Dynamic Adjustment of Stereo Parameters for Virtual Reality Tools
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Abstract—Due to emerging new technologies in the
development of interactive 3D applications (eg games and
virtual reality), stereoscopic visualization is becoming a
common feature. However, this fact does not solve some
problems (nausea and headaches - cybersickness) related with
the generation of this type of visualization. Some parameters
have to be carefully chosen to create a comfortable stereo view,
for example, eye distance, zero parallax plane distance, and the
treatment of partially clipped objects in negative parallax. This
paper presents a technique based on a CubeMap structure to
dynamically adjust stereo parameters during the usage of two
virtual reality tools in multi-scale 3D scenarios.
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I. INTRODUCTION

Currently new stereoscopic technologies are increasingly
present in our lives. What was once just fun colored
glasses, today are modern solutions that allow you to view
3D graphics without loss of visual characteristics such as
brightness or color.

Besides cinema’s entertainment, stereoscopic visualization
reached new areas, among them are games and virtual
reality. These two areas share the use of interactive 3D
graphics, which enables users to change the virtual scenes
at any time.

When someone looks at an object in the real world,
the eyes focus on the object and also converge (turning
an eye toward the other) on it. After the process of
focusing and convergence of the eyes, the brain fuses
the two images (from the left and right eyes) into one,
allowing viewing stereoscopic or depth. In Figure 1 there
are the basic elements to understand the stereoscopic
configuration process inside a 3D interactive application.
Often an application needs to set two parameters: eye
distance and fusion distance. The first parameter is used as
an offset to create two different virtual view points, one for
the right eye and other for the left.

Since the parallax is the distance between the
corresponding points from the images of the right and
left eyes, three important elements are identified based on
the value of this distance: zero parallax plane, positive
parallax region and negative parallax region. These different
parallaxes indicate different distances from the viewer and
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Figure 1. Stereoscopic elements.

the second parameter refers to it. The fusion distance is the
position of the zero parallax plane. A virtual object near this
plane appears to be in plane of the screen, objects inside the
positive parallax appear to be behind the screen, and those
which appear to be in front of the screens belong to the
negative parallax region.

Objects with high parallax values (positive or negative)
cause discomfort because the eyes have a hard time
converging on them. Very often this is treated using the
clipping planes, i.e., near plane is used to decrease the
negative parallax region while the far plane is used to
decrease the positive parallax region.

The benefits of stereo are well known [1], [2], [3], but the
development of applications of this nature must take care to
avoid problems that could cause discomfort to users [4], [5],
[6], such as nausea, headaches, etc. One of the causes of
these efects is the convergence / accommodation problem
[7], [8]. When someone looks at a screen or monitor, the
eyes are accommodated on the plane of the screen, but
are converged using the parallax between the left and right
images. For some people, this is perceived as discomfort. To
minimize the negative effects of this problem, convergence
plane must be positioned on the screen or monitor, and one
should carefully choose the distance between the eyes to
avoid a high disparity in the projected images.

Another important problem is the conflicts between the
clipped objects and parallax depth [9]. If an object has a



negative parallax and is being blocked (partially clipped) by
the borders of the screen, the sensation of stereoscopic depth
is seriously impaired. This problem occurs because of the
conflict between the resulting three-dimensional depth of the
negative parallax interposed between the scene objects and
the screen. One solution to this problem is to place the near
plane on the zero parallax plane position, but this approach
cancels any visualization in the negative parallax region.

In virtual reality applications, often these problems are
found in tasks such as navigation or object manipulation.
For instance, while navigating in a 3D scene, composed by
objects of different scales (multi-scale environment [10]),
if the eye distance is maintained constant throughout the
scenario it will cause problems of convergence. This is
explained by the fact that an eye distance X used in a virtual
room, can become unreasonably large if the user navigates
into places smaller than this room. In these others places, the
unmodified eye distance becomes too separated and resulted
parallax becomes larger.

The objective of this work is to propose a solution capable
of dynamically adjusting the stereo parameters in virtual
reality applications. The techniques presented here are based
on a data structure called cubemap, initially proposed by
[11]. Also some virtual reality navigation techniques are
discussed, since these have a large influence in the stereo
adjustment we propose.

