proceedings of SBGames 2011

Tutorials Track - Computing

Introduction to Multithreaded rendering and the usage of Deferred
Contexts in DirectX 11

Rodrigo B. Pinheiro, Alexandre Valdetaro, Gustavo B. Nunes, Bruno Feijo, Alberto Raposo
Pontificia Universidade Catolica - PUC-Rio

Abstract

In this tutorial we intend to cover one of the innovations brought
by DirectX11. Previous versions of DirectX didn‘t support native
multithreading and most part of the API was not thread-safe. The
user needed to add mutexes in the code to avoid race conditions in
order to support a multi-threaded renderer. Moreover, the lack of
native support wouldn ‘t properly manage the swap of render states
by multiple threads. This kind of guarantee can also be an applica-
tion requirement.

With the support of Deferred Contexts in DirectX11 the game en-
gine can properly avoid the overhead on the submission thread be-
ing the bottleneck of the application. One may now queue API calls
through command lists and multiple threads to be executed later.
The API is now responsible for inter-thread synchronization for fi-
nal submission to the GPU. The main goal behind multithreading is
to use every cycle of CPU and GPU without making the GPU wait,
which impacts the game frame rate.

The full improvements set of DirectX 11 will be showed briefly, then
the explanation of why states of the API must be synchronized for
a proper rendering will follow. A considerable part of the course
will explain how to use the Deferred Contexts and how to properly
build command lists for later submission. The focus will be in the
comparison to previous APIs, highlighting the issues of the previous
versions that the new DirectX11 improvements had arisen from.

Then we present some samples of code and cases that would have
good performance improvements with the adoption of Deferred
Contexts. During the samples exhibition, the important parts of
the code should be discussed briefly at a high level of abstraction
in order to give some consistency to the knowledge of the audience.

This tutorial is a sequence of SBGames 2010 course entitled: ”Un-
derstanding Shader Model 5.0 with DirectX11” [Valdetaro et al.
2010]. In that tutorial we presented other set of innovations brought
by DirectX11, which is the Tessellator pipeline.

Keywords:: DirectX 11, Multithreaded, Deferred Context, Imme-
diate Context, Shader Model 5

Author’s Contact:

{rodrigo, alexandre, gustavo } @xtunt.com
bfeijo@inf.puc-rio.br
abraposo@tecgraf.puc-rio.br

1 Introduction

One of the most important capabilities introduced in the DirectX
11 API is around multithreading. The number of cores in PCs
have been increasing significantly in the past few years. Developers
started to seek solutions for spreading the computation of a game
among the available cores. Tasks such as physics or Al already
could use parallel paradigm to take advantage of multiple cores,
but mainly, rendering tasks were only done in a single-thread. Al-
though one could implement a multi-threaded with past rendering
APIs(DirectX9 and DirectX10), there were lots of syncronization
work that must be guaranteed by the application in order to function
properly. DirectX11 API was specifically designed to handle the
syncronization issues for a multi-threaded application. The concept
of a deferred context was created. With this new concept one may
call many API functions in a thread-safe environment. In this tuto-
rial our intent is to explain this new DirectX11 feature and enlighten
others with some examples and cases where a multi-threaded ap-
X SBGames - Salvador - BA, November 7th - 9th, 2011

proach may improve rendering and loading performance for games
and 3D applications.

2 DirectX11 Improvements

This section shows a quick review of the main improvements
brought by DirectX11. Later we will focus on DirectX11 deferred
contexts which is the main purpose of this tutorial

2.1 Compute Shader

The Compute Shader technology is also known as the DirectCom-
pute technology. It is the DirectX11 solution for GPGPU, one
mayfind it easir to use this solutions instead of others(ex. CUDA,
OpenCL) due to its tight integration with DirectX11 API and not
being necessary to add more dependencies to the project. With this
technology programmers are able to use the GPU as a general pro-
cessor. This provides more control than the regular shader stages
for GPGPU purposes such as global shared memory. With the full
parallel processing power of modern graphics at hand, program-
mers can create new techniques that may assist existing rendering
algorithms. For example, one may render output an image from
the bound render target to a compute shader for a post-processing
effect.

