IX Symposium on Virtual and Augmented Reality - SVR 2007, p.318-320. Petrépolis, RJ, Maio 2007.

SOLUM: A Library for the Creation of Dynamic 3D Worlds

Felipe F. Quintella
Tecgraf / Computer Science Dept. / PUC-RIO
R. M. S. Vicente, 225 - Gavea
Rio de Janeiro, Brazil
felipe@quintella.com

ABSTRACT

This paper provides the description of concepts and imple-
mentation of the SOLUM Library. The purpose of SOLUM
is to create complex dynamic 3D worlds based on a few pa-
rameters and definitions, removing detailed and complicated
issues on this process. The idea behind SOLUM is to make
the whole process of creating a complex 3D enviroment as
clear and easy to undestand as possible, liberating applica-
tion designers and programmers for other tasks.

Keywords
3D Worlds, World Creation, 3D Generation, Dynamic Worlds

1. INTRODUCTION

The creation of large 3D worlds, such as those used in games
and virtual communities, can be a difficult and extenuating
job. Doing this job by hand usually takes seveal hours of
a dedicated team and the costs easily get very high [2]. In
order to make this job simpler, some techniques are usually
applied. The most common is the reuse of previously-made
models. However, this has a major drawback that is the feel-
ing of ‘I already saw this before.’, since you really don’t have
an identity for the created objects, such as the buildings of a
town, for example. There are some random implementation
for cities/buildings [5] and terrains [3], but they don’t con-
sider the surroundings and can create some strange things
like buildings on places they should not be.

The purpose of this work is to solve these problems by cre-
ating a library (SOLUM) that works based on a set of para-
meters defined by the users and then uses a layer model to
create the world. The parameters defined by the users are
very basic, such as the size of the terrain, the elevations de-
gree, the distribution of communities throughout the virtual
world, the resources distribution, among others.

Alberto Raposo
Tecgraf / Computer Science Dept. / PUC-RIO
R. M. S. Vicente, 225 - Gavea
Rio de Janeiro, Brazil
abraposo@tecgraf.puc-rio.br

2. USER INTERFACE

One of the modules of SOLUM is the graphical interface,
responsible for the configuration of the whole 3D environ-
ment. This interface creates the basic configuration file that
will power the library, shows a preview of the results, and
enables alteration. The project was implemented with C++
for Windows, making use of some support libraries. For the
3D visualization the OGRE (Open source GRaphics Engine)
[1] engine was used.

A screenshot of the configuration GUI is shown in Figure 1.
This figure illustrates the dialog for the terrain generation.
In this dialog, the user indicates the files defining a height
map and the textures for the terrain to be generated. De-
spite this possibility of previously defined input, the inter-
face also provides the random generation of a height map
and a texture.

M painWindow X
Aplcacio Arquivo Ferramentas Janelas
5

Terrens | Comunidades | Recursos | 30

Mapa de Altura

Parémetros

Mapa de sltura | Ct\Documents and Settings'F D

Texturas C:\Documents and Settings'F D
Detahes [&d
TamanhoX [320 & Tamanhoy [320 |2 e e

Figure 1: The front look of the GUI system.

In the communities tab of the configuration GUI, the user
defines the list of communities of the virtual world, as well as
their centers and their influence area in the map representing
the terrain. The user also defines the possible styles for each
community. In the resources tab, the user defines all natural
resources available by means of a resource map. The user is
also required to define the possible materials and textures
for each available resource and style, as well as the buildings’
floor plans for each style. Finally, in the 3D tag, the user
may pre-visualize the result of the current configurations

abraposo
Text Box
IX Symposium on Virtual and Augmented Reality - SVR 2007, p.318-320. Petrópolis, RJ, Maio 2007.

and generate the virtual world.

3. ALGORITHMS

The algorithms presentation is split into three layers, namely,
Terrain Generation, City Generation, and Building Gener-
ation. These layers get information from the configuration
file and the lower layers also get information from the higher

ones The diagram in Figure 2 explains this.

Frovides parameters such as
gize, elevation level, and

available resources

Terrain generator

< Configurator =

II e
II e -
| ™ Cities generator

The terrain generator e xecutes
the cities generator for each
city it determines that must
exist. By its turr, the cities
generator needs the topology
and the resources available in

the cities swroundings.

A frer defining the city roadimap
(ie., streets and buildings
positions), the cities generator

executes the buildings
generator, which need to know
the availshle materials and the

size recquired

finalize, on top of the main texture, the user may also de-
fine a detailed texture during the world configuration, what

provides more realism to the terrain.

3.2 City Generation

The city generation algorithm considers several parameters
defined by the user during the world configuration. The lo-
cation of a city is determined taking into consideration a
community map defined by the user during the world con-
figuration (Figure 3). A community may be conceived as a
group of cities, such as a country. The library will search
in the map for the place with the major concentration of
a community. This place is then used as a parameter for
the definition of the largest city of a community and the
size of the other cities of this community in relation to the
largest one. The major concentration point of a community
is determined by i) the analisys of the initial points of the
community, provided by the user during the configuration,
it) the influence power of the community (also determined
by the user), which will define the area on which the com-
munity will expand, and 4ii) the resources available on the
terrain, which also affect the community expansion.

[Provides parameters such

{ a5 the cultural

| characteristics for the

| buildings (e.g., cities with

I' some types of buildings)

|

/ The buildings generator sends

|I data to the output formatter,

which will prepare the virtual

world for the final application.

|
/
|'I The output formatter needs
— Buildings generator data from all the other
.; modules.

Provides parameters such as
the possible floor plants and
blocks corbination for the

dorninant culture in the city.