This paper is structured in the following manner: section
IT presents related work. Section III briefly describes the
cubemap structure. Section IV describes improvements made
to some navigation techniques that are important for the
stereo parameter’s dynamic adjustment, which is presented
in section V. Finally, section VI concludes the paper.

II. RELATED WORK

The attempt to automatically adjust stereo parameters was
an object of study for several authors. In their majority these
works use the scene’s depth information to establish the eye
separation and the zero parallax plane.

Jones et al [12] created a method that takes into account
the geometry of the real world to determinate the stereo
parameters. Based on previous studies, they established the
maximum depth interval for a given display in which the
majority of people would be capable of merging two images.
With this data in hands, along with the distance between the
eyes of a real person and their distance to the screen, they
are capable of calculating the virtual eye separation. Their
idea is to map the virtual world scene to the real world, in
a way that the relationship between the disparities of the
objects closest and furthest to the camera stays as close as
possible to the relationship existing in the real world.

In his work Holliman [1] uses the same concept as [12],
but introduces the idea of an interest region. Instead of
linearly mapping the scene to the noticeable depth interval,
Holliman creates three regions: the first, closer to the near

clipping plane; the second, containing the zero parallax
plane; and the third, closer to the far clipping plane. The
second region is the largest, and concentrates the objects of
interest in the scene. With this, Holliman has the advantage
of reducing the distortion caused by the method presented in
[12], which uses linear mapping. However in the two other
regions there still is distortion. Furthermore, this method
depends on the display type and environment that is being
used.

Ware et al [13] conducted experiments to identify how
users adjust stereoscopy parameters and how those users
would react to the dynamic adjustment of those values.
First, tests were performed with users to know what the
maximum rate of changes in stereo that a person could
support. Next, the users were asked to manually adjust the
stereo parameters until the visualization was comfortable.
With this data, Ware et al created a two pass algorithm
to appropriately adjust the virtual eye separation and zero
parallax plane distance. This method takes into account the
direct input from users who participated in the tests and,
because of this, does not guarantee appropriate behavior for
all people.

III. THE CUBEMAP

The purpose of the cubemap, as proposed by McCrae et al.
[11], is to provide information about the virtual environment
at a given moment. Given a camera position, this structure
is constructed from 6 rendering passes, each in a different
direction in order to cover the whole environment. The FOV
of the camera is 90°, therefore the combination of the 6
resulting frustums yields a cube. At each pass, a shader is
used to calculate the distance from the fragment generated
to the camera. The computed distance values are normalized
in relation to the near and far values, and stored in the alpha
channel of the positions related to the fragments. Rendering
is made in 32-bit float images. Such procedure is performed
at each frame, or each time the camera position changes.
The image resolution used for rendering does not have to
be high, since only an estimation needs to be obtained.

In our implementation of the cubemap, we also use the
RGB channels of the images to store a unit vector pointing
from the position of the generated fragment to the camera.
This simplifies the construction of the force map we use to
avoid collisions (section IV-B).

IV. NAVIGATION TECHNIQUES

In this section we will present three navigation techniques.
Althouth they are not directly connected to stereoscopy, they
are important to avoid some problems in this sense. These
techniques were first proposed by Maccrae et al [11] and
were evaluated by [14].



A. Fly with Automatic Speed Adjustment

Navigation speed is related to the scale of the
environments to be explored. Larger environments require
faster speeds, while the opposite is more convenient on
smaller scales.For instance, the camera speed is expected
to be higher when navigating from one planet to another,
but much lower when navigating from a city to another.

In several applications, the scale of the virtual world
does not change much and is well known, allowing a fixed
navigation speed to be used. This is the case of many games,
for instance. Multiscale environments, however, require a
way to estimate the current scale in order to adjust the
navigation speed accordingly.

McCrae et al. [11] use minDist, the minimum distance in
the cubemap, as an estimation to determine the current scale
the camera is at. Based on that, first we developed a fly tool
which could be controlled by the user by pressing the arrow
keys of the keyboard to move the camera while guiding
the direction of the motion with the mouse movements.
Navigation speed was adjusted automatically according to
equation 1.