2.2 Tessellation

The new graphics pipeline provides a way to adaptively tessellate
a mesh on the GPU. This capability implies that we will be trading
a lot of CPU-GPU bus bandwidth for GPU ALU operations, which
is a fair trade as moderns GPUs have a massive processing power,
and the bandwidth is constantly a bottleneck.

Aside from this straightforward advantage in performance, the Tes-
sellator also enables a faster dynamic computations such as: skin-
ning animation, collision detection, morphing and any per vertex
transform on a model. These computations are now faster because
they use the pre-tessellated mesh which is going to be a device ob-
ject contexts tessellated into a highly detailed mesh later on. An-
other advantage of the Tessellator usage, is the possibility of apply-
ing continuous Level-of-detail to a model, which has always been a
crucial issue to be addressed in any rendering engine. For a detailed
introduction to the Tessellation stage please refer to [ Valdetaro et al.
2010].

2.3 Multithreading

When older Direct3D versions had been released, there was no real
focus on supporting multithreading, as multi-core CPUs were not so
popular back then. However, with the recent growth on CPU cores,
there is an increasing need for a better way to control the GPU
from a multithreaded scenario. DirectX11 addressed this matter
with great concern.

Asynchronous graphics device access is now possible in the Di-
rectX11 device object. Now programmers are able make API calls
from multiple threads. This feature is possible because of the im-
provements in synchronization between the device object and the
graphics driver in DirectX11.

DirectX11 device object has now the possibility of extra rendering

contexts. The main immediate context that controls data flow to

the GPU continues, but there is now additional deferred contexts,

that can be created as needed. Deferred contexts can be created

on separate threads and issues commands to the GPU that will be
1



SBC - Proceedings of SBGames 2011

processed when the immediate context is ready to send a new task
to the GPU.

3 Process and Thread

We will briefly introduce the concept involved in process and
threads before starting with DirectX11 APIL.

3.1 Process

Process is the structure responsable for the maintenance of all the
needed information for the exceution of a program. A process
stores the information about hardware context, software context and
addressing space. Those information are important inside a multi-
task environment were many processes are being executed concur-
rently. In that manner, it is needed to know how to alternate between
them without losing of data. However, the swap between process
is costly, so the concept of multiple threads for a single process is
introduced. Each process is created with at least 1 execution thread,
although more threads may be created for the same process.

3.2 Thread

Thread is an execution line inside a process. Although they have
different hardware context, each execution line inside a process has
the same software context and shares the same memory space. In
that way the cost generated by the information exchance between
the threads is much less than the information exchange between
processes.

/ Process #1

Process#3 \

Process #2

\PC Y,

Figure 1: Multiples processes with single thread

3.3 Multithreaded

The process, in a multithreaded environment, has at least one exe-
cution thread. It may share the address space with other threads that
may be fastly concurrently executed in the case of multiple proces-
sors. With this approach, computers with many cores are capable to
have a performance increase, executting tasks in parallel. However,
it is needed to consider how the access of shared resources is made
among the threads. This kind of control is necessary to avoid that a
thread change data of a shared resource while another thread is still
using old data. This kind of guaranteed is called thread safe.

/ Process #1 \

\PC y

Figure 2: Single process with multiples threads

X SBGames - Salvador - BA, November 7th - 9th, 2011

Tutorials Track - Computing

3.4 Thread-safe

Thread-safe is a commonly used technique when we are in a mul-
tithreaded application. This technique is used to ensure that a par-
ticular snippet of code of your program, when executed by a thread
#1, does not interfers in the shared data of another thread #2. In
other words, multiple threads can run concurrently with the assur-
ance that they will not modify the shared data that they have in
common. Moreover, if we are in an environment with multiple pro-
cessors, these threads can be executed simultaneously and not only
concurrently.

4 Threading Differences between DirectX
Versions

In DirectX9 and DirectX10 it was possible to set one multithread-
ing flag making some API methods thread-safe. However, when
they becomed thread safe, some syncronization issues needed to be
respected by the application and it was necessary to use synchro-
nization solutions ( such as mutexes ) to turning some critical code
sections thread-safe and prevent it from being acessed from more
than a thread on a given time. Sometimes this syncronization over-
head was so significant that the usage of multiple threads in the
previous rendering APIs were completely avoided.

