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Abstract. Many companies have been creating virtual teams that bring together 
geographically dispersed workers with complementary skills, increasing the demand for 
CSCW (Computer Supported Cooperative Work) applications. In order to facilitate the 
development of a wide range of these collaborative applications, we should offer a 
general architecture that is adaptable to different situations, tasks, and settings in a 
flexible way. This work investigates how a distributed workspace environment can 
support disaster management, involving distributed collaborative technical teams. We 
first identify the requirements for the distributed workspace, from the stakeholders 
involved in a disaster, and analyse the commercial emergency systems available. We then 
elaborate a multi-perspective metamodel to support configuring this collaborative virtual 
workspace. Finally a prototype for oil & gas offshore structures disaster management 
based on our multi-perspective metamodel is derived and an HLA (High Level 
Architecture) compliant implementation for this prototype is developed as a proof-of-
concept of the metamodel. 

Keywords: computer-supported cooperative work, metamodel, virtual workspaces, oil & 
gas. 

Resumo. Várias companhias têm criado equipes virtuais para agregar trabalhadores de 
diversas especialidades que estão dipersos geograficamente, aumentando a demanda por 
aplicações CSCW (Computer Supported Cooperative Work). De modo a facilitar o 
desenvolvimento de uma ampla gama destas aplicações colaborativas, devemos prover 
uma arquitetura genérica que seja adaptável a diferentes situações, tarefas e 
configurações de um modo flexível. Este trabalho investiga como um ambiente de 
trabalho distribuído pode apoiar o gerenciamento de desastres, envolvendo equipes 
técnicas colaborativas distribuídas. Primeiramente, identificamos os requisitos para o 
espaço de trabalho distribuído, a partir dos atores envolvidos em um desastre, e 
analisamos os sistemas de emergência comerciais disponíveis. Em seguida, elaboramos 
um metamodelo multi-perspectiva para auxiliar a configurar este espaço de trabalho 
virtual colaborativo. Finalmente, derivamos, a partir do metamodelo, um protótipo para 
o gerenciamento de desastres de estruturas offshore de óleo & gás e desenvolvemos uma 
implementação aderente ao padrão HLA (High Level Architecture) para este protótipo, 
como prova de conceito deste metamodelo. 

Palavras-chave: trabalho colaborativo auxiliado por computador, metamodelo, espaços 
de trabalho virtuais, óleo & gás. 
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1 
Introduction 

There are serious risks involved in running offshore units, with many 

reported disasters. These disasters can not only cause fatalities and serious 

environmental impacts, but also have strong impact on business. Companies can 

lose billions of dollars when they lose an offshore unit and further billions of 

dollars as a consequence of the halt in oil production. For example, Petrobras 

would lose US$ 700 million by losing the P-40 offshore platform and more than 

US$ 6 billion by failing to accomplish its three-year production of 150,000 barrels 

of oil. 

Among the worst disasters there was the Exxon Valdez oil tanker in Alaska, 

USA, in 1989, with direct cleanup costs of 4 to 8 billion dollars and 10 years of 

efforts to allow the ecosystem to revert the area back to its natural state. Similarly, 

the disaster of the Piper Alpha oil platform in 1988 in the North Sea caused 167 

casualties. 

Petrobras also faced two major accidents in the beginning of this decade. In 

2001, P-36, the largest semi-submersible platform in the world (40-story high, 

weighing 31,000 tons), sunk, killing 11 employees and ceasing a daily production 

of 84,000 barrels of oil and 1.3 million cubic meters of natural gas. In 2002, the P-

34 FPSO (Floating Production, Storage and Offloading) unit, with a daily 

production of 35,000 barrels and a storage capacity of 58,000 m3 of oil, weighing 

62,000 tons, had a stability problem and almost sunk, immediately ceasing its 

operation. This time, Petrobras managed to rescue the unit without loss of lives. 

As a direct result of these huge accidents, oil & gas companies usually take 

measures in two main directions: (i) one that has the objective of correcting and 

improving operational procedures; and (ii) a second one that has the aim of 

planning a set of projects to improve the technological level of the company in 

order to minimise the risk of future accidents. Also the organisational learning 

process of these companies has improved the protection level of the environment 
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and guaranteed high standards of operational security for both employees and 

physical installations (Costa, 2004). 

Considering the second aspect mentioned above and the necessity of 

minimising disaster impacts, we have verified the need to develop a system 

architecture capable of bringing people together to work as a virtual team in order 

to explore various rescue plans and work towards consensus. 

Many companies have been creating virtual teams that bring together 

geographically dispersed workers with complementary skills, increasing the 

demand for CSCW (Computer Supported Cooperative Work) applications. In 

order to make the development of a wide range of these collaborative applications 

more effective, we should offer a general architecture that is adaptable to different 

situations, tasks, and settings in a flexible way. The motivation for this work has 

been the necessity of developing a collaborative virtual workspace for disaster 

management of oil & gas offshore structures for a global company (Russo et al., 

2004). 

 

1.1. 
Motivation 

Petrobras, as one of the oil & gas companies seeking to employ efficient 

processes and technologies to respond to such events, has taken important actions 

in order to ensure safety. For example, in 2000, Petrobras launched a programme 

called Environment Management and Operational Security Excellence Program 

(PEGASO), with an investment of 1.7 billion dollars and the development of 

4,000 projects in 4 years (Petrobras, 2004). As a direct result of the P-36 accident, 

the enquiry commission recommended the implementation of another operational 

excellence program (PEO) specific for offshore production units (Petrobras, 

2001). 

However, the implementation of such processes involves bringing together a 

large number of diverse and geographically distributed groups and resources to 

make appropriate decisions within a short period of time. Such groups are 

comprised of many technical experts and decision makers such as naval engineers, 

structural engineers, risers analysts and oceanographers, as well as managers. 

Typically, a high-level decision group will operate from the operational unit and 
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the technical staff from a land base near the disaster, from the headquarters and/or 

from various research centres. These groups need to be in constant 

communication with operators inside the unit, divers, and security team, and 

perhaps with experts who are travelling to execute the rescue plan. The main task 

of the technical staff in such situations is to rapidly come up with a solution to 

stabilise the unit, by running various simulation programmes which take into 

account waves, winds, currents, and other forces acting on the unit. The members 

of the technical staff can also be at distributed locations, in connection from 

various research centres and the headquarters. 

In face of all of these requirements, there is the need to develop a system 

architecture capable of bringing people together to work as a virtual team, in order 

to explore various rescue plans and work towards consensus. The purpose of this 

thesis is therefore to explore how collaborative workspace technologies can 

support such decision-making and consensus-building process. We then elaborate 

a multi-perspective metamodel to support configuring this collaborative virtual 

workspace. 

 

1.2. 
Aims and Objectives 

The main aim of this work is to investigate how a distributed workspace 

environment can support disaster management, involving distributed collaborative 

technical teams. Specifically, this research will focus on a distributed workspace 

for technical groups to work as a collaborative virtual team, to explore various 

simulation options and to communicate their results to decision makers. 

This aim will be achieved through the following objectives: 

• conducting a survey: 

o identifying the requirements for the distributed workspace, from 

stakeholders involved in a disaster scenario; 

o analysing the commercial emergency systems available; 

• elaborating a metamodel to configure collaborative virtual 

workspaces; 

• conducting a survey to analyse the most important distributed 

systems; 
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• defining a distributed workspace environment based on this 

metamodel for the technical team to engage in rescue efforts. 

 

1.3. 
Thesis Outline 

The sequence of chapters of the present thesis is organised as follows. 

In Chapter 2, we process requirements gathering focussing on two Petrobras' 

case studies: P-36 and P-34. We also summarise a survey on the main commercial 

emergency systems available, identifying the need to develop a system 

architecture capable of supporting the distributed resources present in an 

emergency scenario, mainly distributed simulators running on high performance 

visualisation systems. This architecture should provide synchronous 

communication among different equipments with virtual co-location as one of the 

features, constituting a collaborative virtual workspace for disaster management. 

In Chapter 3, we elaborate a multi-perspective metamodel to help define and 

configure the collaborative virtual workspace architecture. We also show how 

models derived from the metamodel can be reconfigured to accomplish new 

situations, which is particularly important in emergency scenarios. 

In Chapter 4, we summarise a survey on the main technologies used for 

developing distributed environments, from both middleware and specific 

distributed virtual environment approaches. We select two of these technologies to 

validate our metamodel, namely High Level Architecture (HLA) and InfoGrid. 

In Chapter 5, we derive a first model for oil & gas offshore structure disaster 

management based on our multi-perspective metamodel. We also develop an 

HLA-compliant prototype as a proof-of-concept of the metamodel and discuss 

how the prototype could be implemented using InfoGrid. Still for the disaster 

management application, we present a second model and its prototype showing 

that we can derive different models for the same application. Finally, to validate 

the generality of the metamodel, we also delineate a model for another 

application, namely CAD (Computer-Aided Design) visualisation in virtual 

environments. 

In Chapter 6, we present the conclusions and possible future work. 
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Finally, in the Appendix, we present some screenshots of the HLA-

compliant prototype that was developed. 
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2 
Requirements Gathering 

Requirements gathering was obtained through Petrobras' case studies P-36 

and P-34. These case studies were used to identify the roles and attributes of 

people involved in a typical disaster management operation. Semi-structured 

interviews were also carried out to identify procedures and user expectations 

about the collaborative workspace. In this type of environment, it is important to 

model the users' relationships and to identify the main collaborative features that 

the users would like to have. 

Once the users' requirements capture phase was completed, the next step 

was to define the technical requirements in terms of collaboration models, 

simulation steering, personalised and global workspaces, synchronised viewing, 

video-streaming, etc. The intended collaborative workspace should have 

distributed nodes with personalised interfaces representing various user 

perspectives. 

We then conducted a survey on the main commercial emergency 

management systems available to gather their principal characteristics and the 

main features still underdeveloped. 

 

2.1. 
Evolution of Disaster Management in Petrobras 

There were two main disaster incidents in Petrobras (P-36 and P-34). This 

section provides a summary of these two incidents with the purpose of illustrating 

the complexity of the problem in terms of processes and groups of people 

involved in such disaster incidents. From this discussion, we show that Petrobras 

has been continuously active in improving its disaster management program. 

During the P-36 disaster, there was a mechanical explosion and a chemical 

explosion with loss of lives, which caused difficulty in acting quickly to save the 

unit. During the P-34 disaster, there was no explosion, enabling the teams to react 

quickly, although communication among them could still be improved. This 
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research aims to perform the following step in terms of using ICT (Information 

and Communication Technology) to improve the collaboration among the 

stakeholders involved in disaster incidents. 

In the case of the P-36 disaster, Petrobras identified the need for updated 

emergency procedures and for executing the actions within a short period of time 

in order to save the unit. This case raised the need to investigate collaborative and 

decision-making models to help complex teams avoid disasters. 

In the case of P-34, there was already an updated model of the offshore unit 

and a form of distributed work that did help the rescue team to act quickly. There 

was also a static simulator that allowed specialists to run different simulations. 

Nevertheless, the team still lacked an adequate environment to work as a virtual 

team to share knowledge, jointly discuss possible rescue plans, and work quickly 

towards consensus. 

As a result, it was necessary to bring people together into the same physical 

location, causing some delay in the process. Furthermore, some of the information 

was not directly available to the decision makers. This incident showed the 

necessity of strengthening collaboration among the distributed teams, providing 

better interaction, simulation, and discussion during the whole rescue operation.  

 

2.2. 
Requirements 

From the analysis of the described disasters, we observe the need for going 

a step further and developing a paradigm for reacting to emergency scenarios. 

This paradigm should provide, as its essential core, collaboration among all the 

participants in this emergency scenario. Ideally each participant node of this 

distributed environment should be able to share and discuss his results with other 

participants and to access whatever data he needs for his simulation tasks. 

