
Abstract

We describe a prototype of an interactive Mixed
Reality application for direct spatial manipulation,
based on the vision-based recognition of
uninstrumented hands. In our application, we
dynamically integrate both of the user’s hands into
the virtual environment, effectively creating a logical
2 × 3 DoF manipulation device. Using this logical
device, we were able to implement, in conjuction with
hand gestures, a number of fundamental 3D
manipulation operations like select, deselect,
translate, rotate, and scale.

1. Introduction

Most current 3D editors and viewers still operate
within the WIMP (Windows, Icons, Menus and
Pointing device) paradigm, thus utilizing the mouse and
related devices, as well as various graphical metaphors,
to manipulate 3D geometric objects. For example, to
rotate an object, the user usually has to select that
object with the mouse, then select the ROTATE tool
from the menu or toolbar, and finally move (drag) the
mouse with a mouse button pressed and the
corresponding graphical manipulator widget activated.
The planar (2 DoF) movement of the mouse thus gets
translated into a 3D angular range constrained to a
rotation plane, causing the object to rotate in the
associated global coordinate system.

While the WIMP approach is a tried and familiar one, it
coerces the user into performing intrinsically
threedimensional operations like TRANSLATE,
ROTATE or SCALE by means of a proxy planar
mouse operation, which is dissimilar to the way humans
actually perform these operations in the physical world,
doing free-form hand movements. Given the current
state-of-art in computing (especially computer vision),
would it be possible to push the technological envelope
just a little bit, and build a practical computer-vision
based system that is capable of performing 3D
manipulation operations in the most natural way, that
is, using a user’s own hands directly?

X Symposium of Virtual and Augmented Reality

Direct 3D Manipulation Using Vision-Based Recognition
of Uninstrumented Hands

Siniša Kolariã, Alberto Raposo, Marcelo Gattass

Tecgraf - Computer Graphics Technology Group - Department of Informatics
Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro - RJ, Brazil

{skolaric}, {abraposo}, {mgattass}@tecgraf.puc-rio.br

In this paper we describe how we built a prototype of
such system, capable of manipulating 3D virtual
objects by means of a small set of manipulating
operations, utilizing a standard PC, a stereo pair of low-
resolution cameras and a software application based on
computer vision techniques. Using this technology, we
integrated our hands into the virtual workspace, thus in
effect creating a logical 2 × 3 = 6 DoF input device,
capable to manipulate 3D objects in our virtual
environment.

Our exposition is structured as follows: Section 1
(current) explains the motivation for this work. Section
2 gives an overview of the related work. Section 3
describes the user’s workplace, and explains how we
defined the operations for manipulating 3D geometric
objects using uninstrumented hands. Section 4
describes technical details of how we utilized computer
vision (CV) techniques to determine positions of
certain hand features, and to recognize hand gestures,
as well as describes experimental results. Section 5
discusses experimental results and future work.

2. Related work

We split our survey of related work into two principal
parts: Section 2.1 gives a survey of the work done in
the field of direct 3D manipulation, and Section 2.2
gives an overview of the relevant computer-vision
techniques for hand recognition.

2.1. Direct 3D manipulation

The expression “direct manipulation”, coined by
Shneiderman [43], describes an interaction modality
where the user can modify computational objects using
actions that correspond at least loosely to the physical
world. For the purposes of this exposition, we define
“direct 3D manipulation” as a special direct
manipulation type which:

• deals with manipulation of virtual 3D geometric
objects,

• uses free-form hand movements for spatial input [16],
and

212

• has a minimal (or equal to zero) spatial displacement
between the user’s physical hand (and of its virtual
representation) and the manipulated virtual 3D object.

Systems capable to manipulate geometry include
Sutherland’s Sketchpad [45], and Clark’s “Designing
surfaces in 3-D” [8]. Bolt’s “Put-that-there” system [3]
uses a 6-DoF tracker and hand gestures, together with
speech input, to manipulate simple shapes on a large,
wall-sized screen.