DirectX11 API has a buil-in syncronization system that is not de-
pendent on the application. The runtime is responsable for syn-
cronizing threads for the application allowing them to run concur-
rently. This improvement turned the DirectX11 syncronization so-
Iution much more efficient than previous DirectX thread-safe flags.

5 Multithreading in DirectX11

In DirectX11 the use of the ID3D11Device interface is thread-safe.
This interface may be called by any number of threads concur-
rently. Its mainly purpose is the creation of resources, like ver-
tex buffers, index buffers, constant buffers, shaders, render targets,
textures and more. With the ID3D11Device the application is also
able to create a ID3D11DeviceContext which is NOT thread safe
and one device context should be created for each core. There
is only one ID3D11DeviceContext which is called the Immedi-
ate Context, this context is the main rendering thread, it is this
thread that submits the renderization call to the pipeline. The others
ID3D11DeviceContext that might be created are called Deferred
Contexts, they work by saving command lists that will be later
called by the main thread (Immediate Context). Please see Figure
3.

There are two main improvements that might be used with mul-
tiple threads in DirectX11: Parallel Resources creation and Com-
mand Lists recording. The first is achieved with the usage of the
ID3D11Device by multiple threads. The later and most important
is achieved with the usage of Deferred Contexts.

Immediate
Context

Deferred
Context

Deferred
Context

Figure 3: Deferred Contexts recording command lists that are exe-
cuted by the immediate context thread after.[Lee 2008]



SBC - Proceedings of SBGames 2011

5.1 Resources Creation

Being the ID3D11Device a thread-safe interface, the resources for
the application may now be loaded in parallel. The main advantage
of this feature is for static and dynamic loading.

5.1.1 Static Loading

With the evolution of 3D graphics rendering systems, many games
might have to load lots of resources before properly beginning the
rendering. This leads to the (many times) annoying loading peri-
ods. With DirectX11 the application is able to split the resource
workload among the available cores.

One must remember that concurrent loading resources does not al-
ways lead to a performance improvement. For example, loading big
textures from file has a heavy bottleneck in the memory bandwith
and the CPU is many times idle during this process. If an applica-
tion split all its heavy texture creation work among many cores it
may experience no improvement in speed at all when compared to
a single thread solution. However, splitting shader creation would
probably give a great increase in performance because such oper-
ations are CPU intensive. This is specially true in modern game
engines that have a high permutation of shaders(uber-shaders) that
leads to, in some cases, thousands of shaders resources that needs
to be created.

5.1.2 Dynamic Loading

Many games such as flight simulators, RPGs or sandbox-style
games have a big outdoor environment, lost of geometry and tex-
tures. Loading all the necessary resources to run the entire game at
the beginning of the application might not be an option. Such games
need a fast dynamic loading of resources when players change be-
tween areas. A slow area transition may frustate the immersive
experience of the gamer.

DirectX11 API can help with dynamic loading of resources in mul-
tiple threads. As stated above, the ID3D11Device is thread safe,
and when the player is entering a new area the application may start
loading textures, shader and all the resources of that given area in
parallel. That feature may be a powerful tool to avoid lower FPS
while changing between areas.

5.2 Recording Command Lists

The DirectX11 is basically divided in the following pipeline stages:
Input Assembler, Vertex Shader, Hull Shader, Tessellator, Domain
Shader, Geometry Shader, Stream Output, Rasterizer and Output
Merger. Besides the Tessellator which is configured basically by
the Hull Shader, every pipeline stage must have their resources and
configurations set by API CPU calls. Making many different CPU
API calls may become a bottleneck for the CPU and thus the GPU
will get idle frequently. With the introduction of Deferred Contexts
and Command Lists, the API calls may be recorded in parallel to
be executed later by the main thread.

Usage of Command List is the true hidden treasure of the DirectX11
APIL. Basically, the application should create one deferred context
for each thread besides the immediate context thread. Those de-
ferred contexts may NOT directly invoke the API, it can only store
commands in a Command List to be later executed by the thread
with the immediate context. Commands stored in a Command List
are not executed promptly, they will be only executed when the im-
mediate context calls to execute the command list.