We are now going to discuss the distributed nature of the teams and the 

resources that need to be brought together in the proposed collaborative 

workspace paradigm. 
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2.2.1. 
Distributed Nature of the Teams 

In the particular case of Petrobras, when an accident occurs, the head office 

is immediately contacted and the General Manager of the operational unit is in 

charge of crisis management. All the work will be under his control in the 

decision workspace. The Security, Environmental, and Health Department then 

starts emergency procedures and at the same time technical specialists begin to 

act. Constituting this technical workspace, there are naval engineers, structural 

engineers, risers analysts, and oceanographers. When they are working together in 

a collaborative way, there are usually the following main distributed groups: 

• the high-level decision team at the operational unit; 

• a task force group leading the decision-making process: 

o at the Business Unit (in Rio, for platforms located in Campos 

Basin) if the platform is not heavily damaged, with two or three 

operators remaining inside the unit and performing the 

operations required; or 

o in a city which is the nearest place to the accident over land 

(Macaé, for platforms located in Campos Basin), from where 

orientation is given to divers, who do the only possible work 

when the unit is heavily damaged and has security problems; 

• a technical support team at the company headquarters in Rio, at the 

Business Unit, and at the research centre; 

• mobile experts, who sometimes are overseas or travelling and who 

must also be connected. 

 

In addition to these groups, and working together with them, there are 

security teams in rescue units which are moved towards the region of the accident 

and provide help during the whole crisis period. 

 

2.2.2. 
Distributed Nature of the Resources 

Not only the experts, but also the system resources are distributed in this 

scenario:  
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• computer-intensive simulators have to remotely run on a super 

computer or on a cluster of computers to get quick results; 

• the computer system needs access to remote databases which 

maintain CAD models and simulation models of the unit; 

• each site participating in the crisis solution can have different 

configurations, such as a Virtual Reality (VR) Centre, an intranet 

desktop, and a laptop connected to the network; 

• experts who are travelling may have to be linked via mobile 

technologies; 

• the connection between the unit and the people on land may vary. In 

the best case, the unit is one node of the network and, in the worst 

case, the communication with the operators can be done only by 

radio or telephone. 

 

2.3. 
Commercial Emergency Management Systems 

After having determined the collaborative disaster management workspace 

requirements, we conducted a survey on the main commercial emergency 

management systems available. We identified the principal characteristics of those 

systems, the main areas already covered, what is the state-of-the-art and what are 

the main features which are still underdeveloped. 

While performing this survey, existent emergency management systems 

from some vendors were investigated, as well as crisis intervention methods being 

practiced in companies such as Statoil, Norsk Hydro, Elf, and British Petroleum 

(BP). The systems investigated are summarised in the next subsections. 

 

2.3.1. 
U.S. Department of Justice's Feature Comparison Report 

The U.S. Department of Justice has developed a Feature Comparison Report 

of the main Crisis Information Management Software (CIMS) commercially 

available (Hart, 2002). That survey resulted in many important findings, from 

which the ones directly related to this work are listed below. The software should: 
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• allow for remote access by authorised users located outside the 

LAN; 

• comply with the provisions and standards for Incident Command 

System (ICS). ICS is the model tool for command, control, and 

coordination of a response and is built around five major 

management activities related to an incident: 

o Command; 

o Operations; 

o Planning; 

o Logistics; 

o Finance/administration; 

• integrate with other systems, such as mapping, other CIMS, and 

telephonic alert notification systems; 

• integrate public health into emergency management; 

• operate within a variety of network configurations; 

• have a wide range of features consistent with the four phases of 

emergency management operations: planning, mitigation, response, 

and recovery. 

 

They also concluded that there is no best product and no perfect fit. The best 

product should be chosen based on budgets, system environment, scale of 

operation, sophistication of operation, discipline to implement, and political 

considerations. 

 

2.3.2. 
L-3 CRISIS Command and Control System 

One of the main vendors of emergency systems is Ship Analytics, with 

whom Petrobras has already begun establishing a commercial relationship. One of 

its main products is the L-3 CRISIS Command and Control System (MPRI Ship 

Analytics, 2003), which is a standard off-the-shelf computer system. It provides 

support for emergency managers, being the nerve centre during disaster response 

and an educational tool to train for disaster response. It also provides computer 

simulations which allow for evaluation of alternative responses, a planning system 
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for risk management and environmental damage mitigation, and a cost accounting 

system for management of alternative assets. It also provides incident 

management teams with a Geographic Information System (GIS) and Standard 

Operating Procedures (SOPs) for responding to different types of disasters such as 

flood, windstorm, toxic gas release, etc. 

As a practical matter, emergency managers find it useful to develop 

checklists from the SOP for each functional position which is event specific. 

These checklists are designed to be easy to read and easy to implement. L-3 

CRISIS provides a means for automating the checklist function. 

Firewalls are employed where necessary to protect sensitive information 

while still allowing users to access the information they require while doing their 

job. The system has been designed to utilise inputs from a variety of real-time 

sensing devices such as infrared imaging, satellite imagery, and hydrocarbon 

sensing buoys. It is a web-enabled system incorporating an imbedded browser 

which enables system users to access the most current and up-to-date information 

available from the Internet, Intranet, and the system's own databases. 

 

2.3.3. 
Oil Spill Crisis Management Simulator 

One of the simulators based upon L-3 CRISIS is the Oil Spill Crisis 

Management Simulator. It supports all stages of incident management from initial 

prevention/mitigation through preparation, response, and remediation. It functions 

as a complete training centre which prepares Incident Management Teams, On-

Scene Commanders, and Responders to handle a variety of incidents via exercise 

simulation, response plans, operating procedures, and checklists. 

The Spill Management Simulator (SMS) incorporates existing, standard oil 

spill models, and oil weathering models. The exercise participants interact with 

the scenario through the use of L-3 CRISIS response modules, with an interface to 

complex relational databases, a Geographic Information System (GIS), and 

science-based fate and trajectory hazard models.  

The SMS also provides a central repository that contains information critical 

to the effective management of crisis response, such as the locations and 

specifications of available response equipment, available personnel, and 
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environmental and economic sensitivity data. The simulation component of the 

system, which models the physical fate and trajectory of spilled oil, and tracks the 

simulated response vessels and countermeasure operations, stores its output data 

in the central database.  

To conduct a simulation exercise, scenario-specific personnel and 

equipment databases are created by associating all or a subset of the Master 

Resource databases with a given scenario. Once the exercise is running, 

instructors/operators can modify and/or add scenario-specific resource records 

without affecting the Master databases. The resource data is used by the Incident 

Management Team or Exercise Participants to allocate and track equipment and 

personnel.  

Spill scenarios are developed or modified prior to the conduction of an 

exercise using a scenario definition utility. 

 

2.3.4. 
U.S. Automated Resource Management System (ARMS) Systems 
Requirements Document (SRD) 

Another important document which has been studied was the one by Booz 

Allen Hamilton (2003), who has been tasked to support the U. S. Federal 

Emergency Management Agency (FEMA) - Preparedness Division, in the 

development of a requirements document for the Automated Resource 

Management System (ARMS). The ARMS Systems Requirements Document 

(SRD) provides a high-level specification of ARMS system requirements by 

identifying and defining the corresponding data, business rules, functional, 

operational, and technical requirements for a web site needed to help state and 

local governments improve their capability to carry out mutual aid during 

emergency situations. 

ARMS is defined as an “automated system which assists emergency 

managers in locating resources to enhance their response to emergencies.” 

Resources include personnel, equipment, and supplies. ARMS is the computerised 

portion of the U. S. National Mutual Aid and Resource Management Initiative 

which will enhance the mutual aid process. 
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2.3.5. 
Crisis Intervention and Operability (CRIOP) Analysis 

Another important document describing a scenario method for crisis 

intervention and operability analysis was CRIOP (Johnsen, 2004), jointly 

developed by Scandpower, SINTEF, STATOIL, and NTNU, with support from 

Norsk Hydro, Saga, Elf, NORSOK, BP, Safetec, DNV, and Aker. 

CRIOP is a methodology used to verify and validate the ability of a control 

centre to safely and effectively handle all modes of operations including start up, 

normal operations, maintenance and revision maintenance, process disturbances, 

safety critical situations, and shut down. Such methodology can be applied to 

central control rooms, drillers' cabins, cranes and other types of cabins, onshore, 

offshore and emergency control rooms. 

The key elements of CRIOP are checklists covering relevant areas in the 

design of a Control Centre (CC), Scenario Analysis of key scenarios, and a 

learning arena where the workforce with operating experience, designers, and 

managers can meet and evaluate the optimal CC. A CRIOP analysis is initiated by 

a preparation and organisation phase to identify stakeholders, gather necessary 

documentation, establish analysis groups, and decide when the CRIOP analysis 

should be performed. 

The CRIOP method focusses on the interaction among people, technology, 

and organisations. One of the most important principles of the CRIOP method is 

to verify that a focus is kept on important human factors, in relation to operation 

and handling of abnormal situations in offshore control centres, and to validate 

solutions and results. 

 

2.3.6. 
Conclusions about Emergency Systems 

Finalising the emergency management survey, it can be observed that most 

emergency management systems have some common characteristics which we 

describe below: 

• they usually serve as incident management as well as training and 

planning tools; 
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• they have strong integration capabilities, not only with internal 

databases and systems but also with public emergency management 

systems; 

• they usually have a flexible architecture in terms of networks and 

software integration, mainly being integrated with one or more 

simulators related to the type of disaster being treated; 

• normally they integrate to a graphic system, such as a Geographical 

Information System (GIS), which is responsible for displaying real-

time data of the incident being considered; 

• they are capable of logging and tracking activities and resources, 

which is important not only during a real emergency case but also as 

an efficient tool for training purposes; 

• most of the emergency systems also use checklists as an efficient 

and fast method to address the multiple simultaneous requirements 

present during an emergency scenario. The capability of providing a 

means for automating the checklist function as much as possible can 

be determinant for solving an emergency case safely and timely. 

 
In spite of all the features listed above, we identified two main drawbacks of 

current emergency management systems: 

1. Lack of full and suitable integration of simulators with high 

performance visualisation systems; 

2. Inadequate security and access control features. 

 

The survey has demonstrated that, in spite of the integration of most of the 

emergency management systems with simulators, there is the need to develop a 

system architecture capable of supporting distributed resources, especially 

distributed simulators running on high performance visualisation systems. This 

architecture should also provide synchronous communication among different 

equipments with virtual co-location as one of the features. 

The integration of simulators using high performance visualisation systems 

in a synchronous distributed environment is the aspect of the emergency scenario 

on which we are going to focus. In order to support the definition of the 

architecture for this environment, a metamodel has been elaborated. We then have 
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developed an HLA-compliant prototype as a proof-of-concept of the metamodel, 

considering that HLA is a standard for high performance real-time simulations.
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3 
A Metamodel for Configuring Collaborative Virtual 
Workspaces 

In this chapter, we elaborate a multi-perspective metamodel to help define 

and configure the collaborative virtual workspace architecture. 

Collaborative systems have been defined as “a combination of technology, 

people, and organisations that facilitates the communication and coordination 

necessary for a group to effectively work together in pursuit of a shared goal, and 

to achieve gain for all its members.” (Haynes et al., 2004) Employing this 

concept, many companies have been creating virtual teams of their own 

employees that bring together geographically dispersed workers with 

complementary skills (Handel & Herbsleb, 2002; Bos et al., 2004), increasing the 

demand for CSCW applications. In order to make the development of a wide 

range of these collaborative applications easier and more effective, we should 

offer a general architecture that is adaptable to different situations, tasks, and 

settings in a flexible way (Schuckmann et al., 1996). 

CSCW research to date on how to address the architecture characteristic 

mentioned above has largely focussed on issues concerning differences between: 

(i) co-located work and working across distance (Bos et al., 2004; Dourish & Bly, 

1992; Fussell et al., 2000; Herbsleb & Grinter, 1999; Herbsleb et al., 2000; 

Lauche, 2005); or (ii) work with people from the same culture, or common ground 

(affinities, mutual knowledge, beliefs, goals, attitudes, etc), and work with people 

from different cultures (cross-cultural work), or common ground (Fussell et al., 

2000; Greenspan et al., 2000; Setlock et al., 2004). These perspectives have been 

named, respectively: Place-Centred and People-Centred (Jones et al., 2004). 

Instead of employing one of those two perspectives to derive a metamodel 

for designing CSCW applications, we propose to adopt a different view on the 

problem based on the activities carried out by the teams participating in the 

collaborative work. We name this perspective Activity-Centred. The term Activity 
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is incorporated here from the very broad and multi-layered concept from activity 

theory. 