Sachs et al present “3-Draw” [37], a 3D computer-aided
design tool capable of drawing complex free-form
shapes, using two 6-DoF sensors (one sensor to control
3D drawing and editing tools, and the other sensor to
control an object’s position and orientation). Krueger’s
VIDEODESK [22] uses overhead video cameras to
track 2D hand positions, and is capable of
manipulating splines by modifying their control points
using index fingers and thumbs of both hands.
Butterworth et al present 3DM [7], an interactive
surface-modeling system that uses one single bat (3D
mouse) with 6 DoF. Shaw and Green present THRED
(Two-Handed Refining EDitor) [40], a free-form
sketching system that uses two three-button bats, one
for each hand (the dominant hand picks and
manipulates 3D objects, and the less-dominant hand
sets context). The JDCAD system [24] by Liang and
Green uses a 6-DoF bat for spatial input. Deering’s
HoloSketch [12] is a VR system for 3D geometry
creation and manipulation that uses head-tracked stereo
glasses and a 3D mouse/wand (“one-fingered data
glove”) augmented by an offset digitizer rod, effectively
making it a six-axis wand. Mapes and Moshell present
PolyShop [26], which uses two ChordGloves
(datagloves which have electric contacts on fingertips
and on the palm) for bimanual spatial input. Mine’s
CHIMP (Chapel Hill Immersive Modeling Program)
[28] uses two separate bats, one for each hand. User can
perform a unimanual operation for translations and
rotations, and a bimanual symmetric movement for
scaling. Cutler et al present [9] two-handed direct
manipulation on a “Responsive Workbench” [23], using
pinch gloves, stylus providing single dinstinguished
point of action, and a 6 DoF tracker attached to stereo
shutter glasses for head tracking. Nishino et al [30]
present a system using one- and two-handed gestures
(deform, grasp, point, scale, rotation) to model and
manipulate 3D objects, using data gloves. Schkolne,
Pruett and Schr¨oder present “Surface Drawing” [39],
[38] where shapes, drawn using wired datagloves,
“float” in the space above Responsive Workbench. The
FingARtips technique [6] by Buchmann et al tracks
hand gestures by using image processing software

X Symposium of Virtual and Augmented Reality

and finger- and hand-based fiducial markers, and allows
users to interact with virtual content using natural hand
gestures. Bettio et al [2] present a system where the user
stands in front of a large stereo display, and
manipulates the model using optically tracked
unmarked hands.

In the field of 3D interaction techniques, Strauss and
Carey [44] describe graphical manipulators, like
trackball, one-axis scale, jack, handle box, and one-axis
translate. Mine [27] discusses virtual environment
interaction including movement (specifiying direction
and speed), selection (local and at-a-distance),
manipulation (change in position, orientation and
center of rotation) and scaling (center of scaling and
scaling center; uniform and non-uniform scaling).
Poupyrev et al showcase the Go-Go technique [33], for
non-linear mapping for direct manipulation in Ves.
Bowman and Hodges [4] evaluate techniques for
grabbing and manipulating remote objects in virtual
environments. Mine et al [29] address the lack of haptic
feedback in VEs and propose to use the sense of
proprioception. Zhai [48] reviews the usability of
various 6-DoF input devices. Dachselt, Hinz and
Huebner give a classification of 3D widgets [10] [11].

For hand postures and hand gestures, Quek [35] [34]
and Pavlovic et al [32] give reviews in the context of
HCI. For two-handed gesture, Guiard [14] gives a
theoretical framework for the study of asymmetry in
the context of human bimanual action.

2.2. Computer vision for hand recognition

In our work, we are interested in non-contact tracking
of uninstrumented (i.e. unmarked, bared) human hands,
and for this we use passive computer vision techniques.
Therefore, we aren’t considering more traditional
methods like using colored gloves or attaching
rectangular patterns onto hands, or using cybergloves.
Also, we aren’t considering active computer vision
techniques, which use light projectors.

2.2.1. Vision-based hand detection. Vision-based
hand detection is a process that returns a negative answer
if no hand has been detected in an image, and a
positive answer otherwise. If detected, most hand
detection methods will also return the location (for
example, a bounding rectangle) of the hand in the
picture. In our work, we use hand detection to initialize
hand tracking (see Section 2.2.2 for an overview of
hand tracking literature, and Section 4.4 for our hand
tracking implementation). Detecting human hand in an
arbitrary image is a difficult problem. Because of this,
many past approaches adopted various constraints on
experimental setups which made the tracking problem

213

easier, like constant backgrounds, markers, non-
existence of other skin-colored objects in view, and
colored gloves.

The object detection method that has taken the CV
community by storm, and which we adopt in our work,
was due to Viola and Jones [47]. This method is robust,
fast and reliable, and can be trained to recognize any
kind of object. It uses AdaBoost [13] learning
algorithm to combine weak classifiers (those with at
least (50 +)% of guessing probability, where is
arbitrarily small) into strong, arbitrarily accurate
classifiers. The application of Viola-Jones method to
detecting specifically hands has been researched by
K¨olsch and Turk in [21] and Ong and Bowden in [31].