One may ask, what is the advantage of just recording the commands
and executing later in the main thread, instead of just executing
them later in the main thread anyway. The difference is that the
within the command lists, the API calls are heavily optimized and
calling them from a command list is much faster then calling sepa-
rate commands from the main thread.

Figure 4 shows how a single thread approach would be. The APIs

states are sequentially set and then drawed by the single thread.

Figure 5 shows the approach using a deferred context. All the API
X SBGames - Salvador - BA, November 7th - 9th, 2011

Tutorials Track - Computing

CPU Core

VsSetShader()
GSSetShader()
PSSetShader()
VSSetConstantBuffers()
Drawlndexed()

VsSetShader()
GSSetShader()
PSSetShader()
VSSetConstantBuffers()
Drawlndexed()

VSSetShader()

GSSetShader()

PSSetShader()
VSSetConstantBuffers()

Sequence of Execution

Drawlndexed()

VSSetShader()

GSSetShader()

PSSetShader()
VSSetConstantBuffers()

Drawlndexed()

Figure 4: Draw submission (single thread).[Jason Zink 2011]

states of each drawcall are independently recorded by each core,
after all cores are done recording commands the main thread may
execute using the ExecuteCommandList() function.

With Command Lists the programmer is able to set many device
states such as shaders, textures and rendertargets in parallel saving
a lot of CPU time.

CPU Core #il CPU Core #2

1X9)U0)
paapRQ
1XeIU0)
pauRjeq
XAJU0)

pauRjeq

Sequence of Execution

)

X33U0D
ajelpaww]

s()
0

Figure 5: Threads and device contexts.[Jason Zink 2011]

Figure 6 shows two deferred contexts issuing commands and finish-
ing them. Then the runtime does the inter-thread sync and the main
threads executes the command lists that set the pipeline states.

6 Rendering with DirectX11

As explained in previous sections, DirectX11 has some new ma-
jor features that helps the user to make their game engines multi-
threaded such as free threaded asynchronous resource loading. Be-
sides new features, there are also lots of changes in the Graphics
Device API if compared to previous DX versions. All these changes
have been made in order to facilitate the usage of the device in a
multithreaded environment.

In this section, we will walk through this new API, explaining step
by step how to create a DirectX11 application that uses deferred
contexts.

3




SBC - Proceedings of SBGames 2011

‘RenderMain’

=00 NN IS

ExecuteCommandList()

| Thread 2

B e
RE
|

| Dez:

Figure 6: Sequence of execution[Jansen 2011]

6.1 Device Contexts

Prior DirectX versions kept all the rendering functionality inside the
D3D device. DirectX11 separates out much of the core rendering
functionality into a new interface called the D3D device context.
As already mentioned in previous sections, D3D device contexts
can be one of two types: immediate or deferred. The actual context
type is completely transparent from the user‘s point of view. The
rendering code will be called from both identically.

There is only one immediate context for a device, and it represents
exactly the rendering API that has been separated from the device,
it is responsible for submitting commands directly to the device
driver, as in traditional rendering. There can be any amount of de-
ferred contexts, however that amount is generally less or equal than
the number of logical cores. These contexts can receive rendering
commands as well, but instead of executing them on the device,
they batch up commands for inclusion in a command list; the com-
mand list can be executed by the immediate context at any time,
possibly running on a different thread.

6.2 Command Lists

The command lists are logical arrays containing recorded rendering
commands. These commands can be played back just for simplicity
and reduction of runtime overhead, so you could pre-record com-
plex rendering ahead of time, while loading a level for example.

Although interesting, this pre-recording scheme is hardly ever use-
ful. The actual usefulness of the command lists lie in multi-
threading, where the rendering commands are recorded in different
threads and then played back in the submission thread. Moreover,
the complex rendering tasks get scaled across multiple threads.

7 Using the DirectX11 API

7.1 Creating Device and Checking Multithreading
Support

The interface for immediate and deferred contexts is
ID3D11DeviceContext. So lets start by creating our immedi-
ate context. In order to create our imediate context, the DirectX11
device abstraction ID3D11Device must be created. So we call
D3D11CreateDevice.