As it will be detailed in the next sections, the Activity-Centred perspective 

may be seen as a multi-perspective concept (also in accordance to the way by 

which the term was incorporated from activity theory), since it not only 

encompasses the Place-Centred and the People-Centred perspectives, but also 

allows adopting each one or more typically both of them (in a hybrid way) to the 

desired extent, and admits changes from one perspective to another. 

It is important to stress that this is not a technology-driven approach but a 

user or human-centred approach (Ishii et al., 1994; Laurillau & Nigay, 2002; 

Palen, 1999; Sachs, 1995), focussing on a qualitative research (Neale et al., 2004) 

of the involved teams instead of on a particular technology. 

The motivation for this work was derived from the necessity of 

configuring a collaborative virtual workspace for disaster management of oil & 

gas offshore structures for an oil & gas global company. In order to identify the 

system's requirements, the authors have conducted semi-structured interviews 

with key individuals and not only have observed their work practice but in fact 

have been participating with them in joint projects and activities for more than one 

decade. 

 

3.1. 
Activity-Centred Metamodel 

We begin this section defining metamodel: it is a logical – as opposed to 

physical or implementation – model, emphasising the declarative semantics rather 

than the implementation details of the model. It is expected that the 

implementations that are based on the metamodel should conform to its semantics 

(Athanasopoulos et al., 2003). 

Various researchers have been developing architectures based on this 

concept. Dewan's generic collaborative architecture (Dewan, 1999) structures a 

groupware application into a variable number of layers from the domain-

dependent level to the hardware level, where a layer is a software component 

corresponding to a specific level of abstraction. Similarly, the Clover architectural 

metamodel (Laurillau & Nigay, 2002) also structures a groupware application into 
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a variable number of layers, decomposing each layer into three functional sub-

components dedicated to production, communication, and coordination. Dourish, 

in the Prospero toolkit, proposes an approach in which a metalevel architecture is 

used by programmers to separate the high-level representation and functionality 

from the lower-level facilities, mapping the first ones onto the second ones 

(Dourish, 1998). 

Our proposed metamodel adopts a similar multi-level approach, according 

to Leontjev's (1978) activity theory version, in which a three-level scheme 

describes the hierarchical structure of activity. This scheme has been summarised 

by Tuikka (2002) as follows: 

• The central level is that of actions. Actions are oriented towards 

goals. Usually, goals are subordinated to other goals, which may be 

subordinated to further goals, and so on. 

• Moving up the hierarchy of goals we finally reach a top-level goal, 

which is not subordinated to any other goal. This top-level goal, 

which in activity theory is designated as motive, is the object of a 

whole activity. 

• Moving down the hierarchy of actions, we could reach automatic 

processes providing adjustments of actions to current situations. 

According to activity theory, they are operations. 

• Activities, which are driven by motives, are performed through 

actions which are directed at goals and which, in turn, are 

implemented through operations. 

 

Orthogonally to this approach, similarly to the Clover metamodel, the 

Activity-Centred metamodel also allows the breakdown of the components 

correspondent to a specific level. These two orthogonal approaches applied 

together contribute to the generality of the metamodel. 

 

3.1.1. 
Metamodel Abstraction Levels 

The top-most level of our metamodel, the motive, is represented by a 

single complex node which encompasses the whole activity. This motive can be as 
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diverse as the elaboration of a paper (Figure 1) or the disaster management of an 

oil & gas offshore structure (Figure 2). The level immediately below the top-most 

level contains the main actions that should be performed in order to accomplish 

the whole activity. These actions are the result of the interactions of groups, with 

each group represented by a complex node and the interactions among them 

represented by edges, which means that each abstraction level could be 

represented by a graph. 

E3 E4

E2

C1

E1

C2

University

Company

Motive: Paper-Elaboration

 
Figure 1 - A paper-elaboration collaborative model: C1 and C2 are Computer Science 

researchers, while E1, E2, E3, and E4 are Engineers 

 

We continue this downward process splitting each complex node of the 

upper abstraction level into more elementary nodes until we reach a leaf node, 

which will typically be a person. To those leaf nodes we then associate 

implementation and hardware attributes such as the application to be executed and 

the host in which it should be run. Sometimes the leaf node is not a real person but 

a software agent, responsible for a specific set of tasks (Ellis et al., 1991). 
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Oil & Gas
Company

Rescue
Team Press

Health
Care

Centre

Motive: Disaster Management

 
Figure 2 - An oil & gas offshore structure disaster management collaborative model 

 

From Figure 2, we can see that this metamodel seems sufficiently general 

to accommodate even models that include inter-organisational groups or nodes. In 

these cases, traditional groupware access control mechanisms should be extended 

for dealing with new aspects such as privacy, confidentiality, mutual and 

contradictory interests, different cultures, etc (Cohen et al., 2000; Godefroid et al., 

2000; Setlock et al., 2004; Stevens & Wulf, 2002). 

 

3.1.2. 
Breaking Down the Components of a Specific Abstraction Level 

Orthogonally to the top-down process, the Activity-Centred metamodel 

also allows the breakdown of the components correspondent to a specific level. 

The main idea of this mechanism will become clearer if we illustrate it with a 

practical example. 
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TT1 TT2 DM1 DM2

Technical
Teams

Decision
Makers

 
Figure 3 - First downward level of the oil & gas company from the disaster management 

collaborative model: TT1 and TT2 represent Technical Team 1 and Technical Team 2, 

respectively, while DM1 and DM2 represent, respectively, Decision Maker 1 and Decision 

Maker 2 

 

Let us consider a specific abstraction level of the disaster management 

example, namely the first one downward of the oil & gas company (Figure 3). 

There we can observe two main groups: Technical Teams and Decision Makers. 

To facilitate the comprehension of the breakdown mechanism, we also represent 

in the same figure the level immediately below the one being considered: group 

Technical Teams is decomposed into sub-groups Technical Team 1 and Technical 

Team 2, and group Decision Makers is decomposed into sub-groups (persons) 

Decision Maker 1 and Decision Maker 2. In such a configuration, both Decision 

Makers are being considered with the same background and level of interaction 

with the Technical Teams. Now suppose that Decision Maker 1 is a more 

technical manager and that Decision Maker 2 is a manager of a higher 

organisational level inside the company, such as a director, and is not so 

technically involved with the problem. The simplest way to accommodate this 

difference is to split the Decision Makers group into two new groups of this same 

abstraction level, namely Decision Maker 1 and Decision Maker 2, each one with 

one single manager. We should also replace the old edges by new ones 

representing the new interactions among the new groups formed. The resultant 

configuration is shown in Figure 4. Now it becomes clear that the middle level 

manager is the one responsible for directly communicating with the Technical 

Teams and also for communicating with the director. 
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TT1 TT2 DM1 DM2

Technical
Teams

 
Figure 4 - First downward level of the oil & gas company from the disaster management 

collaborative model, now with Decision Maker 1 placed between the Technical Teams 

node and Decision Maker 2 

 

This simple example illustrates the usefulness of this breakdown 

mechanism, allowing us to experience and derive the most appropriate model to a 

specific situation. 

 

3.1.3. 
Metamodel Components 

We are now going to describe the main components of our metamodel. 

 

3.1.3.1. 
Nodes 

Nodes are essential components of our metamodel, going from the top-

most node representing the whole activity (motive) through many nodes of 

different levels representing groups and sub-groups until the leaf nodes 

representing a person or a software agent. Nodes have a set of attributes such as 

user interface preferences and language used, which are applied using a 

hierarchical class concept: the value of a node attribute is valid for all sub-nodes 

below the node considered unless explicitly redefined, with this redefinition also 

valid for all levels below the one considered. 

Nodes also have an attribute called artefacts defined as “all objects on 

which users can operate” (Gross & Prinz, 2004). Examples of artefacts are 

drawings, sketches, physical models, prototypes and product descriptions, 

documents and files, pens and blackboards, reports, papers and review comments, 
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spreadsheets and artwork, all in their electronic version, or more complex ones 

such as electronic calendars (Palen, 1999), shared drawers and cabinets (Pankoke-

Babatz & Syri, 1997), CAD and computerised maps (Pettersson et al., 2004), 

shared virtual prototypes (Tuikka, 2002), shared interactive surfaces (Brignull et 

al., 2004), shared tabletop displays (Morris et. al, 2004a), shared multi-user 

tabletops (Morris et al., 2004b), and interactive shared displays (Paek et al., 2004). 

Following the class concept, an artefact associated with a group node is shared by 

all members in the group, unless otherwise explicitly stated. In this case, a 

mechanism such as an access control list will determine who shares access to the 

artefact. 

An artefact has two basic properties (Dourish & Bellotti, 1992): 

synchrony, which can assume values synchronous (being worked on at the 

moment) or asynchronous, and persistency, which can assume values persistent 

(lasts after being worked on) or volatile. 

Leaf nodes have the low-level attributes that are going to be mapped into a 

specific implementation such as the application to be executed (Gross & Prinz, 

2004). 

 

3.1.3.2. 
Edges 

Edges in our metamodel represent the interaction paths among the nodes. 

They can be uni- or bi-directed, representing the possible directions of interaction. 

When an edge is represented by a thin arrow, this means that the nodes on its 

extremities are co-located. When the arrow is thick, this represents that one node 

is placed remotely in relation to the other. 

An edge has one or more channels, each one representing the 

electronically mediated channel that allows communication between two nodes 

(Greenspan et al., 2000). 

According to Nardi et al. (2000), communication is primarily about 

information exchange. The information exchanged can be of many types, such as 

text, graphics, voice, and video. Fuks et al. (2005) consider some elements that 

communication channels should have in order to make this information exchange 

occur: media (textual, spoken, pictorial, or gestured), transmission mode (in 
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blocks or continually; synchronous or asynchronous), restriction policies, meta-

information (about the message, such as subject, date, priority, and category), 

conversation structure (linear, hierarchical, or network form), and conversation 

paths. 

A channel has four basic properties: 

• Synchrony (Dourish & Bellotti, 1992; Greenspan et al., 2000): the 

synchronous-asynchronous distinction depends upon when the 

content is communicated or chosen. Examples of synchronous or 

real-time channels include: instant messaging, chat, and video 

conferencing. An important characteristic of these synchronous 

applications is that they convey presence awareness information 

(Dourish & Bellotti, 1992; Godefroid et al., 2000; Pankoke-Babatz 

& Syri, 1997) about the members participating in the collaborative 

session. Some examples of asynchronous channels are: electronic 

mail, forum-style computer conferencing, and web pages. While 

synchronous channels can provide real-time feedback, asynchronous 

channels, on the other hand, can afford greater control over content 

creation and make it easier to archive and forward messages. Beyond 

the two traditional modes, Dourish and Bellotti (1992) introduce the 

term semi-synchronous, which means supporting both synchronous 

and asynchronous modes, associated with shared workspaces: semi-

synchronous systems present information on synchronously co-

present collaborators, at the same time as representation of past 

activities by other collaborators who are not synchronously present. 

• Persistency (Dourish & Bellotti, 1992; Pankoke-Babatz & Syri, 

1997): the channel is called volatile if it can provide information 

only at the moment in which the event occurs, such as a video 

conferencing. On the other hand, it is called persistent if it can 

provide information after a certain time of absence to inform about 

intermediate progress, or on request to provide more details, or to 

inform about the history of an object. An example of persistent 

channel is a chat that has the ability to retain discussion history 

(Handel & Herbsleb, 2002; Ribak et al., 2002) or a forum-style 

computer conferencing. 
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• Symmetry (Greenspan et al., 2000): a channel is considered 

symmetric if the receiver of a message can respond with the same 

type of message. An example is an e-mail tool that allows reading 

together with composition and sending. Videotelephony is a fully 

symmetric channel providing audiovisual backchannel feedback, 

while television and radio broadcasts are fully asymmetric. Distance-

learning applications introduce the possibility of hybrid forms of 

communication in which both parties can hear one another, but only 

the presenter is visible to the students. 

• Media: this property is related to the media richness (Greenspan et 

al., 2000) of the communication channel, involving, for example, 

audio and visual aspects. Non-computer-mediated face-to-face 

communication is considered more “media rich” than audiovisual 

media, which is more “media rich” than audio-only or visual-only 

communication media. 