2.2.2. Vision-based hand tracking. Tracking is the
process of estimating the position of a tracked object,
taking its previous position into consideration. Since
the hand is an articulate 3D structure which gets
projected onto the 2D image plane, we can choose to
track the hand either in its original 3D space (in this
case we say that we employ model-based hand
tracking), or in the 2D projection image plane
(appearance-based tracking). We can also talk about
hybrid tracking, a recent mode of tracking which
combines elements of model- and appearancebased
tracking.

• Appearance-based hand tracking — various tracking
methods in this class differ in what cues they use for
tracking—some, for example, use just one cue like skin
color or hand motion, and other use a combination of
cues (for example, skin color and motion). For
example, in Camshift [5] just the hand’s color is being
used as a cue; in CONDENSATION [17], hand
contours + hand motion, and in ICONDENSATION
[18] hand contours + hand motion + skin color; in
“Flock of Features” [20] the combination skin color +
KLT features is being used [41], [46] (see Section 4.4
for more on KLT features).

• Model-based hand tracking — here the
backprojection of a predefined 3D parametric hand
model is being matched against the input video frame.
At each frame, extracted features are being compared
with the current 3D model, and the matching error
computed; if the error is too large, the 3D model is
adjusted in the attempt to decrease the error—if the
error is still too big, we repeat the model adjustment,
otherwise we found a good matching and the tracking
was successful. Examples include the classic DigitEyes
system [36], where a 27-DoF hand model is being
tracked.

• Hybrid hand tracking — here elements of both the

model-based and appearance-based tracking are
combined in an effort to get the best of two worlds.
Shimada et al in [42] and Athitsos and Sclaroff in [1]
synthesize a large number of 2D views of a software
3D hand model, and tag each of these views by the
corresponding, exact hand pose vector. After this
preprocessing step, appearance-based matching
methods are used to process real images.

2.2.3. Human skin color modeling and detection.
Human skin color is an important cue that can be
useful for both hand detection and hand tracking; it can
be used either standalone (i.e. on its own) for both
detection and tracking, or as a helper method, i.e. as a
means to increase the robustness of other detection
and tracking methods. In their recent work [19],
Kakumanu et al give a detailed and comprehensive
survey of human skin color modeling approaches, as
well as of human skin detection methods.

2.2.4. Stereo 3D reconstruction. By expression
stereo 3D reconstruction we refer to the process and
techniques for determining 3D position and 3D
structure from pairs of correspondences in the left and
the right image of the input stereo stream. For an
overview of triangulation methods, see Hartley and
Sturm [15].

3. Direct 3D manipulation using
uninstrumented hands

3.1. User’s workplace

The workplace (Figure 1), as we define it, consists of a
standard office cubicle equipped with a personal
computer with two cameras (i.e. a stereo pair)

X Symposium of Virtual and Augmented Reality

Figure 1. The user’s workplace.

214

5. OP_SCALE (two-handed) — scales objects. Based
on two HAND_POSTURE_FIST hand postures.

Therefore, we have two two-handed spatial operations:
OP_ROTATE and OP_SCALE — these use both
hands at the same time. The remaining three spatial
operations (OP_SELECT, OP_DESELECT and
OP_TRANSLATE) are one-handed — must be
performed by just one hand, either just by the left or
just by the right hand. We will now describe each of
these operations in detail. 3.3.1. Selecting and
deselecting objects.

Operation OP_SELECT selects an object in the scene,
while operation OP_DESELECT deselects an (already
selected) 3D object. In order to (de)select a 3D object,
user extends the index finger of one and exactly one
hand (thus changing that hand’s state into
HAND_POSTURE_POINTING), and moves the
hand into the object. (We emphasized “one and exactly
one” because two tracked hands in state
HAND_POSTURE_POINTING perform the operation
OP_ROTATE , see Section 3.3.3.)

As soon as the application detects that the tracked
hand’s centroid entered the interior of the object, while
the hand is in state HAND_POSTURE_POINTING ,
the objects gets (de)selected. The user can now move
her hand out of the object; the object stays
(de)selected.

In WIMP terms, operation OP_SELECT is equivalent
to moving the mouse pointer onto a screen object (for
example, onto an icon) and then pressing the mouse
button, thus selecting the icon. Similarly, operation
OP_DESELECT is equivalent to moving the mouse
pointer onto an already selected screen object (for
example, onto an already selected icon) and then
pressing the mouse button, which deselects the icon.

3.3.2. Translating objects. Operation
OP_TRANSLATE translates (moves) all the currently
selected objects (Figure 3). For this to work, one and
exactly one hand must be in the

connected. Cameras are fixed at the top of the cubicle
and are directed down, at a certain angle, relative to the
surface of the desktop. A stereo pair of cameras
enables us, due to the phenomenon called stereo
disparity, to estimate 3D positions of various hand
features, thus offering us a way to integrate our hands
into the VE.