Tutorials Track - Computing

the function shows, the device has one and only one immediate con-
text , which can retrieve data from the GPU. However, in order to
use device contexts and asynchronous thread free resource loading,
there is the need to check if there is driver support for it available.
so we use the following code after creating the device:

D3D11_FEATURE_DATA_ THREADING threadingFeature;
device—>CheckFeatureSupport( D3D11_FEATURE_THREADING, &<«
threadingFeature, sizeof( threadingFeature ) );
if ( threadingFeature.DriverConcurrentCreates &&

threadingFeature.DriverCommandLists )
// Application code

7.2 Multithreaded Multi-Viewport Scene

A good example of a very simple multithreaded scheme for a game
is a local 4 player first person shooter. Every player should have
his own viewport, and some games allow up to 4 viewports as seen
on Figure 7. In this kind of setup, the resources for each viewport
can greatly vary. Consequently, assigning the rendering of each
viewport to a different worker thread can greatly speed up the sub-
mission pipeline, specially because with DirectX11, the loading of
resources is thread free, and can be executed asynchronously. Thus,
we can instantiate all the buffers and assets from different threads,
and create as many worker threads as desired.

! - Hold @ to swap for ¢

(32]192
49:00
Q1

-0 Click &% andHold to steady

Figure 7: Call of Duty 2 [InfinityWard and Activision 2005]
The following pseudocode of the setup of a generic multiple view-
port application demonstrate a bit of the basic API of DirectX11.

We start by creating a deferred context for every desired thread (or
viewport)

ID3D11DeviceContext* deferredContexts[NUM_PLAYERS] = {«
NULL}
for( int i = 0; i < NUM_PLAYERS; i++ )

device—>CreateDeferredContext( 0, &deferredContexts<—

[ESIRDE

We should also create a command list for each thread.

HRESULT D3Dl1lCreateDevice(
__in IDXGIAdapter #pAdapter,
__in D3D_DRIVER_TYPE DriverType,
in HMODULE Software,
in UINT Flags,
in const D3D_FEATURE_LEVEL xpFeaturelevels,
in UINT Featurelevels,
__in UINT SDKVersion,
__out ID3Dl11Device #xppDevice,
__out D3D_FEATURE_LEVEL *pFeaturelevel,
out ID3Dl11DeviceContext s##ppImmediateContext

IE

ID3D11CommandList* commandLists[NUM_PLAYERS] = {NULL}

As we can see, D3D11CreateDevice already gives us the the imme-

diate context as well. We can also access the immediate context

through the ID3D11Device::GetlmmediateContext function. As
X SBGames - Salvador - BA, November 7th - 9th, 2011

The command lists have no creation method, the deferred context
will handle their creation later on .

Now, with every worker thread set up the rendering can start. Ev-
ery viewport of the scene to be rendered will have its rendering
code executed normally on its own thread using the deferredCon-
text designated to the thread. Remembering that the ENTIRE state
of the renderer must be set up for every command list to be executed
because it will be reset everytime after an execution. This reset is
needed to make sure there is no temporal dependency between dif-
ferent command lists, else it could create unpredictable states of
the renderer depending on the application set up. So for example
we could give the following commands to a deferred context:
4




SBC - Proceedings of SBGames 2011

deferredContexts[threadNumber]->IASetInputLayout( <
vertexLayout );
deferredContexts[threadNumber]->IASetPrimitiveTopology<—
( D3D11_PRIMITIVE_.TOPOLOGY _-TRIANGLELIST ) ;
deferredContexts[threadNumber]->IASetVertexBuffers( 0,
1, vertexBuffer, stride, 0 );
deferredContexts|[threadNumber|—>VSSetShader( <
vertexShader, NULL, 0 );
deferredContexts|[threadNumber]|—>PSSetShader( <
pixelShader, NULL, 0 );
deferredContexts[threadNumber|—->Draw( count, 0 );

After finishing, it is time to put the rendering code into the com-
mand list:

Tutorials Track - Computing

actorsDefCtx—>Draw() ;

/# Pass 2: Renders the AO mask and blend with <
the outputTexture =/
AODefCtx—>Draw() ;
// End the traversal

// Execute Pass 1
actorsDefCtx—>FinishCommandList( 0, &actorCommandList<—
)

shadowImmCtx—>ExecuteCommandList( actorCommandList );
// Execute Pass 2

AODefCtx—>FinishCommandList( 0, &AOCommandList );
shadowImmCtx—>ExecuteCommandList ( AOCommandList );

deferredContexts[threadNumber]—>FinishCommand (
needRestore, &commandLists|[threadNumber] );

The first parameter tells the deferred context if it should reset its
state or not. If set to TRUE then the context will save its state and
restore its state. Keep it set to FALSE unless there is going to be a
very similar state afterwards, or it will just cause unnecessary state
transitions.