 

3.2. 
Instantiating the Activity-Centred Metamodel: Activity-Centred 
Models 

In this section, we are going to focus on the most important characteristic of 

our Activity-Centred metamodel: being capable of accommodating multiple 

perspectives, corresponding to different models, each one being an instance of the 

metamodel. 

In order to facilitate the understanding of the multiple perspectives, we will 

derive models for the paper-elaboration collaborative model introduced in 

Subsection 3.1.1, the only difference being that we now have researchers in two 

different universities. 

 

3.2.1. 
A Place-Centred Model 

Suppose that the most important aspects of our collaborative application are 

related to the place where people are effectively working. This could be 

motivated, for example, by the necessity of employing “media rich” 

communication such as face-to-face (Greenspan et al., 2000) or because the 
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different places have different facilities such as desktop computers and 

visualisation rooms, hence having different work behaviours. A possible model 

using this Place-Centred perspective for the paper-elaboration collaborative 

application is the one shown in Figure 5. 

Motive: Paper-Elaboration

EP1

CP

BR

EB1 EB2
Salford

CS1

PUC

CP1 CP2

 
Figure 5 - The paper-elaboration collaborative model: a Place-Centred perspective 

 

In this picture we can observe that the groups are formed having a Place-

Centred perspective: 

• We have three main nodes, which are: PUC University, Salford 

University, and Petrobras (BR, the Brazilian oil & gas company). 

Since in our example the paper is focussing on Computer Science, 

the central node, in this case, playing the main role in writing the 

paper, is PUC, which communicates remotely with both Salford 

University and Petrobras (in this model, there is no direct access 

from Salford University to Petrobras). 

• Inside PUC University, we have two sub-groups: one is the 

Computer Science (CP, C for Computer and P for PUC) department, 

which has two co-located Computer Science researchers working 

together, CP1 and CP2, and the other is the Engineering department, 

which has one single Engineer (EP1). The two departments, being in 

different buildings, also communicate remotely. Only to avoid visual 

overload, when there is only one member in a specific node, we are 

designating this node with the name as the leaf node. Of course, we 

have to be careful with this notation, because it can be interesting to 

have properties associated to different levels, even in the case when 
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we have only one single member in each parent node for the 

example being considered. This could be the case of the hierarchy 

University  Department  Researcher, with specific attributes 

related to each level, even with only one leaf node representing all 

the groups.  

• Inside Salford University, there is only one Computer Science 

researcher, namely CS1 (C for Computer and S for Salford). In this 

case, only to show the Salford University inheritance, we place the 

leaf node CS1 inside the parent node Salford (according to the above 

notation, we could only write CS1 inside this node). 

• Finally, inside Petrobras (BR) node, we have two other co-located 

Engineers working together, namely EB1 and EB2 (E for Engineer 

and B for BR). 

 

Therefore, in Place-Centred models we group the various nodes privileging 

the aspects related to the environments in which the work is being performed, 

such as especial rooms (e.g., visualisation rooms) or especial interactive devices 

(e.g., interactive shared displays), the necessity of having face-to-face 

communication, etc. 

 

3.2.2. 
A People-Centred Model 

EB1 EB2

EP1

CP1

CS1

CP2

C E

Motive: Paper-Elaboration

 
Figure 6 - The paper-elaboration collaborative model: a People-Centred perspective 
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Now consider that the main concerning issues of our collaborative 

application are related to culture and common ground barriers. In this case we 

should derive a model with a People-Centred perspective, such as the one shown 

in Figure 6: 

• We now have only two main nodes: the Computer Science 

researchers' (C) group and the Engineers' (E) group, communicating 

remotely. 

• Inside the C group, we have three Computer Science researchers 

working together, namely CP1, CP2, and CS1. CP1 and CP2 work 

co-located and CS1 works remotely to each one of them, possibly 

virtually co-located. It is important to note that, although CS1 is 

from a different university when compared to CP1 and CP2, their 

common ground is so intense that he belongs to the same sub-group 

as CP1 and CP2, although placed remotely to them. If this 

relationship is not so intense, or has a cultural barrier, we should 

split C into two sub-groups, one with two co-located CP1 and CP2 

researchers communicating remotely with CS1, single member of 

the other Computer Science sub-group. 

• The same reasoning can be applied to the E group. There we find 

three Engineers, namely EP1, EB1, and EB2. EB1 and EB2 are co-

located Engineers, and EP1 works remotely to each one of them, 

possibly virtually co-located. Analogously to the CS1 analysis, if 

there is some sort of cultural barrier between EP1 and both EB1 and 

EB2, we should split the E group into two sub-groups, one with co-

located EB1 and EB2 Engineers communicating remotely with EP1, 

single member of the other Engineering sub-group. 

 

In People-Centred models, thus, the main concerning aspects while defining 

the groups are related to the participants' characteristics: their culture or common 

ground, their specialties, their skills, their behaviours, etc. 
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3.2.3. 
Mixing the Perspectives: an Activity-Centred Model 

We now mix the two previous perspectives in what we call an Activity-

Centred perspective. In the case of the present collaborative application, it seems 

more adequate to focus on the whole activity being performed – the paper- 

elaboration – and then derive the groups to be formed. To elaborate the paper, the 

authors, CP1, CP2, CS1, and EP1, try to derive a new theoretical model based on 

the requirements identified through field study, working together with Engineers 

EB1 and EB2. So we aggregate those people in two main groups formed based on 

their main activity: the Theory group and the Field group. The groups are then 

arranged according to Figure 7: 

EP1

CP1

CS1

CP2

EB1 EB2

C

Theory

Field

Motive: Paper-Elaboration

 
Figure 7 - The paper-elaboration collaborative model: an Activity-Centred perspective 

 

• The two main groups, Theory and Field, communicate remotely with 

each other. 

• Inside the Theory group, we have two sub-groups: one with three 

Computer Science researchers (C), namely CP1 and CP2 working 

co-located together with CS1 working remotely to them, possibly 

virtually co-located; and the other with a single Engineer, EP1, 

working remotely to the C group. 

• The Field group is equivalent to the BR group in Figure 5, with two 

co-located Engineers working together, namely EB1 and EB2. 
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It is important to note the role being performed here by EP1. Clearly EP1 is 

being considered somehow different from the other members of the Theory group, 

probably acting more like a consultant for engineering issues. Nevertheless, if EP1 

could be considered to have the same common ground and culture as the other 

members in the Theory group, capable of having the same level of discussion, it 

should probably be better to have him integrated in the same group as the others, 

with the new Theory group being the one shown in Figure 8. 

EP1

CP1

CS1

CP2

Theory

 
Figure 8 - New configuration of the Theory group 

 

3.2.4. 
Activity-Centred Metamodel: Some Conclusions 

 

From the examples above, we observe the usefulness of this Activity-

Centred metamodel, capable of accommodating different perspectives and 

allowing the designer to experience models and choose the one that best fits his 

requirements. We can also observe that people necessities and physical space 

resources, such as a shared workspace, guide the model configuration. 

Another important aspect guiding the model's topology is the information 

that should be available at each defined node of the model. While elaborating a 

model, it is important to consider not only the topological aspects, but also the 

aspects involving the collaboration itself, i.e., how group members can better 

cooperate by producing, manipulating, and organising information, and by 

building and refining cooperation objects. 
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It is also important to know how to reconfigure the model, since it seems 

that there are some configurations that work better than others. Without an 

automatic reconfigurator, it should be interesting at least to derive some pre-

defined adequate configurations that could be selected when starting a 

collaborative application. 

It should also be stated that this multi-perspective metamodel intrinsically 

does not constitute a different metamodel when compared to many others already 

developed, in such a way that we can use many of the specification languages 

available to describe it, as we will see further in this chapter. What really seems to 

be this metamodel's contribution is its expressiveness capacity, which helps to 

clarify, via a simple graphical representation, the relationships among the groups 

involved in the main activity being performed. We have observed with real users 

that this simple representation provided them with a better understanding of the 

problem and also stimulated them to discuss and propose modifications in the 

configuration of the models. Also the thin and thick edge arrows rapidly provide 

the notion of who is locally or remotely located to the other, as well as indicate the 

necessity of lower or higher requirements in terms of communication network. 

Through a detailed analysis, we can identify the three components of the 

3C model in our Activity-Centred metamodel, which are: communication, 

coordination, and cooperation (Ellis et al., 1991; Fuks et al., 2005). The 

cooperation component sometimes is given different names, but representing the 

same aspects: collaboration (Ellis et al., 1991), production (Laurillau & Nigay, 

2002), and work coupling (Neale et al., 2004). 

The communication component is the one related to the exchange of 

messages and information among people (Fuks et al., 2005). In our metamodel, it 

is represented by the edges that link the nodes. 

The cooperation component is the joint operation taking place during a 

session on a shared space. Group members cooperate by producing, manipulating, 

and organising information, and by building and refining artefacts. We can then 

conclude that in our metamodel the cooperation component is formed by the 

association of the many different abstraction levels, which represent the whole 

activity being performed during the collaborative session, including all the 

applications being executed in the leaf nodes and the artefacts being produced or 

manipulated – i.e., the workspace that is being modelled. All these elements are 
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being stored during the collaborative session and may be used as a knowledge 

base for post-auditing or reconfiguration of the model in future sessions. 

Finally, the coordination component is related to the management of 

people, their activities, and resources (Raposo & Fuks, 2002). In loosely coupled 

group work, in which the processing sequence is to result from the course of the 

participants' actions, the coordination is done implicitly. On the other hand, if the 

work involves tightly coupled activities, there is the need to prescribe the order of 

actions, as occurs in workflow systems (Pankoke-Babatz & Syri, 1997). Our 

metamodel, with the elements already considered, is capable of representing 

loosely coupled group work. In order for the metamodel to also accommodate 

tightly coupled activities, we have identified the necessity to introduce new 

elements in the metamodel, which will correspond to the coordination component 

of the 3C model and will be described in the following section: edge 

specialisation elements, role rules, and message attributes table. 

 

3.3. 
Activity-Centred Metamodel: Coordination Components 

As already mentioned, we have identified the necessity to introduce new 

elements in the metamodel, corresponding to the coordination component of the 

3C model, which are going to be described in the next subsections: edge 

specialisation elements, role rules, and message attributes table. 

 

3.3.1. 
Edge Specialisation Elements 

Analysing a message across the interaction path from a sender to a 

receiver node, we have identified some additional requirements that our 

metamodel should accomplish. Suppose for example a situation where you have a 

group of engineers using desktop computers that send a video to another group of 

engineers located in a visualisation room, with larger display size. It would be 

interesting for this second group to automatically adjust some video properties to 

their condition before displaying it on the visualisation room screen. This could be 

done by what we call a post-communication processing module, being executed 

by the receiver group node immediately after receiving the message via the 
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communication channel and immediately before delivering it to the group 

members. 

Another example could be the use of a video capture tool during a 

simulation collaborative session. Inside the technical group, all members should 

receive all the frames from a simulator being executed in one leaf node. On the 

other hand, for the managers being part of the decision makers' group it would be 

sufficient to receive only one every ten frames. The solution here would be to add 

a pre-communication processing module being executed by the sender group 

node, acting like a filter, immediately before sending the message (one frame) 

through the communication channel. 

A third and even broader example would be sending a message from one 

group of Brazilians to one group of Chinese with their common language being 

English, considering, for the purpose of this example, that there is no Portuguese-

Chinese-Portuguese translator available. In this case, we should use both pre- and 

post-communication processing. The first one would be executed by the sender 

node, translating the message from Portuguese to English immediately before 

sending the message through the communication channel. The message would 

then traverse the communication channel reaching the receiver node. There, a 

post-communication processing module would finally translate it from English to 

Chinese, then sending it to the receivers. 

From the above examples, we conclude that it would be interesting to 

separate these pre- and post- communication processing modules into two 

different classes: 

• The first class is constituted by the pre- and post-processing modules 

directly associated with the leaf nodes. They represent the processing 

modules to be executed particularly onto a specific message being 

passed between two nodes and are stored in an especial table with 

keys (message_id, receiver), as it will be described in Subsection 

3.3.3. 