Accordingly, we define the workspace as the
intersection of the two visual cones defined by the
respective cameras’ fields of view—the user must move
his hands in this working space, in order for the system
to register hand movements and gestures. If a hand
exits the workspace, the system stops tracking the hand.

3.2. Defining hand postures

Figure 2 depicts the three hand postures we use in our
application. Note that the image depicts the right hand
only, but both the left and the right hand can assume
these postures. (The left hand assumes postures which
are simply mirrored relative to the vertical axis.) Also
please note that the hand postures shown in the image
are inclined at an angle, which approximates the natural
hand inclination when it is being tracked in the
workspace. We now define the following hand postures
(also called hand states), from which all the
manipulation operations are being defined (see Section
3.3), as follows:

1. HAND_POSTURE_OPEN — flat palm with all
fingers spread apart

2. HAND_POSTURE_POINTING — all fingers
closed, except the index finger

3. HAND_POSTURE_FIST — all fingers closed

As a matter of convenience, we defined one more
posture, HAND_POSTURE_UNKNOWN , which
designates any hand posture that is not recognized by
the system.

3.3. Defining direct 3D manipulation
operations

Using the hand postures defined above, we now define
direct 3D manipulation operations. Manipulation
operations can be either one-handed or two-handed:

1. OP_SELECT (one-handed) — selects an object.
Based on the posture HAND_POSTURE_POINTING.

2. OP_DESELECT (one-handed) — deselects an
object. Based on the posture
HAND_POSTURE_POINTING.

3. OP_TRANSLATE (one-handed) — translates

(moves) selected objects. Based on the posture

X Symposium of Virtual and Augmented Reality

Figure 2. Three hand postures utilized by the system:
HAND_POSTURE_OPEN (left), HAND_POSTURE_POINTING

(middle) and HAND_POSTURE_FIST (right).

215

HAND_POSTURE_FIST state (We say “exactly one”
because if both tracked hands are in the
HAND_POSTURE_FIST state, we will be performing
the OP_SCALE operation, see Section 3.3.4.).

The operation initiates at the moment the user changes
the state of one (and exactly one) of her hands into
HAND POSTURE FIST . The position of that hand’s
centroid is then the starting point of the translation
vector. User moves the hand about, and the selected
objects move along too. When the user decides the
translation is just right, she changes the hand’s state
into HAND_POSTURE_OPEN thus terminating the
OP_TRANSLATE operation.

3.3.3. Rotating objects. Operation OP_ROTATE
rotates all the currently selected objects (Figure 4). At
the moment when the application detects that both
hands have their index finger extended (thus entering
into the HAND_POSTURE_POINTING state), the
hands’ respective positions get memorized and defined
as two points A, B of the initial rotation axis AB, with
rotation center C at the middle point between those
two points:

 ABC = .
2

The user can now move her hands about (all the while
both hands stay in the HAND_POSTURE_POINTING
state), and the selected objects rotate too around C.
When the user decides to stop the rotation, she changes
both hands’ state into HAND_POSTURE_OPEN thus
terminating the OP_ROTATE operation.

3.3.4. Scaling objects. Operation OP_SCALE
scales all the currently selected objects (Figure 5). At
the moment both hands enter into the
HAND_POSTURE_FIST state, the centroids of both
hands get memorized and defined as two points A,B of
the initial scaling axis AB, with center C at the middle
point between those two points:

 ABC =
2

Now the user can move her hands (all the while both
hands stay in the HAND_POSTURE_FIST state), and
the selected objects scale in real-time around C, in the
directions defined by three axes inferred from AB.

When the user decides to stop the scaling, she changes
one (or both) hand’s state into
HAND_POSTURE_OPEN thus terminating the
OP_SCALE operation.

4. Vision-based hand recognition

In this section we describe how we used computer
vision techniques in order to detect, track and
recognize hands and their gestures in the workspace
defined in Section 3.1.

4.1. Calibrating the stereo rig

Before anything, the stereo rig must be calibrated i.e. its
parameters (intrinsic and extrinsic) determined. By
knowing these camera parameters, CV techniques we
adopted can reconstruct 3D position of our hands in
the workspace, using any triangulation method, for
example the Hartley- Sturm method [15].

The set K of intrinsic parameters for a single camera
includes two focal lengths (f , f), the principal pointx y

(o , o) and four distortion parameters (k , k , k , k):x y 1 2 3 4

K = {(f , f), (o , o), (k , k , k , k)}x y x y 1 2 3 4

We determined these intrinsic parameters using the
Zhang’s method [49]. For the calibration pattern we
used a 8 × 7 checkerboard pattern.