Viav = k minDist @)

where V4, is the adjusted navigation speed and k is a
parameter of unit 1/s that causes an increase or reduction
in the acceleration applied to the camera. We noticed that
two situations caused discomfort and disorientation for some
users. The first situation is when k is too high. In this
situation, when users move away from the geometry, the
camera accelerates too quickly, producing an effect similar to
teleporting and making users lose their location. The second
situation happens for low & values, which can considerably
increase the time required to reach the intended destination,
making the navigation tedious. Thus, the value of k£ should
be selected in a way that it balances these extreme situations.

B. Collision Detection and Treatment

Not allowing the camera to cut through objects in a virtual
environment can be crucial in some situations. In immersive
environments, for example, colliding with an object can
halt the immersion and leave the user disoriented. When
stereoscopy also exist, the collisions could break the stereo
effect.

McCrae et al. [11] used information from the distance
cube to obtain a collision factor that causes the camera to
smoothly dodge the closest objects. The idea is that each
point in the cubemap located at a distance smaller than a
given radius r produces a repulsion factor given by:

F(x,y,i) = w(dist(z,y,1)) norm(pos(x,y,i) — camPos)
) ()
w(d) = e 3)

where F'(x,y,1) is the repulsion factor produced by point
p referring to position (z,y) of image ¢ of the cubemap.

Value dist(x,y,1) is the distance from p to the camera. The
term pos(zx,y,i) is the position of p in world space, and
camPos is the camera position. Function norm(v) indicates
the normalized vector of v. In equation 3, ¢ is a parameter
that indicates the smoothness of the collision factor. The
higher o is, the smoother will be the calculated factor.
Considering a spherical region with radius r and centered
on the camera position, equation 3 results in determining a
collision penalty that grows exponentially from the moment
when point p enters this region.

The repulsion factors referring to equation 2 are computed
for each position in the cubemap where d < r and then are
combined into a single factor:

1
collision 6 cubeResQ : (.’137 Y, Z) ( )
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where cubeRes is the resolution of the distance cube.

When we applied the factor given by equation 4 to the
camera, the fly tool behaved as described in the previous
section: as the camera moves, F_.,jision €nsured that it
smoothly deviate the objects that crossed its path. The user
then can navigate through the environment without worrying
about choosing a collision-free path as the system is in
charge of this task.

C. Automatic adjustment of clipping planes

The non-configuration of the clipping planes can lead
to problems ranging from the undue clipping of objects
to appearance of artifacts on objects distant from the
camera. When in stereo, these problems become even
worse, becoming more evident to the users. Therefore the
correct adjustment of the clipping planes is an important
requirement to create a correct stereo effect.

Maccrae et al [11] developed a technique of automatic
adjustment of the clipping planes. It consists in using the
mainDist information available in the CubeMap to select
optimal values for the near and far parameters. Their idea
is to maintain the visible geometry always between near and
far. At each frame the need to update the clipping plane is
checked based on the following equations:

an if minDist < An
n=1< pBn if minDist > Bn 5)
n otherwise

f=0Cn (6)

In the 5 and 6 equations, n is the near value, f is the far
value, minDist is the minimum distance (not normalized)
stored in the distance cube, «, 3, A, B are constants
that indicate when and how the clipping planes should be
adjusted. In the implementation present in [11], as well as in
our test applications, the values o = 0.75, 8 = 1.5, A =2,
B = 10 yielded satisfactory results. Finally, C' expresses the
ratio between n and f. C' should be chosen so that objects
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Figure 2. Automatic adjustment of clipping planes [11]

near far plane will not be clipped. At the same time C' should
not be too high or else that would cause a loss of precision in
the depth buffer. In our applications, C' was fixed at 10000.