• The second class is the one constituted by the pre- and post-

processing modules associated with groups on different levels of the 

metamodel hierarchy, representing the policies of these groups when 

respectively sending (out-policies) and receiving (in-policies) 

messages. Since these are not particular policies related to one 
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specific message, but more general ones associated with groups on 

different levels of the metamodel, they can be stored in the 

metamodel itself. 

 

In order to better illustrate this idea, we show in Figure 9 the different pre- 

and post-communication processing modules that could be executed while 

sending a message from a Computer Science Researcher CR1 of the Computer 

Science Department CD1 of University U1 to a Computer Science Researcher 

CR2 of the Computer Science Department CD2 of University U2. 

a)

U2

CD2

CR2

U1

CD1

CR1

a)
 

CD1

U1 U2

CD2

CR2

Pre(msg, CR2)

Out(CD1)

Out(U1) In(U2)

In(CD2)

Pos(msg,CR2)

CR1

b)
 

Figure 9 - Activity-Centred metamodel: pre- and post-communication processing: a) 

metamodel point-of-view; b) pre- and post-processing point-of-view 

 

In Figure 9, we can follow the sequence of processing modules executed: 

• The first pre-processing module to be executed is the one associated 

with the particular message being sent from CR1 to CR2. 

• Then the out-policy associated with department CD1 is executed. 
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• Finally the out-policy associated with university U1 is executed. 

• The message is then sent through the specific communication edge 

(the one linking the top-most nodes at either side). 

• Now at the receiver side of the edge, the first post-processing 

module to be executed is the in-policy associated with university U2. 

• Then the in-policy associated with department CD2 is executed. 

• Finally a third post-processing module, associated with the particular 

message being sent from CR1 to CR2, is executed. 

 

From a further analysis of this last example, two important questions arise. 

The first is related to who will execute these pre- and the post-communication 

processing modules. At the sender side of the edge, the natural candidate to 

execute the pre-processing modules is the leaf node who is sending the message. 

At the receiver side of the edge, this could be accomplished by adding an attribute 

to the first group node pointed by the edge (in our example, university U2), 

correspondent to the leaf node of this group which will execute the post-

processing modules. 

The second question involves the algorithms to be executed when sending a 

message at both the sender and the receiver side. We will present these algorithms 

later, after defining the two other coordination components of our metamodel in 

the next subsections: the role rules and the message attributes table. 

The edge specialisation elements increase the metamodel's flexibility in two 

different aspects. One is the concentration of attribute values in modules that can 

be dynamically changed during run-time. The second aspect emphasises the 

model's adherence to social protocols (Morris, 2004b) involving collaborative 

applications. As an example of this social protocol perspective, in our metamodel 

the post-communication processing gives the responsibility to a leaf in a receiver 

group node to decide to which members of its group to send a received message. 

This seems reasonable, since it knows its group well and was designated by them 

to assume this role. As another example, retaking the practical example discussed 

about the video capture tool, the sender group could decide that it would be more 

polite and convenient to send all the frames to the decision makers' group and let 

them decide to cut or not some frames (the filter would be included in the post-
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communication processing). Of course, this second approach would increase the 

network load, but this would be the price paid for a more “political” social 

protocol. 

We can give some other practical examples of use of pre- and post-

processing: 

• File format conversion (ex.: CAD) from one system at one side of 

the edge to another system at the other side. This could be done at 

either side or at both sides if, for example, a neutral file is 

transmitted through the communication channel. 

• UTM to XYZ coordinates transformation (at either side). 

• Virus detection and firewall policies (at either side). 

 

Ending this subsection, it is interesting to note that these concepts of pre- 

and post-processing seem to be usually considered in studies about collaborative 

applications, although not always having the same approach. For example, 

employing the same approach, Cortés and Mishra (1996) use pre and 

postexecution functions in their DCWPL coordination programs. Also David and 

Borges (2001) propose the use of input and output filters by the application as 

well as by the user, to assure privacy of information, select the events, the 

awareness information, and/or modify the processing of these events. Dourish 

(1998) uses these same concepts in his Prospero toolkit, now naming them before-

methods and after-methods, which are executed by the toolkit. Finally Stevens and 

Wulf (2002), now employing a different approach, use the terms ex-ante, uno-

tempore, and ex-post associated with the time in which access control permissions 

are defined. 

 

3.3.2. 
Role Rules 

Role rules for the coordination structure have been employed in CSCW 

studies for more than one decade. For example, Furuta and Stotts (1994) present 

an evolution of the Trellis model in which group interaction protocols are 

represented separately from the interface processes that use them for coordination. 

Protocols are interpreted, so group interactions can be changed as a collaborative 
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task progresses. Changes can be made either by a person editing the protocol 

specification “on the fly” or by a silent “observation” process. Trellis mixes 

hypermedia browsing with collaboration support – a hyperprogram – with its 

model based primarily on a synchronously executed, transition-timed Petri net as 

the structure of the hyperprogram. The net notation used in Trellis is referred to as 

colored timed nets, or CTN. A Trellis hyperprogram is completed by entering 

annotations for the components of the CTN: the CTN is the task's description and 

the different annotations are the information required by the task. One important 

category of annotation is content. Fragments of information (text, graphics, video, 

audio, executable code, other hyperprograms) are associated with places in a 

CTN. Another category of annotation is events, which are mapped to the 

transitions of the CTN. A third category of annotation is the attribute/value (A/V) 

pair; a list of A/V pairs is kept with each place, each transition, each arc, and for 

the CTN as a whole. 

Edwards (1996) presents Intermezzo, a system that allows users to control 

collaboration by enacting policies that serve as general guidelines to restrict and 

define the behaviour of the system in reaction to the state of the world. Policies 

are described in terms of access control rights on data objects, and are assigned to 

groups of users called roles. Roles represent not only statically-defined collections 

of users, but also dynamic descriptions of users that are evaluated as applications 

are run. This run-time aspect of roles allows them to react flexibly to the 

dynamism inherent to collaboration. Intermezzo provides mechanisms for creating 

both static and dynamic roles, an implementation of policies on top of the “raw” 

access control system, and a specification declarative language for roles and 

policies that can be used to control and configure the policy subsystem. While 

static roles are implemented using simple access control lists, dynamic roles are 

implemented by associating a predicate function to a set of access control rights. 

Cortés and Mishra (1996) propose that a collaborative program should be 

divided into two main components: a computational program that models the 

shareable artefacts and a coordination program that specifies the way these 

artefacts need to be shared. The coordination programs then can be easily 

modified, often without any change to the computational program. They have 

developed a coordination language – DCWPL (Describing Collaborative Work 

Programming Language – pronounced “decouple”) – and its run-time interpreter 
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to allow programmers to create coordination programs, specifying control 

mechanisms decoupled from computational programs written in some traditional 

programming language. A coordination program in DCWPL is composed of one 

or more coordination primitives: artefacts, roles, storage, coordination functions, 

policies, and session management. 

Li and Muntz (1998) propose COCA (Collaborative Object Coordination 

Architecture) as a generic framework for developing evolvable collaborative 

systems and modelling the coordination policies. As in the three previously 

mentioned works, they also favour the idea of separating coordination and 

computation. COCA provides the developers a logic-based specification language 

for modelling coordination policies. In COCA, the participants in a collaboration 

are divided by roles, and active rules are defined for each role to guard its 

interactions with other collaborators. These policies are interpreted at run-time by 

the COCA virtual machine, a copy of which runs on each participant machine. 

This approach makes it convenient to make changes both during development and 

run-time. Policies in COCA include not only access control, but also session 

control, concurrency control, floor control, etc. 

Roussev et al. (2000) take a component-based approach for separating data 

and control. The shared state of a data component is modelled as component 

properties and state changes as property change events. The composable design is 

based on programming patterns that eliminate the implicit binding between the 

logical structure of a shared object and particular system-defined abstractions, 

thereby increasing the range of supported objects and supporting extensibility. 

Laurillau and Nigay (2002) present the Clover architectural model, resultant 

from the combination of the layer approach of Dewan's (1999) generic 

architecture with the functional decomposition of the Clover design model. The 

Clover design model defines three classes of services that a groupware application 

may support, namely production, communication, and coordination services. 

These three classes of services can be found in each functional layer of the model. 

The Clover functional partitioning establishes a direct mapping between the 

design concepts and the software architecture modelling. This partitioning serves 

as a guide in the organisation of the functionalities identified during the design 

phase. In addition, it is complementary to the traditional partitioning of 

functionalities into components, where each of them corresponds to one level of 
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abstraction, as for instance in Dewan's architecture. Indeed, for a component 

corresponding to one level of abstraction, the Clover metamodel advocates three 

sub-components dedicated to production, communication, and coordination. This 

modular implementation is in accordance with the modifiability, reusability, and 

extensibility properties. In the Clover metamodel, the coordination, production, 

and communication functionalities are all treated in the same way. This is in 

contrast to other studies, such as in Dewan's architecture, where the coordination 

functionalities are treated as especial whereas the production and communication 

functionalities are not. The conceptual architecture is mapped into an 

implementation architecture by assigning processes to components; the processes 

in turn must then be assigned to hosts. Different approaches to distribution can be 

applied to a conceptual architecture. Distribution and layer decomposition (or 

software component decomposition) are two orthogonal mechanisms. In 

particular, a shared layer at the conceptual level does not imply a central site at the 

implementation level. 

Yang and Li (2004) then retake the component-based approach considered 

previously by Roussev et al. (2000), also separating data and control, but now 

supporting adaptable consistency protocols in collaborative systems. On clearly 

separating data and control, they allow consistency protocols to be dynamically 

attached to shared data at the object level. Protocols can be switched at run-time 

without modifying the source code. 

In accordance to all these studies, except somehow for the Clover model, we 

decided to adopt the strategy of separating the coordination structure and the 

computational program. In our metamodel, we use a logic-based specification 

language for specifying the coordination policies. We will provide more details 

about this specification language in Chapter 5. For the time being, it suffices to 

emphasise the following points: 

• We declare a collaboration bus which is used to connect all the 

participants in this collaboration, with the collaboration bus having 

at least one channel declaration. We allow many different 

collaborations being executed at the same time, each one with its 

correspondent collaboration bus. 

• Roles are defined specifying individual behaviours and constraints in 

different sets of logical rules. 
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• Communication among the participants occurs through one or more 

message channels associated with one collaboration bus. 

• The basic tasks of receiving and sending out messages are performed 

by: 

o For receiving messages, we use an active rule named on-arrive 

with arguments channel, receiver, message_id (and sender). 

o For sending out messages, we use a send formula with 

arguments channel, sender, message_id (and receiver). 

 

We now explain why the last arguments of both tasks appear in parenthesis: 

• For the task of receiving messages, the sender is optional. For the 

task of sending out messages, if for example IP multicast is adopted 

as the group communication model, the message is delivered to all 

the receivers, making the receiver argument unnecessary (in case of 

a unicast service, we would need the receiver argument). 

• However, the main reason for placing those arguments in parenthesis 

is that, to enhance flexibility, we decided to build a message 

attributes table which includes the sender, the receiver, and other 

attributes of each message, as we will see in the next subsection. In 

this case, changing the receiver of a message would simply be a line 

change in a table instead of modifying the coordination program. We 

then make some modifications on the rule and on the formula used 

in COCA (Li and Muntz, 1998), which turn respectively into: 

o on-arrive(channel, message_table(dummy,message_id,receiver)); 

o send(channel, message_table(sender, message_id, dummy)). 

 

A typical coordination program in our metamodel would have a form 

similar to the one shown in Table 1. There, self is a functor denoting the current 

participant, source associates the participant id with the message, and display is 

used to exhibit the message content on the screen. 

Following this coordination program line by line, we have: 

• The first line defining the collaboration with name 

integrated_simulation. 
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• The second line defining a collaboration bus with one single remote 

channel. 

• The third line opening a set of rules correspondent to role 

technician_0 (which can be instantiated by participants during the 

collaboration execution). 

• Then, we define the three rules constituting the role technician_0: 

o The first rule, on-init, is fired when the collaboration 

integrated_simulation starts. When this happens, a message with 

message_id 1 is sent to the receiver determined by the line in the 

message attributes table with key sender=source(self) (i.e., the 

present participant instantiating role technician_0) and 

message_id=1. 

o The second rule, on-arrive, is activated when a message with 

message_id 2 is received by source(self). When this happens, the 

message is displayed on the participant's console. 

o Finally the third rule, another on-arrive, is activated when a 

message with message_id 3 is received by source(self). When 

this happens, the message is displayed on the participant's 

console. 