Having determined two sets K , K of intrinsic L R

parameters (for the left and right camera), we can
proceed to determining extrinsic parameters
(orientation and distance of a camera relative to the
pattern). For this, we now fix the 8 × 7 checkerboard
on the desk surface, and orient cameras so that they
both have the pattern in their field of view. Since we
already know both cameras’ intrinsic parameters, we
can now use a function from the OpenCV1 library to
compute just the extrinsic parameters (rotation matrices

X Symposium of Virtual and Augmented Reality

Figure 3. OP_TRANSLATE operation, based on one

HAND_POSTURE_FIST posture.

Figure 4. The two-handed OP_TRANSLATE operation is

based on two HAND_POSTURE_POINTING postures. An

example of CCW rotation is shown.

Figure 5. The two-handed OP_SCALE operation is based

on two HAND_POSTURE_FIST postures.

216

a public image database (CMU VASC Image
Database).

– Negative validation set D - we created an
additional negative validation set containing 100
images, using the same image database.

We then used OpenCV facilities to train boosted
cascades of weak classifiers in the following way:

1. we manually marked bounding rectangles for
hands in the positive training samples, and saved the list
of bounding rectangles in a file F.

2. before training, we set the required false positives
threshold to be 10- 6.

3. we ran the training tool on file F and on the two
training sets, the positive A and negative C. After the
training has completed, we obtained a 15-stage classifier
for posture HAND_POSTURE_OPEN with detection
rate of approximately 98%.

4. we successfully tested the classifier using sets B
and D.

5. we built the trained classifier into our prototype
application. An OpenCV function loads the classifier;
other function detects hands in posture
HAND_POSTURE_OPEN in the current video frame.
Note that we trained the classifier with our right hand;
for the left hand, before the recognition stage we
mirror the left side of the application area in order to
be able to use the same classifier to recognize the left
hand.

4.3. Hand segmentation based on human
skin color

The hand detection method described above not only
gives an answer whether there is or isn’t a hand in an
image, but also provides the bounding rectangle of the
image region containing the hand. Considering this
region of interest (ROI) only, we now make use of the
characteristic hue of human skin to determine the
pixels belonging to a hand. The reason we perform this
segmentation is to increase the hand tracking
robustness— see Section 4.4.

To this end, we used color histograms — both in the
detection stage (using HSV color space), and for the
learning (using normalized RGB histogram) of the
color of the hand that has just been detected, i.e. we
perform color learning immediately after the hand has
been detected (pre-tracking stage).

4.4. Hand tracking

After a hand has been detected in an image, and hand
pixels color-segmented using the properties of the

R and R , and translation vectors T and T) of both L R L R

cameras, relative to the pattern we’ve just fixed on the
desk’s surface. The extrinsic parameters R and T of the
stereo rig are then simply

 R = R R T = T - R TR L L R

These parameters R and T now completely determine
the geometry of our stereo rig and allow us to perform
absolute, Euclidean 3D reconstruction of the hand’s
3D position in the workspace shown in Figure 1.

4.2. Hand detection

With the stereo rig calibrated, we can now proceed to
detecting hands in the stereo input video stream. Here
detection serves for the purpose of initiating the
process of tracking, described in Section 4.4 below.

For this end, we define two “detection areas” (left and
right), one for each of both hands in the application
client area. By definition, if a hand is not being tracked,
its “detection area” gets shown on the application
screen as a red rectangle, at the predetermined location
and with a predetermined size. If the user now moves
her hand into the corresponding detection area, and
puts her hand into the predefined posture (we chose
HAND POSTURE OPEN as the tracking initialization
posture), the system will detect the hand, output the
corresponding bounding rectangle and start tracking
the hand within this bounding rectangle.

As we’ve already mentioned, we chose the Viola-Jones
method as our detection method, which requires
training and validation using four sets of samples:

• Two positive sample sets:

– Positive training set A - for this set we moved our
right hand in posture HAND_POSTURE_OPEN
randomly in the workspace, approximately under the
natural inclination (see Figure 2 left), under our lab’s
standard lighting conditions, and took 1000 photos
containing the hand. Note that “approximately natural
inclination” indicates that we included a number of
shots of hands rotated to a degree relative to all three
axes, in order to increase the robustness of the
classifier.

– Positive validation set B - under the same
conditions as above, we took additional 100 photos to
be used as validation images after the training is
complete.