Legend o
- S Flow

Iilain rodule el - External module . G
e s —— Eslation

Figure 2: Interaction between the modules

3.1 Terrain Generation
The process of creating a terrain is split into two parts: the
creation of the vertex mesh and the creation of the 2D tex-
ture for the terrain. To generate the vertex mesh, the hill
algorithm was used [4]. The second part of the terrain gen-
eration algorithm is the texture generation. This is achieved
by creating an image of the same size of the terrain vertex
mesh (each vertex will have a pixel for it) and changing the
color of the pixel according to the terrain height.

In order to avoid the creation of a very smooth unrealistic
texture, we define five height areas separated by 150 points
each. Every time a texture is to be generated in a different
area, we add or remove 50 in the value of the color for each
area. With this approach, we can determine, for example,
that the mountain tops above a certain height will be white
due to snow, and the deep valleys won’t have green. To

Figure 3: An example of community map. Each
color represents one community.

The most influential place of a community will be the place
for its capital city. Other cities will be distributed troughout
the map taking into consideration the area for this commu-
nity, a random value and the terrain (cities are more prone to
be constructed in plane areas). Each city, depending on its
size, has an influence circle that prohibits the construction
of other cities in this area. Community by community, the
library populates the terain with cities for all communities

defined in configuration.

A city might be on the influence area of more than one
community. Once the style is determined by the community,
a city might end up having a mixed style. The style of a city
defines the construction blocks available for the buildings’
construction (this information is passed to the next module

— the cities generator).

The size of the city is determined basically by two factors:
the total points of the main community for that city and
the available flat area for its construction in the region de-
fined. Once the size is defined, the construction area is de-
fined. Starting at the city center, the algorithm searches for

adjacent polygons with inclination smaller than 45 degrees
(plane region) to determine the city’s construction area.

Starting at the center of the city and considering its size, we
can go to the configuration file, access the resource map and
obtain the resources available. A resource map deals with
three colors, representing the main construction resources:
wood, iron and stone. Although resources provide guidance
for a better city construction, the style of the city prevails
in the definition of the construction blocks of the buildings.
For example, if a style has only wood construction blocks,
the city will have many wood blocks, despite having or not
this resource available.

According to the styles defined for the city, we get a list
of the main buildings that must exist in the city, and their
approximate sizes. Then, we start finding places for these
buildings, beginning at the city center. In order to find the
places of the buildings in the city we need first to place
the main building and then randomly choose the location
of other main buildings. This random choice is, however,
limited by some rules, such as: a main building must be a
random radius away from the other buildings, and must be
within the city area.

To define the streets of a city, we connect each building to
the main building with a street, and then trace secondary
streets at 90 degrees from those main streets. The street
tracing continues until we find an obstacle, the end of the
city, or another street. Each street must have at least a
minimum distance from the previous one and we add a small
random factor in order to avoid an extremely regular city.

Figure 4 illustrates the streets of a small city. P1, P2, P3,
P4 and P5 are the main buildings, and the green streets
are the main streets connecting them. It is important to
clarify that the system also considers the terrain topology,
trying to connect the main buildings keeping the streets at
the same elevation level. The algorithm tries to balance
the shortest way against deviations to keep the street plane.
Returning to the figure, the orange streets are the secondary
ones, perpendicular to the main streets. Again, deviations
can be made to follow the terrain topology. The blue streets
connect the secondary ones, avoiding “no way out” streets.

Having the streets as guide, the system is able to place
smaller buildings. To place those buildings, the system takes
each secondary street and walks through it looking for a free
space that is big enough for the building. Buildings that we
couldn’t find a place for will have a street traced just for it
on a open space around the city.

3.3 Building Generation

In order to construct the buildings and have access to its
wireframe and strucutres, we used the concept of builing
blocks. Building blocks are pre-defined 3D structures, which
are given to the library during the configuration. Each build-
ing block has a style, a resource and a function. To use the
building blocks we need a structure we call blue print, which
determines the building blocks functions needed to construct
a building.

Once we have an adequate blue print for the size and func-

Figure 4: Streets map for a city.

tion of the building, we need to get the blocks needed. This
is done by sorting by funcion, style and resource the blocks
available and then randomizing the result (the style defines
the kind of the block to be used, and the resource defines the
texture applied to it). This way, having a reasonable num-
ber of blocks, buildings should not look the same. Finally,
we must have some additional restrictions, for example, the
main door of a building must be in the direction of the street,
and if we choose a door building block, we need to use the
same for all doors. Additional details such as roofs and floor
pavings are chosen among those available.

4. CONCLUSION

This paper presented SOLUM, a library for the construction
of large virtual worlds composed of terrain, communities
and cities. The goal is to develop a basis for a framework
that provides the construction of large virtual environments
without having to model thousands of 3D objects or to make
extensive reuse of them. This construction is based on a
relatively small number of parameters defined by the user.

SOLUM is currently adequate for the creation of “aleatory”
3D worlds, such as those used in games. It is our plan to
work in the direction of using the tool to create 3D models of
real cities. The first step in creating those “real” 3D worlds
was implemented for the terrain generator, which can not
only generate a random terrain, but also a terrain based on
a height map.

5. REFERENCES

[1] OGRE 8D — Open source graphics engine, 2006.
http://www.ogre3d.org/.

[2] R. Bartle. Designing Virtual Worlds. New Riders
Games, Indianapolis, Indiana, USA, 2004.

[3] D. Marshall, D. Delaney, S. C. McLoone, and T. Ward.
Representing random terrain on resource limited
devices. In CGAIDE 2004 Int. Conf. Computer Games:
Artificial Intelligence, Design and Education, 2004.

[4] B. Nystrom. Terrain Generation Tutorial: Introduction,
2002. http://www.robot-frog.com/3d /hills/.

[5] Y. I H. Parish and P. Miiller. Procedural modeling of
cities. In SIGGRAPH 01, pages 301-308, 2001.