 
 

collaboration integrated_simulation 

{ collaboration_bus { channel(remote). } 

 role technician_0 // a technician responsible for coordinating the simulations 

 { 
  on-init(integrated_simulation) :- 

send(remote, message_table(source(self), 1, dummy)). 

  on-arrive(remote, message_table(dummy, 2, source(self))) :- 

   display(message_table(dummy, 2, source(self))). 

on-arrive(remote, message_table(dummy, 3, source(self))) :- 

   display(message_table(dummy, 3, source(self))). 

 } 

} 

Table 1 - Activity-Centred metamodel: a typical coordination program 
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In general, role rules define coordination policies for each role present in a 

collaboration. When these rules also determine the order in which the events 

occur, they also define workflow rules. 

 

3.3.3. 
Message Attributes Table 

We have introduced pre- and post-communication processing modules 

associated with each message sent, so it would be a natural choice to build a table 

where we could define which processing modules to be executed at each time. 

Also it would be easy to change the name of a particular pre- or post-processing 

module even in run-time (besides having the possibility to also change the code in 

run-time before it is invoked). 

We built a message attributes table in our metamodel to enhance the 

flexibility of the coordination program, separating the coordination rules from 

data related specifically to each message. This is adherent to the overall concept 

of our metamodel, in separating data and control, with this indirection allowing 

dynamic reconfiguration. The only exception to this concept is that we decided to 

include the receiver (related to control instead of data) as a table column. This was 

motivated by the fact that, in tightly coupled workflows, it seems to be interesting 

to at least change receivers of a particular message in run-time, without having to 

change a coordination program. For example, a person from the sender group 

possibly would not know exactly to whom at the receiver side he should send the 

message. Then he could send the message to the abstract receiver group node, 

allowing it to determine via its post-processing module to which receivers the 

message would be sent. Another example could be that of a latecomer observer 

(e.g., a manager not responsible for making the decisions) joining a collaborative 

session and wanting to receive every message from that moment onwards. It 

would be a matter of editing the table to include new lines associating the future 

messages with the latecomer. Note that the edges connecting this latecomer to the 

other participants should have been anticipated and included in the model before 

the beginning of the collaboration, and that the latecomer should assume an 

already defined role that does not interfere in the main process. 
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We now show in Table 2 the first lines of a typical message attributes table 

associated with a tightly coupled collaborative application. 
sender message_id receiver edge pre-processing post-processing

T0 1 T1 e1 Pre_1_T1 Pos_1_T1
T1 2 T0 e1 Pre_2_T0 Pos_2_T0
T1 2 G1 e2 Pre_2_G1 Pos_2_G1
T1 3 T0 e1 Pre_3_T0 Pos_3_T0
T1 3 G1 e2 Pre_3_G1 Pos_3_G1  

Table 2 - Columns and first lines of a typical message attributes table 
 

The keys of this table are sender, message_id, and receiver. As we have 

already seen in Subsection 3.3.2, we enter the table using the pair (sender, 

message_id) when sending a message and we use the pair (message_id, receiver) 

to receive a message. 

 

3.3.4. 
Sender and Receiver Algorithms 

We now present the algorithms executed when sending a message at both 

the sender and the receiver side. 

First we note that each message has one initial sender, which is necessarily a 

leaf node, and one or more final receivers, which can be either leaf or group 

nodes. After having presented the role rules and the message attributes table, we 

can now derive the algorithms to be executed at either side, as shown in Table 3. 

We consider the message attributes table of the previous subsection (Table 

2) to analyse the algorithms and derive in which moments the pre- and the post-

processing modules are executed for each message. It is important to emphasise 

two points: 

• G1 (for Group 1) is not a leaf node, but a group node. According to 

the algorithms, the post-processing module Pos_2_G1 is responsible 

for determining to which leaf nodes in group G1 the message (2, G1) 

should be delivered. 

• Although sending the same message to each receiver gives our 

metamodel more flexibility, with the possibility of executing pre- 

and post-communication processing modules particular to each 

receiver, with many advantages such as the ones mentioned in the 

examples given in Subsection 3.3.1, we should also consider the 
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impact that this strategy has on performance. As Li and Muntz 

(1998) reported, early models were largely based on grouping of 

multiple point-to-point communications. In this case, a packet with n 

intended receivers must be delivered n times by the sender, 

regardless of the physical location of the involved parties. This 

approach incurs overhead on both the message senders and the 

communication paths, and latency increases with the size of the 

receiver population. We should then balance our necessities when 

choosing a strategy to be used in a collaborative application. For 

example, it seems adequate to choose our algorithm if we have few 

nodes and great diversity among the nodes. On the other hand, it 

could be more efficient to choose an IP multicast communication 

model if we have many nodes with not so much diversity among 

them. 

 
sender (sender, receiver, flag) 
• until the receiver is found repeat 

o at the current level, search for the sub-tree that contains the receiver 
o if the receiver is found (and all the path from the sender to the receiver is determined) 

 if flag = in_table 
• execute the pre-processing module associated with the pair (message, receiver) 

 else 
• create a new line in the message attributes table with pair (message, receiver) indicating the post-

processing module to be executed 
 execute all the out-policies associated with groups on levels in the path beginning at the sender until the 

communication edge is reached 
 send the message with the receiver to the leaf node which is assigned to the  

post-processing attribute of the receiver group node, or to the receiver itself 
o else 

 go to the upper level 
 

Sender side of the communication edge (executed by the initial_sender leaf node): 
• for each final_receiver associated with the message 

o sender (initial_sender, final_receiver, in_table) 
 

Receiver side of the communication edge: 
• receive the message 
• execute all the in-policies associated with groups on levels in the path beginning at the present 

    node until the final_receiver node is reached 
• if the final_receiver is a leaf node 

o if it is equal to the post-processing execution node 
 execute the post-processing module associated with the pair (message, final_receiver) 

o else 
 send the message to the final_receiver 

• else 
o execute the post-processing module associated with the pair (message, final_receiver), which in this case 

should determine the leaf node(s) or group node(s) to receive the message 
o for each of the node(s) determined above (current_node) 

 sender (final_receiver, current_node, not_in_table) 
 

Table 3 - Activity-Centred metamodel: sender and receiver algorithms 

 

We now describe both algorithms, at the sender and at the receiver side, 

shown in Table 3. First we detail a common method, named sender, which is used 
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at both sides. The basic purpose of this method is to find, in the network 

component of our metamodel, the receiver node to receive a message, determining 

the complete path from the sender to the receiver. The method has three 

arguments: the sender, the receiver, and a flag determining if the present message 

is or is not already in the message attributes table. It has a main loop until…repeat 

to find the receiver, which is executed beginning by searching for the receiver in 

the sub-tree defined by the level immediately above the sender (a leaf node) level, 

going upwards executing the same step until the receiver is found. When this 

happens, we have two possible situations: 

• The message is already in the message attributes table: 

in this case, the pre-processing module associated with the pair 

(message_id, receiver) is executed. 

• The message is not in the message attributes table: 

this means that this is a new message being created in run-time by a 

group node at the receiver side, defining a new line in the table 

including its post-processing module. 

 

Ending the sender method, we have two more steps: 

• The first one executes all the out-policies associated with groups on 

levels in the path beginning at the sender until the communication 

edge is reached. 

• The second one finally sends the message with the receiver to the 

leaf node which is assigned to the post-processing attribute of the 

receiver group node, or to the receiver itself (in case of a leaf node). 

 

Now we describe the sender side algorithm. With the sender method defined 

above, this algorithm, executed by the initial_sender leaf node, is simply a for 

loop repeating the following step for each final_receiver (determined in the lines 

of the message attributes table) associated with the current message being sent: 

• sender (initial_sender, final_receiver, in_table). 

We can observe that the method is invoked with flag=in_table, meaning that those 

are messages already pre-defined in the message attributes table. 
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Finally we now describe the receiver side algorithm: 

• The first step, executed by the post-processing attribute of the 

receiver group node or by the receiver itself (in case of a leaf node), 

is exactly to receive the message. 

• The second step is to execute all the in-policies associated with 

groups on levels in the path beginning at the present node until the 

final_receiver node is reached. 

• The third and last main step is executed differently, depending on 

whether the final_receiver is or is not a leaf node: 

o If the final_receiver is a leaf node: 

 The final_receiver can be the post-processing execution 

node itself, when it simply executes the post-processing 

module associated with the pair (message_id, 

final_receiver), or they are different, in which case the 

post-processing execution node still has to send the 

message to the final_receiver leaf node. 

o If the final_receiver is a group node, two steps are executed: 

 The post-processing module associated with the pair 

(message_id, final_receiver) is executed, which in this 

case should determine the leaf node(s) or group node(s) to 

receive the message. 

 A for loop repeating the following step for each node 

determined in the step above (the current_node) is 

executed: 

• sender (final_receiver, current_node, not_in_table). 

We can observe that, in this case, the sender method is 

invoked with flag=not_in_table, indicating that those are 

new messages being created in run-time by a group node. 

 

3.4. 
Activity-Centred Metamodel: Specification Language for the Network 
Component 

As we have seen in Section 3.2, the main component of our Activity-

Centred metamodel is the network constituted by nodes and edges defining, 
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respectively, the groups performing the activity and the interaction paths among 

them. 

We should use a specification language to describe this network, choosing 

among many of the specification languages available, such as Process Algebra 

(Milner, 1989), Petri Nets (Murata, 1989), Unified Modeling Language (UML) 

Diagrams (UML, 2006), and Use Case Maps (UCM) (Buhr & Casselman, 1996). 

We have then selected the specification language proposed (Russo, 1988; Santos, 

1986) for the PUC-Rio EITIS – Environment of Integrated Tools for Interactive 

Systems – project (Melo, 1987) mainly because of two reasons: 

• Its simplicity, inspired on a modified BNF (Backus-Naur-Form) 

notation, allowing us not to lose focus on the present work being 

developed. 

• The fact that we have already used it in a previous project of the 

Computer Science Department of PUC-Rio. 

 

We now give a brief description of the notation used in our specification 

blocks: 

• In capital letters, we represent the entities and the relationships, as 

well as the attributes being described and the types and functions of 

the entities. 

• In small letters, we represent the attributes that are not being 

described and the syntax associated to the attributes being described. 

• The + signal indicates a possible occurrence of more than one 

instance of a specific object. 

• The | signal represents a logical “OR”. 

• The relationships or attributes in brackets may or may not occur in a 

specific instance of the entity being considered. 

 

The specification blocks defining the main entities and relationships of the 

network component of our metamodel are shown in Table 4. 



 

48 

 
Table 4 - Network component: specification blocks defining entities and relationships 

These specification blocks should be then stored in a data structure with a 

Data Description Language (DDL) similar to the one shown in Table 5 (there we 

describe only the main entities of the network component, i.e., nodes and edges). 

NODE: node-id 

DESCRIPTION: text 

NAME: text 

TYPE: LEAF | GROUP 

[PARENT: node-id] 

[POST_PROCESSING EXECUTION NODE: node-id] 

[HOST: host-id] 

[ATTRIBUTES: {attrib-name attrib-type attrib-value}+] //user interface preferences, language 

[SHARES: artefact-id+] 

[IN-POLICY: policy-id] 

[OUT-POLICY: policy-id] 

 

EDGE: edge-id 

DESCRIPTION: text 

DISTANCE: LOCAL | REMOTE 

DIRECTION: UNIDIRECTED | BIDIRECTED 

SENDER: node-id 

RECEIVER: node-id 

HAS: channel-id+ 

 

ARTEFACT: artefact-id 

DESCRIPTION: text 

NAME: text 

TYPE: many 

SYNCHRONY: SYNCHRONOUS | ASYNCHRONOUS 

PERSISTENCY: PERSISTENT | VOLATILE 

[ACL: acl-id] //Access Control List 

 

CHANNEL: channel-id 

DESCRIPTION: text 

NAME: text 

TYPE: many 

SYNCHRONY: SYNCHRONOUS | ASYNCHRONOUS 

PERSISTENCY: PERSISTENT | VOLATILE 
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Table 5 - Network component: Data Description Language (DDL) 

 

Finally, we present in Table 6 the load records for nodes and edges 

correspondent to the Data Description Language of Table 5. 