• Two negative sample sets:

– Negative training set C - for the negatives, we
created a set of 1000 images that do not contain
hands in posture HAND_POSTURE_OPEN , using

X Symposium of Virtual and Augmented Reality

ô
ô

* www.intel.com/technology/computing/opencv/

217

human skin, we start tracking it. For tracking we chose
the method proposed by K¨olsch in [20], which in turn
is based on Kanade-Lucas-Tomasi (KLT) features, also
called “good features to track”. We chose this method
because it is robust and can track hands in complex,
cluttered environments.

KLT features are based on the early work done in [25],
and then developed further in [46] and [41]. To increase
robustness, the “Flocks of Features” approach to
tracking by K¨olsch adds two additional properties to
simple KLT tracking:

• tracked KLT features never exceed a predetermined
maximum distance from the median of all tracked KLT
features, and

• tracked KLT features can never be closer to each
other than a predetermined minimum distance.

Differently from the application showcased by Kölsch
in [20], which is able to track only one hand using just
one (monocular) camera, our application: 1)
implements four fully independent object trackers (four
due to each camera tracking up to two hands), and 2)
uses stereo disparity for 3D reconstruction of the
hand’s position in 3D workspace.

We now clarify what is meant by “tracking a hand”.
After a hand has been detected as explained in Section
4.2 in both cameras’ views, and hand pixels color-
segmented, up to N (for example, 100) KLT features
are being collocated on the hand (i.e. on the blob
defined by the detected hand’s pixels). By averaging in
each frame the 2D positions of all of these N features,
we obtain a mean (average) position P of the hand
being tracked. Therefore the 2D position P is the
output of the tracking routine. Since we can have up to
two active (tracked) hands, and each hand gives rise to
one triangulated 3D position, we can have up to 2×3 =
6 DoF at our disposal to implement spatial
manipulation operations.

3D reconstruction (triangulation). Finally, with the
two corresponding 2D points u, u0 tracked (point u in
the left camera view, point u0 it the right camera view,
we can compute, in real time, the global 3D position x
of a hand (either the left or the right hand) in the
workspace. For this we use the triangulation method by
Hartley and Sturm [15], a fast, non-iterative method
that always finds the global optimum under the
assumption of Gaussian noise present in the input
images.

4.5. Hand posture recognition

The last step in the CV pipeline is the hand posture
recognition, which enables us to implement a simple

X Symposium of Virtual and Augmented Reality

static gesture recognition. For hand posture
recognition, we again use the Viola-Jones method. For
this we repeated the training process explained in
Section 4.2, only with positive samples containing other
postures besides HAND_POSTURE_OPEN.

4.6. Tests

The software application was developed utilizing the
C++ language, OpenCV computer vision library and
OpenGL graphics library. All experiments were done
on a personal computer equipped with an 2.66 GHz
dual core processor, 2 GB RAM, and two web cameras
connected to USB 2.0 ports grabbing 30 color frames
per second at the resolution of 320 × 240 pixels.

Using the system described, we achieved trackingrelated
latencies from 7 to 30ms with just one hand tracked
(i.e. with two trackers active), and up to 60ms with both
hands tracked (i.e. with all four trackers active). Taking
the application as a whole, i.e. taking all the other
system processes into consideration, we achived frame
rates from 8 to 15 fps.

We’ll now assess qualitatively estimation accuracy for a
hand’s position. Since the difference between hand’s
estimated position and ground truth is difficult to
measure for an uninstrumented hand, we give here the
figures demonstrating the hand’s trajectory in space,
from which we can deduce visually the amount of
noise present in estimated positions. We trace three
simple figures in space with the right hand: a line, a
circle and an “eight” figure (Figure 6).

5. Discussion and further work

We presented an application where the user can employ
intuitive manipulative hand gestures in order to
manipulate 3D virtual objects. Considering the good

Figure 6. 3D plot of estimated hand positions, obtained
by tracing a line, a circle and an “eight” in the workspace.

218

X Symposium of Virtual and Augmented Reality

latencies and fps rates we achieved, our system fulfills
the requirements of an interactive system.

Since we chose a robust and fast method for hand
detection, we are not limited to physical setups as
shown in Figure 1 — the system can perform the
detection, for example, in outdoors environment too.
The same holds for the tracking method we chose —
due to its robustness, we can track hands in much more
complex and more cluttered environments.

Due to these properties, future work includes
expanding the system to work in diverse environments,
and not just in the highly controlled environment
shown in Figure 1. Further, we would like to increase
the expressiveness of direct manipulation by including
fingers into the manipulation operations. This entails
tracking not only the 2-DoF point (global hand
position) in the image plane, but some type of model-
based tracking capable to track fingers as well. Finally,
we would like to augment the set of manipulation
operations by adding more complex, physically based
manipulation and deformation operations, like
“attract”, “repel”, “cut”, “shear” and similar.