After making sure that all the command lists are available, the sub-
mission thread has to execute them all in the immediate context:

for( int i = 0; i < NUM_PLAYERS; i++ )

{

immediateContext—>ExecuteCommandList( commandLists[<—
il , 0 );

Just remember to make sure the threads are synchronized, so all the
viewports of the scene get rendered every frame correctly.

7.3 Effecient Multi-Pass

The usage of deferred contexts is not limited to multithreading. A
very good example of usage is when there is a scene with a spa-
tial structure containing a large amount of objects to be rendered
and this scene requires a multiple-pass rendering. In a traditional
approach, the spatial structure has to be traversed for every pass,
which can be expensive. However, with a deferred context ap-
proach, there is the possiblity to make 1 traverse only.

This single traversal implementation is very simple and can be very
efficient. First, a deferred context and a command list must be cre-
ated for every desired pass. Then, the rendertarget of every de-
ferred context must be an input texture for the deferred context re-
sponsible for the following pass. For example, DC1 is responsible
for pass1 has a rendertarget texturel, DC2 is responsible for pass2
and therefore has texturel as a shader resource. Preferentially, all
the deferred contexts should have the same rendertarget for effi-
ciency. This way, we guarantee that the rendertarget of every pass
get passed on to the next pass with only one traversal through the
scene.

The following pseudocode shows how to render a scene with shad-
ows with only one pass:

shadowImmCtx—>OMSetRenderTarget( 1, &
shadowMapTexRTView, NULL );

actorsDefCtx—>0OMSetRenderTarget( 1, &outputTexRTView, <
NULL );

actorsDefCtx—>PSSetShaderResources( 0, 1, &
shadowMapTexSRView ) ;

AODefCtx—>OMSetRenderTarget( |, &outputTexRTView, NULL<4—

AODefCtx—>PSSetShaderResources( 0, 1, &outputTexSRView<—
)

// Begin the traversal through the spatial structure
/# Pass 0: Renders the scene from light s point<«
of view onto the shadow map =/
shadowImmCtx—>Draw () ;

/+ Pass 1: Renders the scene from camera’s <
point of view onto the outputTexture =/

X SBGames - Salvador - BA, November 7th - 9th, 2011

8 Conclusion

Since rendering code existed, it has been usually a monolithic flux
of states. However, The new API architechture of DirectX11 en-
ables the programmer to switch to a new paradigm of rendering
programming. The ability to load resources asynchronously from
different threads, during startup or rendering, and the parallelization
of the rendering calls greatly simplifies the creation of an efficient
rendering engine.

And as the CPU cores number steeply increase, the penalty of hav-
ing a single thread submitting all the rendering code to the GPU
increases as well. However, the cost to implement a effective mul-
tithreading system is still steep even with this new set of tools, and
not every application is a candidate to benefit from the usage of de-
ferred contexts. To port an exisiting system to DirectX11 API can
be very simple if it is a DirectX10 system and a lot harder if it is Di-
rectX9, and the decision to do it should made only if the rendering
is CPU bound, specially with work submission.

References

INFINITYWARD, AND ACTIVISION. 2005. Call of duty 2.

JANSEN, J. 2011. Programming directx11 performance gems.
Game Development Conference 2011.

JASON ZINK, MATT PETTINEO, J. H. 2011. Practical rendering
and computation with direct3d 11.

LEE, M. 2008. Multi-threaded rendering for games. Gamefest.

VALDETARO, A., NUNES, G., RAP0OSO, A., FEJo, B., AND
DE TOLEDO, R. 2010. Understanding shader model 5.0 with
directx11. IX Brazilian symposium on computer games and dig-
ital entertainment.