 
Load Records 

 

Node 

 

rec-type  node-id  description    name  type    parent     post    host    … 

 

Edge 

 

rec-type  edge-id  description    distance  direction    sender    receiver   … 

 

Table 6 - Network component: load records for nodes and edges 
 

RECORD node 

ITEM node-id NUM 2 KEY 

ITEM description CHAR 35 

ITEM name CHAR 30 

ITEM type CHAR 5 

ITEM parent NUM 2 

ITEM post NUM 2 

ITEM host NUM 12 

. 

. 

 

RECORD edge 

ITEM edge-id NUM 4 KEY 

ITEM description CHAR 35 

ITEM distance CHAR 6 

ITEM direction CHAR 11 

ITEM sender NUM 2 

ITEM receiver NUM 2 

. 

. 
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3.5. 
Activity-Centred Model: A Simple Complete Example 

We now consider a simple, but complete, example (Figure 10) to illustrate 

how we describe the three main components of our metamodel: the network, the 

role rules and the message attributes table. 

BR
(n2)

TT1
(n5)

TT2
(n6)

DM1
(n7)

DM2
(n8)

Technical
Teams (n3)

Decision
Makers (n4)

e1 e2 e3

Motive: Integrated Simulation - IS
(n1)

Figure 10 - A simple complete example of an activity-centred model: Integrated 

Simulation 

 

The top level node of this example, the motive, is Integrated Simulation 

(n1). It has one main node, the oil & gas company BR (n2), constituted by two 

groups: Technical Teams (n3) and Decision Makers (n4). 

Technical Teams is constituted by two leaf nodes, technician TT1 (n5) and 

technician TT2 (n6), while Decision Makers is constituted by two other leaf 

nodes, decision maker DM1 (n7) and decision maker DM2 (n8). 

Also represented in the network component there are the edges e1, e2, and 

e3, showing the interaction paths among the nodes, all with thick arrows (remote). 

The load records for these nodes and edges are shown in Table 7. 
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1 | 1 | Integrated Simulation | IS | GROUP | 0 | 5 | … 

1 | 2 | Oil & Gas Company | BR | GROUP | 1 | 5 | … 

1 | 3 | Technical Teams | TT | GROUP | 2 | 5 | … 

1 | 4 | Decision Makers | DM | GROUP | 2 | 7 | … 

1 | 5 | Technician 1 | TT1 | LEAF | 3 | 0 | … 

1 | 6 | Technician 2 | TT2 | LEAF | 3 | 0 | … 

1 | 7 | Decision Maker 1 | DM1 | LEAF | 4 | 0 | … 

1 | 8 | Decision Maker 2 | DM2 | LEAF | 4 | 0 | … 

  

2 | 1 | technicians channel | REMOTE | BIDIRECTED | 5 | 6 | … 

2 | 2 | technical-manager channel | REMOTE | BIDIRECTED | 3 | 4 | … 

2 | 3 | managers channel | REMOTE | BIDIRECTED | 7 | 8 | … 

Table 7 - Activity-centred model: load records for the network component 

 

In this table, we can identify the seven nodes and the three edges 

constituting the network component of the integrated simulation model. In terms 

of nodes, we can see that the records define which nodes are groups and which 

ones are leaves, what are the parents of the nodes (0, when the parent is the 

motive), and what are the post-processing execution nodes for the group nodes (0, 

when the nodes are leaf nodes). For example, the third line (1 | 3 | Technical 

Teams | TT | GROUP | 2 | 5 | …) starts by defining that it refers to a node (record 

type 1), followed by its id (3), description (Technical Teams), and name (TT). 

Then, the node type is defined as GROUP, and its parent is defined as the node 

with id=2 (defined in the previous line – BR). Finally, the last attribute shown 

defines the node that executes the post-processing module associated to this group 

(in this case, it is the node with id=5, defined two lines below – TT1). 

In terms of edges, we identify which are the remote (all of them in this 

example) and the local ones, which are the bidirected (again all of them in the 

present example) and the unidirected ones, and the nodes defining the edges. For 

example, the last line (2 | 3 | managers channel | REMOTE | BIDIRECTED | 7 | 8 | 

…) starts by defining that it refers to an edge (record type 2), followed by its id 

(3) and description (managers channel). Then the edge is defined as REMOTE 

and BIDIRECTED. Finally, the last two attributes identify the nodes connected by 

the edge (in this case, nodes with ids 7 and 8 – DM1 and DM2, respectively). 

We then show in Table 8 the role rules defined for technician_1 instantiated 

by TT1 from the Technical Teams group. 
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collaboration integrated_simulation 
{ collaboration_bus { channel(remote). } 

 role technician_1 //Technician 1 from Technical Teams, responsible for coordinating the simulations 

   { 

 on-init(integrated_simulation) :- 

   send(remote, message_table(source(self), 1, dummy)). //send “Technician 2, please begin simulation.” 

 on-arrive(remote, message_table(dummy, 2, source(self))) :- 

   display(message_table(dummy, 2, source(self))). //display “Simulation  has begun.” 

 on-arrive(remote, message_table(dummy, 3, source(self))) :- 

   display(message_table(dummy, 3, source(self))), //display “End of simulation.”  

   send(remote, message_table(source(self), 4, dummy)). //send “Decision Maker, please validate the simulation.” 

 on-arrive(remote, message_table(dummy, 5, source(self))) :- 

   display(message_table(dummy, 5, source(self))). //display “Simulation validated.” 

 } 

} 

Table 8 - Activity-centred model: role rules for technician_1 

 

Following this coordination program line by line, we have: 

• The first line defining the collaboration with name 

integrated_simulation. 

• The second line defining a collaboration bus with one single remote 

channel. 

• The third line opening a set of rules correspondent to role 

technician_1 (which in this example is instantiated by participant 

TT1). 

• Then, we define the four rules constituting the role technician_1: 

o The first rule, on-init, is fired when the collaboration 

integrated_simulation starts. When this happens, a message with 

message_id 1 and content “Technician 2, please begin 

simulation.” is sent to the receiver determined by the line in the 

message attributes table with key sender=source(self) (i.e., TT1) 

and message_id=1. In Table 9, this line is the first one, and 

indicates that the receiver is TT2. 

o The second rule, on-arrive, is activated when a message with 

message_id 2 is received by source(self) (i.e., TT1). When this 

happens, the message is displayed on the participant's console: 

“Simulation has begun.” 
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o The third rule, another on-arrive, is activated when a message 

with message_id 3 is received by source(self) (i.e., TT1). When 

this happens, message 3 is displayed on the participant's console 

– “End of simulation.” – and a message with message_id 4 with 

the content “Decision Maker, please validate the simulation.” is 

sent to the receiver determined by the line in the message 

attributes table with key sender=source(self) (i.e., TT1) and 

message_id=4. In Table 9, this line is the sixth one, and indicates 

that the receiver is DM. 

o Finally the fourth rule, yet another on-arrive, is activated when a 

message with message_id 5 is received by source(self) (i.e., 

TT1). When this happens, the message is displayed on the 

participant's console: “Simulation validated.” 

 

We could similarly define role rules for the other participants of the 

collaborative application. We should note that, since in this example the role rules 

are defining the order of the events, they can also be considered workflow rules. 

We finish our simple example showing the message attributes table (Table 

9) containing all the messages to be sent by the participants, which, together with 

the role rules, define the coordination structure of our metamodel. 

sender Message_id receiver edge pre-processing post-processing
TT1 1 TT2 e1 Pre_1_TT2 Pos_1_TT2 
TT2 2 TT1 e1 Pre_2_TT1 Pos_2_TT1 
TT2 2 DM e2 Pre_2_DM Pos_2_DM 
TT2 3 TT1 e1 Pre_3_TT1 Pos_3_TT1 
TT2 3 DM e2 Pre_3_DM Pos_3_DM 
TT1 4 DM e2 Pre_4_DM Pos_4_DM 
DM1 5 TT1 e2 Pre_5_TT1 Pos_5_TT1 

Table 9 - Activity-Centred Metamodel: message attributes table for the BR model 

 

In this table, we can also see the different pre- and post-processing modules 

to be executed while sending the messages, particularly messages 2 and 3, which 

have different processing modules associated with different receivers. Also it is 

important to note that message 2 sent from TT2, message 3 sent from TT2, and 

message 4 sent from TT1, all of them are destined to DM group. This means that 

the post-processing modules Pos_2_DM, Pos_3_DM, and Pos_4_DM, 

respectively, all of them executed by the post-processing execution node of the 
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DM group, DM1 (see Table 7, in which it has node-id 7), should determine which 

leaf node(s) of group DM should receive the messages. In our present example, 

we define that messages 2 and 3 are re-routed to both DM1 and DM2 (as they are 

simply follow-up messages), and message 4 is re-routed to DM1, since he is the 

one responsible for making the final decision about the integrated simulation. 

We finalise this section noting that we should guarantee consistency among 

all the three parts of our metamodel. This means for example that the types of 

channel present in the role rules, local or remote, should be the same represented 

in the network component (thin or thick arrows). Also messages present in the 

message attributes table should only be defined if the correspondent edges linking 

the senders and the receivers in the network component exist. The sender and the 

receiver algorithms should verify this consistency during run-time. Finally, we 

should note that, in the send formulas used in the role rules, since the receivers are 

only indirectly determined via the message attributes table, we only indicate the 

channel used to communicate with the main receiver of the message. The channels 

used to communicate with the other receivers are determined while identifying the 

receivers and the edges used (and their channels) in the message attributes table. 
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4 
Technological Approaches for Developing Distributed 
Virtual Environments 

After elaborating a metamodel to help configure the collaborative virtual 

workspace architecture, in this chapter we focus on reviewing and analysing 

existent Distributed Virtual Environments (DVEs) in order to select which ones 

have the more appropriate features to serve as a basis to support the 

implementation that will be developed to validate our metamodel. 

We cover two of the current technological approaches for creating and 

building distributed systems, namely Middleware and Pure Distributed Virtual 

Environments, summarising the systems that have been evaluated. 

 

4.1. 
Considerations in Developing Collaborative Environments 

An efficient Collaborative Virtual Environment (CVE), which is another 

name for DVE, should guarantee distribution support, an efficient network with 

large bandwidth, adequate communication, and data storage models. Furthermore 

this distributed environment should offer appropriate collaborative interfaces, 

operations and metaphors to enable the users to work effectively. 

For a virtual environment to be collaborative, it must be distributed among 

the participants who wish to share it. The choice of communication architecture is 

parameterised by the degree to which the data structures representing the virtual 

environment are replicated or cached among the computing nodes and the 

underlying transportation technology (West & Hubbold, 2001). 

However, whatever the technology, communication latencies are ultimately 

insurmountable. Real-time shared interaction is particularly sensitive to lag, 

especially in the case of immersive interfaces. The application's sensitivity to such 

lag depends on the degree of genuinely shared interaction desired. For example, in 

a passive walk-through of a model, small temporal discrepancies among the 

participants' experience of the world may well go unnoticed. At the opposite 
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extreme, the two people operating a stretcher through the confines of an oil rig 

will find coordination difficult or impossible with any appreciable lag. 

If it is not possible to achieve the adequate synchrony, one solution is to at 

least focus resources upon those activities which are most sensitive to lag, i.e. 

those which produce the most pronounced discontinuities of perceptual experience 

when lag is present. This involves determining metrics for significance and 

prioritising urgency within the communication infrastructure accordingly (West & 

Hubbold, 2001). Ultimately, as the components of a CVE system interact in 

complex ways, the designer must regard the application as a unified system. 

Invariably, trying to optimise one element of a CVE can adversely impact the 

behaviour of other components. In effect, CVE development is a difficult 

balancing act of engineering tradeoffs (Singhal & Zyda, 1999). 

It is impossible to predict the network requirements of CVEs in isolation; 

rather, we need a model of CVE operation which encompasses the application, 

user, software, and hardware concerns. Greenhalgh (2001) proposes a model that 

has six layers: 

1. Task/application/collaboration requirements: what people want or 

try to do. 