Acknowledgments

This work was performed at Tecgraf/PUC-Rio, a
laboratory mainly funded by PETROBRAS.

6. References

[1] V. Athitsos and S. Sclaroff. 3d hand pose estimation
by finding appearance-based matches in a large database
of training views. Technical Report BU-CS-TR-2001-
021, Computer Science Department, Boston University,
Boston, USA, 2001.

[2] F. Bettio, A. Giachetti, E. Gobbetti, F. Marton, and G.
Pintore. A practical vision based approach to
unencumbered direct spatial manipulation in virtual
worlds. In Eurographics Italian Chapter Conference,
Conference held in Trento, Italy, February 2007.
Eurographics Association.

[3] R. A. Bolt. put-that-there: Voice and gesture at the
graphics interface. In SIGGRAPH ’80: Proceedings of
the 7th annual conference on Computer graphics and
interactive techniques, pages 262–270, New York, NY,
USA, 1980. ACM.

[4] D. A. Bowman and L. F. Hodges. An evaluation of
techniques for grabbing and manipulating remote objects
in immersive virtual environments. In Symposium on
Interactive 3D Graphics, pages 35–38, 182, 1997.

[5] G. R. Bradski. Computer vision face tracking for use
in a perceptual user interface. Intel Technology Journal,
(Q2):15, 1998.

[6] V. Buchmann, S. Violich, M. Billinghurst, and A.
Cockburn. Fingartips: gesture based direct manipulation

in augmented reality. In GRAPHITE, pages 212–221,
2004.

[7] J. Butterworth, A. Davidson, S. Hench, and M. T.
Olano. 3dm: a three dimensional modeler using a head-
mounted display. In SI3D ’92: Proceedings of the 1992
symposium on Interactive 3D graphics, pages 135–138,
New York, NY, USA, 1992. ACM.

[8] J. H. Clark. Designing surfaces in 3-d. Commun.
ACM, 19(8):454–460, 1976.

[9] L. D. Cutler, B. Froehlich, and P. Hanrahan. Two-
handed direct manipulation on the responsive
workbench. In Symposium on Interactive 3D Graphics,
pages 107–114, 191, 1997.

[10] R. Dachselt and M. Hinz. Three-dimensional
widgets revisited - towards future standardization. In
Proceedings of the Workshop ’New Directions in 3D
User interfaces’, 2005.

[11] R. Dachselt and A. Huebner. Virtual environments:
Three dimensional menus: A survey and taxonomy.
Comput. Graph., 31(1) :53–65, 2007.

[12] M. F. Deering. Holosketch: a virtual reality
sketching/ animation tool. ACM Trans. Comput.-Hum.
Interact., 2(3): 220–238, 1995.

[13] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In European Conference on Computational
Learning Theory, pages 23–37, 1995.

[14] Y. Guiard. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a model,
1987.

[15] R. Hartley and P. Sturm. Triangulation. 68(2):
146–157, November 1997.

[16] K. Hinckley, R. Pausch, J. C. Goble, and N. F.
Kassell. A survey of design issues in spatial input. In
UIST ’94: Proceedings of the 7th annual ACM
symposium on User interface software and technology,
pages 213–222, New York, NY, USA, 1994. ACM.

[17] M. Isard and A. Blake. Condensation – conditional
density propagation for visual tracking. International
Journal of Computer Vision, 29(1):5–28, 1998.

[18] M. Isard and A. Blake. ICONDENSATION:
Unifying lowlevel and high-level tracking in a stochastic
framework. Lecture Notes in Computer Science,
1406:893–908, 1998.

[19] P. Kakumanu, S. Makrogiannis, and N. Bourbakis.
A survey of skin-color modeling and detection methods.
Pattern Recogn., 40(3):1106–1122, 2007.

[20] M. Kolsch and M. Turk. Fast 2d hand tracking with
flocks of features and multi-cue integration. In
CVPRW’04: Proceedings of the 2004 Conference on
Computer Vision and Pattern Recognition Workshop
(CVPRW’04) Volume 10, page 158, Washington, DC,
USA, 2004. IEEE Computer Society.

219

X Symposium of Virtual and Augmented Reality

X Symposium of Virtual and Augmented Reality

[21] M. Kölsch and M. Turk. Robust hand detection. In
FGR, pages 614–619, 2004.

[22] M. Krueger. Artificial Reality II. Addison-Wesley:
Reading, MA, 1991., second edition, 1991.