The figure 2, taken from [11], illustrates how the equations
5 and 6 act on the values of the clipping planes. In case
(a), the closest point in the scene, represented by a star,
is located in the [An, Bn| interval, which doesn’t require
any modification to the clipping planes. This is the ideal
case. In case (b), minDist has become smaller than An,
in other words, it is closer to the near plane. The clipping
planes are then adjusted to lower values to ensure, with some
safety margin, that the scene’s geometry stays inside the
view frustum. Similarly in case (c) the clipping planes are
adjusted to larger values, since minDsist is further away
from the camera ( minDist > Bn ).

V. DYNAMIC ADJUSTMENT OF STEREO PARAMETERS

In our applications, we have primarily two ways that
the user can interact with the scene: one is using the

fly navigation tool and the other is using the examine
manipulator. As each on of these techniques has its
own characteristics, we developed two types of dynamic
adjustment of stereo parameters.

A. Stereo Adjustment for Fly

As seen in previous sections, a large part of the navigation
parameters are adjusted based on the lowest value of the
CubeMap at a certain moment. Our approach is to use this
value to dynamically adjust the stereo parameters as well:

Distpzero = minDist @)
Eyesep = k * minDist (8)

Where Disty.ero is the distance from the camera to the
parallax zero plane, minDist is the lowest value in the
CubeMap, Eye,, is the virtual distance between the eyes
and k is a constant. This adjustment is dynamically made
when fly navigation tool is active.

The 7 equation creates a stereoscopy effect where the
scene’s objects are in positive parallax most of the time.
This behavior is similar to the one observed in [13] and
is based on providing a comfortable depth sensation to the
user.

The approach used here is different from the one in
[13] since the latter uses the nearest point based on a
scan in the main camera’s depth buffer. We use minDist,
which represents the nearest point to the camera taking into
consideration a 360° view. This implies that minDist could
refer to a point that is not localized in the user’s field of view.
The use of minDist may not seem to make sense, since the
stereo parameters would be adjusted based on what the user
can see. However, the way the fly tool works may create
some problems that cannot be solved with only the front
camera’s depth information.

As described previously, the fly tool allows the user to
rotate the camera by 360° on it’s own axis. Because of that
an object that previously wasn’t in the camera’s field of view
may abruptly appear in case the rotation is fast.

In his work, [13] performed tests that show that there
is a maximum rate at which the stereo parameters may
be adjusted without being noticeable. To respect this
restriction they interpolated the parameters to smoothen the
consecutive adjustments so the user would not notice it.
This smoothening, however, conflicts with the previous note:
when an object abruptly appeared in the field of view the
user could see two separate images during the time that the
parameters were being interpolated. For this reason, [13]
abandoned the interpolation.

When minDist is used, the previously described
problems do not occur. Because minDist represents a
global minimum distance to a certain camera position,
the camera’s rotation does not cause an abrupt change
to the stereo parameters, due to minDist not being



changed. Furthermore, the appearing of objects in the
camera’s frustum does not break the stereoscopy because
the parameters have already been adjusted taking into
consideration the possibility of that object entering the
frustum. In other words, using minDist as a base
for the stereoscopy’s dynamic adjustment corresponds to
anticipating actions the user may take. This feature is an
advantage when we take into account that virtual reality
applications are dynamic in the sense of providing the user
with tools for navigation and manipulation. This is not the
case, for example, of stereoscopy in other applications, such
as cinema, where the parameters may be adjusted according
to what the movie’s director wants people to see.

Due to the stereo parameters maximum update rate
restriction we decided to perform adjustments only when
the clipping planes are adjusted. This way every time the
camera reaches a point where the clipping planes need to
be adjusted, the stereo is also adjusted and all objects in
the scene are placed in positive parallax. From this moment
some objects may enter in the negative parallax region
if the camera moves closer to the position that yielded
manDist. This may lead to objects in negative parallax
being clipped by screen borders. We consider this problem
irrelevant, however, since they occurs for a briefly. Also, our
applications are built for immersive systems such as caves
and large screens. Dueto the size of these environments, this
effect can be ignored since these areas are almost always out
of the user’s field of view.