[23] W. Krueger and B. Froehlich. The responsive
workbench [virtual work environment]. Computer
Graphics and Applications, IEEE, 14(3):12–15, May
1994.

[24] J. Liang and M. Green. Jdcad: a highly interactive
3d modeling system. Computers & Graphics,
18(4):499–506, 1994.

[25] B. Lucas and T. Kanade. An iterative image
registration technique with an application to stereo
vision, 1981.

[26] D. P. Mapes and J. M. Moshell. A two-handed
interface for object manipulation in virtual
environments. Presence, pages 403–416, 1995.

[27] M. Mine. Virtual environment interaction
techniques. Technical Report TR93-005, UNC Chapel
Hill, Dept of Computer Science, North Carolina, USA,
1995.

[28] M. R. Mine. Working in a virtual world: Interaction
techniques used in the chapel hill immersive modeling
program. Technical Report TR96-029, 12, 1996.

[29] M. R. Mine, F. P. Brooks, Jr., and C. H. Sequin.
Moving objects in space: Exploiting proprioception in
virtualenvironment interaction. Computer Graphics,
31(Annual Conference Series):19–26, 1997.

[30] H. Nishino, K. Utsumiya, and K. Korida. 3d object
modeling using spatial and pictographic gestures. In
VRST, pages 51– 58, 1998.

[31] E. Ong and R. Bowden. A boosted classifier tree for
hand shape detection, 2004.

[32] V. Pavlovic, R. Sharma, and T. Huang. Visual
interpretation of hand gestures for human-computer
interaction: A review, 1997.

[[33] I. Poupyrev, M. Billinghurst, S. Weghorst, and T.
Ichikawa. The go-go interaction technique: non-linear
mapping for direct manipulation in vr. In UIST ’96:
Proceedings of the 9th annual ACM symposium on User
interface software and technology, pages 79–80, New
York, NY, USA, 1996. ACM. [34] F. Quek. Eyes in the
interface. IVC, 13(6):511–525, August 1995.

[35] F. K. H. Quek. Toward a vision-based hand gesture
interface. In VRST ’94: Proceedings of the conference on
Virtual reality software and technology, pages 17–31,
River Edge, NJ, USA, 1994. World Scientific Publishing
Co., Inc.

[36] J. M. Rehg and T. Kanade. Visual tracking of high
DOF articulated structures: an application to human
hand tracking. In ECCV (2), pages 35–46, 1994.

[37] E. Sachs, D. Stoops, and A. Roberts. 3-draw: a three
dimensional computer aided design tool. Systems, Man

and Cybernetics, 1989. Conference Proceedings., IEEE
International Conference on, pages 1194–1196 vol.3,
14-17 Nov 1989.

[38] S. Schkolne, M. Pruett, and P. Schr¨oder. Surface
drawing: creating organic 3d shapes with the hand and
tangible tools. In CHI ’01: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 261–268, New York, NY, USA, 2001. ACM.

[39] S. Schkolne and P. Schroder. Surface drawing.
Technical Report CS-TR-99-03, Pasadena, CA, USA,
1999.

[40] C. Shaw and M. Green. THRED: A two-handed
design system. Multimedia Systems, 5(2):126–139,
1997.

[41] J. Shi and C. Tomasi. Good features to track. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’94), Seattle, June 1994.

[42] N. Shimada, K. Kimura, and Y. Shirai. Real-time 3-
d hand posture estimation based on 2-d appearance
retrieval using monocular camera. ratfg-rts, 00:0023,
2001.

[43] B. Shneiderman. Direct manipulation. a step
beyond programming languages. IEEE Transactions on
Computers, 16(8):57–69, August 1983.

[44] P. S. Strauss and R. Carey. An object-oriented 3d
graphics toolkit. SIGGRAPH Comput. Graph.,
26(2):341–349, 1992.

[45] I. Sutherland. Sketchpad: A man-machine graphical
communication system. PhD thesis, Massachusetts
Institute of Technology, January 1963.

[46] C. Tomasi and T. Kanade. Detection and tracking of
point features. Technical Report CMU-CS-90-166,
Carnegie Mellon University, USA, Apr. 1991.

[47] P. Viola and M. Jones. Robust real-time object
detection. International Journal of Computer Vision,
2002.

[48] S. Zhai. User performance in relation to 3d input
device design. SIGGRAPH Comput. Graph.,
32(4):50–54, 1998.

[49] Z. Zhang. A flexible new technique for camera
calibration. IEEE Trans. Pattern Anal. Mach. Intell.,
22(11):1330–1334, 2000.

220