The eye separation is adjusted according to the 8 equation.
The idea of this is to consider the current scale to set Fyeep.
For example, if the camera is in a room scale, it might be
reasonable that Eye,., have a value that is in accordance
to the eye separation of a real person. But if the camera is
viewing an entire planet, then Eye,., should be reconfigured
to larger value. With the adjustment provided with equation
8, Fyegc, is appropriately updated as the camera moves in
the scene. The k constant is choosed to provide the user with
a comfortable depth sensation. In our tests we discovered
that k£ = 0.01 provides a satisfactory effect.

Finally, it is important to mention the relation between the
automatic navigation velocity adjustment and the collision
detection described in sections IV-A and IV-B with the
dynamic stereo adjustment described here.

One of the requirements for this adjustment to work is that
the variation of values in the cubemap throughout successive
frames should not be high, so we can guarantee that values of
manDist will have a smooth variation. This is only achieved
thanks to the continued adjusting of the navigation velocity,
which avoids the camera stuttering. The figure 3 shows the
curve generated by the successive values of minDist for a
given camera path when the velocity adjustment is activated.
It is possible to observe that the curve is smooth and shows
no peaks. This also contributes to the proper functioning of
the clipping planes and collision detection.
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Figure 3. Graph representing the behavior of the minDist curve.

The collision detection is also fundamental to the stereo’s
correctness. Without this the camera would be able to pass
through objects. This would cause objects to be clipped
by the near plane, causing a break in the stereo and,
consequently, discomfort to the user. The collision detection
described in IV-B avoids that this happens, causing the
camera to smoothly swerve around objects in it’s path.

An implementation of the fly tool with automatic
adjustment was done in Unity3D [15]. In the figure 4 there
is a screenshot of the developed application showing an
object (castle tower) partially in negative parallax. Another
screenshot was taken to view the parallax in relation to the
global minimum, in this case, placing it before the castle
(Figure 5).

B. Stereo Adjustment for Examine

The examine tool is based on rotating around a target
object, an object in which one is interested in visually
inspecting. The authors of this work believe that for this
it is necessary to explicitly indicate an object, which makes
it easier to adapt the stereoscopy parameters using object
attributes such as position and bounding box.

In this approach we decided to position the zero parallax
plane on the object’s center. This creates an effect where
half of it is coming out of the screen and half is going into
it. Besides that, the interaxial eye distance is determined
assuming a certain constant multiplied by the chosen object’s
bounding box. For our tests we used a value of 0,18 for the
constant.

In figure 6 are some images taken from Environ
software [16] where this approach has been implemented. A
representation of the viewing cone has been created inside
the 3D scenario, and this representation is scaled according
to the chosen object. Along with this scale adjustment there
is the repositioning of the parallax plane. The use of a



Figure 4. Fly tool on Unity3D.

linear interpolation softens the transition of the stereoscopy
parameters from one chosen object to another. This was
proven necessary due to the different size of objects in the
same scene.

VI. CONCLUSION

Development of applications with stereoscopy support
requires important care, or else physiological problems may
be caused to the users such as nausea and headaches.
Depending on the 3D content that will be shown, dynamic
adjustment of stereoscopy parameters may be necessary so
that the visualization remains comfortable in all points of
the 3D scene, for example, in multi-scale environments.

This work presented some approaches of stereoscopy
adjustment in two tools used in virtual reality applications:
fly and examine. Both respectively contemplate the
navigation and 3D manipulation tasks. For the fly tool a
CubeMap structure was used to automatically adjust the
stereoscopy parameters. Basically, the structure supplied a

Figure 5. Fly tool on Unity3D.

global minimum distance for the user’s camera, and this
distance is used as basis to position the zero parallax
plane, and likewise the eye distance. This approach was
implemented in an application developed using Unity3D.

For the examine tool we described how to obtain a
comfortable scale to expand the eye distance and zero
parallax distance. It was assumed, in this case, that the
user would choose an object and then, based on that, the
bounding box size was used as reference to determine the
eye distance. Finally the zero parallax plane is placed in the
same position as the chosen object.

We believe that our approach produces a comfortable
stereo effect and helps users in the sense that they do not
need to configure the parameters. In our primary tests we
found that the graphical results were well received by users.
As future work, we are planning to conduct more accurate
usability tests to evaluate our solution.
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Figure 6. Examine tool on Environ.
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