2. User behaviour: what particular actions people do and when. It is 

important to consider user behaviour when trying to understand the 

network requirements of CVEs because almost all of those 

requirements derive from what the users choose to do and when they 

choose to do it. For example, if users speak only rarely, and never at 

the same time, then the network requirement for audio could be very 

limited. On the other hand, for some scenarios of use there must be 

enough bandwidth for every user to speak at the same time. This 

could be the case, for example, of emergency systems. 

3. Process behaviour: how the application responds. Every CVE system 

has its own set of capabilities and its own ways of representing users 

and virtual worlds. For example, each system supports a different 

subset of possible user actions. Once again, the emergency scenario 

could be a good example: while people ahead of the whole operation 

could execute any command, other specialists could only execute the 

tasks they were asked to. 
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4. Distribution architecture: what communicates with what. The choice 

of distribution architecture determines which information must be 

communicated to which parts of the system. The distribution 

architecture will therefore determine how virtual worlds are 

organised and divided, which users can communicate with each 

other, and whether or not there are any central coordinating 

processes or servers. The distribution architectures can basically be 

divided into three models: client/server, peer-to-peer, and hybrid. 

5. Communication protocols: how information is exchanged. Protocols 

can be either unicast or multicast. The developer has to choose the 

best distribution architecture/communication protocol combination 

that fits the particular application being elaborated. 

6. Network communication: what actually happens in the network. 

There are some network requirements that depend on exactly where 

in the network each application is running and how the network is 

connected (e.g. LAN or WAN), since the actual bandwidth in 

different parts of the network will vary. This also includes mobile 

systems. 

 

The choice of distribution architecture is the main factor determining much 

of the multi-user “feel” of a CVE. For example, the distribution architecture will 

typically determine: 

• The possible structure of a virtual world, e.g. whether it copes well 

with large outdoor spaces or with complex building interiors. In the 

oil & gas industry, the users have to deal with both situations, for 

example when building a complex offshore structure (complex 

interior) or monitoring oil pipelines disposed over a mountain (large 

outdoor space). The challenge becomes even more complex in some 

emergency scenarios, when specialists possibly have to go through 

many details of the structure using an egocentric point-of-view 

(indoor space), while having to observe the simulation effect of 

possible emergency operations using an exocentric point-of-view 

(outdoor space). In these cases, the system has to address 

simultaneously the indoor and the outdoor requirements. 
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• How many users may share a single virtual world. Typical oil & gas 

applications nowadays are held in no more than a half dozen 

visualisation rooms simultaneously, with no more than 20 specialists 

in each one. In some cases, specialists spread over the outdoor space 

may have the need to enter the virtual world using a mobile system. 

• The dynamics of the virtual world, including the ways in which 

behaviours may be realised and what things may and may not be 

changed. For example, it is extremely hard to dynamically change 

basic geometries in some systems, whereas it is relatively easy in 

others. This is a very important issue of oil & gas applications 

considering the complexity of the data involved. What is usually 

done is the replication of the data model in the sites before the 

collaboration session begins. To avoid network overload, normally 

during a session the users are only allowed to do some incremental 

updates, transmitting only small data and/or action messages. 

 

For the moment, it is fair to say that there is no universal choice of 

distribution or communication architecture, but rather a range of trade-offs in 

performance and deployment issues. 

Another important requirement in distributed environments is the need for a 

data storage model for supporting collaborative activities. According to 

Macedonia and Zyda (1997), the data storage models can be classified as: (i) 

centralised and shared database; (ii) homogeneous worlds replicated database; (iii) 

distributed and shared database with peer-to-peer modifications; and (iv) 

distributed and shared client/server database. 

Centralised databases provide an easy programming model. The developer 

can access information at any time, ignoring the existence of the network. The 

only indication of whether the data is cached or remote will be in the access time. 

Additionally synchronisation is assured as (ignoring caching) there is only one 

representation of each object in the database. The main drawback of centralised 

databases is a potential performance hit associated with accessing the data across 

a network. 

Replicated databases are popular in many VR systems. Local 

representations of the data mean that local updates are fast. 
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Due to the high value of their data, oil & gas applications have strict 

database consistency and security requirements, suggesting a centralised and 

shared database model. The grid concept seems to match those requirements, 

since it is conceptually centralised with real data spread at various places 

transparently to the application. Nevertheless, due to performance requirements 

and as the grid is still a new concept, it can be observed that almost all the 

practical applications at the moment use the replicated model, some of them 

allowing the users to make what is called incremental updates. 

 

4.2. 
Architectural Approaches 

After discussing general considerations about developing collaborative 

environments, we are now going to focus on two current technological approaches 

for creating and building distributed systems, namely Middleware and Pure 

Distributed Environments, summarising the systems that have been evaluated. 

 

4.2.1. 
Middleware 

Systems based on the Middleware approach have the goal to create an 

interface that establishes a practical and portable standard for process 

communication. In the next subsections, we summarise five of those systems. 

 

4.2.1.1. 
Message Passing Interface (MPI) 

The goal of the Message Passing Interface simply stated is to develop a 

widely used standard for writing message-passing programs (Dongarra et al., 

1993). The main advantages of establishing a message-passing standard are 

portability and ease-of-use. In a distributed-memory communication environment 

in which the higher-level routines and/or abstractions are built upon lower-level 

message passing routines, the benefits of standardisation are particularly apparent. 

Message passing is a paradigm used widely on certain classes of parallel 

machines, especially those with distributed memory. Although there are many 

variations, the basic concept of processes communicating through messages is 
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well understood. Over the last ten years, substantial progress has been made in 

casting significant applications in this paradigm. Each vendor has implemented its 

own variant. 

MPI-1 (Dongarra et al., 1993) was completed in early 1993. It focussed 

mainly on point-to-point communication. It did not include any collective 

communication routines and was not thread-safe. 

MPI-2 (2006) added some extensions to the basic standard. MPI/RT is the 

latest instantiation. It incorporates numerous features, such as an API, support for 

heterogeneous environments, C and Fortran bindings, point to point and collective 

channels, a reliable communication interface, and thread safety. 

 

4.2.1.2. 
CORBA and TAO 

The Common Object Request Broker Architecture (CORBA) (OMG, 1995) 

is an open standard for communicating between local and remote processes. On 

top of packet transmission, CORBA offers a number of “standard” services which 

automate many common network programming tasks, such as object registration, 

location, and activation; request demultiplexing, and operation dispatching. At the 

base level, communication is defined by Remote Procedure Calls (RPCs) between 

processes. The developer defines the interface to the processes using the Interface 

Description Language (IDL). The IDL is compiled into an interface that exists 

between client and server. Thereafter, the communication details are handled by 

CORBA. The services mentioned above are then layered over this communication 

framework. 

Initial implementations of CORBA did not deal with real-time processing 

issues overtly (although this did not preclude a small number of CORBA-based 

VR applications, e.g., COVRA-CAD (Junghyun et al., 1998)). 

Doug Schmidt and colleagues at the University of Washington State 

developed The ACE ORB (TAO) (Schmidt, 2006), a CORBA-compliant 

middleware framework that addresses some of the real-time challenges of 

distributed processing. Schmidt and colleagues identify a set of patterns and 

framework components that can be applied systematically to eliminate many 
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tedious, error-prone, and non-portable aspects of developing and maintaining 

distributed applications. 

 

4.2.1.3. 
Grid Computing and Globus 

The grid can be defined by the following notional checklist: 

“(A Grid…) 

• Coordinates resources that are not subject to centralised control – (A 

Grid integrates and coordinates resources and users that live within 

different control domains – for example, the user's desktop vs. 

central computing; different administrative units of the same 

company; or different companies – and addresses the issues of 

security, policy, payment, membership, and so forth that arise in 

these settings.) 

• Using standard, open, general-purpose protocols and interfaces – (A 

Grid is built from multi-purpose protocols and interfaces that address 

such fundamental issues as authentication, authorisation, resource 

discovery, and resource access...) 

• To deliver nontrivial qualities of service – (A Grid allows its 

constituent resources to be used in a coordinated fashion to deliver 

various qualities of service, relating for example to response time, 

throughput, availability, and security, and/or co-allocation of 

multiple resource types to meet complex user demands, so that the 

utility of the combined system is significantly greater than that of the 

sum of its parts.)” (Foster & Kesselman, 1998). 

 

There are a number of software infrastructures for Grid computing (e.g. 

Globus (Foster & Kesselman, 1997), Legion (Grimshaw & Wulf, 1997), and 

SNIPE (Fagg et al., 1997)). Services such as authentication, program startup, and 

data transfer mechanisms are all included in the infrastructures. 

Globus is arguably the most popular of these infrastructures, and has been 

implemented as the distribution mechanism in a number of VR frameworks 

(including CAVERNSoft (Park et al., 2000)). 
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Globus is designed to offer features such as uniform access to distributed 

resources with diverse scheduling mechanisms, information service for resource 

publication, discovery and selection, and enhanced performance through multiple 

communication protocols (Foster & Kesselman, 1997). 

 

4.2.1.4. 
Common Component Architecture (CCA) 

The Common Component Architecture (Common Component Architecture 

Forum, 2006) defines a component-based communication framework that 

conceptually sits above middleware such as CORBA or Globus, or lower-level IP. 

There are numerous advantages to component programming when 

implementing high-performance visualisation tools. This is realised when one 

considers that the development of virtual reality applications is increasingly a 

multidisciplinary undertaking. By providing flexible core frameworks, the broader 

development effort can incorporate research teams with a significant range of 

skills. Component programming supports the different approaches and 

requirements inevitable in a multidisciplinary development effort. However, 

possibly the most interesting facet of component programming to the present 

work is that components can be configured to execute locally or at remote 

locations. 

CCA provides a transparent means of defining and managing software 

components. In doing this it addresses component-level interoperability, that is, 

the flexible connection to an architecture by a compliant component through a 

well defined interface. There are a number of CCA-compliant frameworks 

currently in use, including CCAFFEINE (Armstrong et al., 1999) and XCAT 

(2006). The dataflow model in SCIRUN (Parker, 1999) also incorporates a CCA-

compliant framework. 

 

4.2.1.5. 
InfoGrid 

InfoGrid, previously CSGrid (Lima et. al, 2005), is a client/server system 

for grid environments which, in addition to support for usage and management of 

distributed computational resources, offers facilities to integrate applications and 
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manage data and users (Figure 11). InfoGrid presents to its users, through a web 

browser, a workspace with all available applications and with each user's data 

files organised by project. A user can extend the system, adding new applications. 

InfoGrid also provides its users with some collaborative work facilities. 

Computer A
Computer B

Data Repository

Algorithm
Process

Algorithm
Process Algorithm

Process

Projects
Area

Algorithms
Repository

Users
Database

 
Figure 11 - InfoGrid architecture 

 

Applications which are executed in the client utilise InfoGrid's available 

services to have access to and to manage distributed computational resources. One 

of these services is the remote execution of algorithms which are in computers 

linked to InfoGrid. For InfoGrid, algorithms are defined as executable programs 

implemented in any language which accept input parameters, generate an output, 

and do not have any type of interaction with the user during their execution. Many 

computers can be incorporated to the grid environment to serve as a platform for 

algorithm execution. New algorithms can be easily made available in the 

environment and the process to execute them is turned into a transparent task for 

the user. 

An important characteristic of InfoGrid is the interoperability between the 

main server of the system and the servers being executed in the different 

computers for algorithm execution. Independently from the implementation 

language of the algorithms and the computers in which they are being executed, 

InfoGrid offers a standard interface for remote execution and monitoring of the 

environment computers. 

InfoGrid has a desktop web where the users utilise the distributed 

computational resources as if they were in their local computers. Through this 
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client, they can create their own workspace, monitor the grid's computers, install 

algorithms, execute applications installed in the desktop, command the remote 

execution of algorithms, and monitor the processes which are executing these 

algorithms in the environment's computers. 

InfoGrid was implemented as an extension of CSBase (2006), a framework 

for resource management and algorithm execution in a distributed and 

heterogeneous computational environment. CSBase is a result of different projects 

being developed by the joint partnership between PUC-Rio/Tecgraf and Petrobras. 

The first of these projects, WebSintesi, has implemented and made available an 

integrated environment for analysis and synthesis of geophysical data. In 

WebSintesi, multi-processing computers and clusters are linked to a main server 

that performs, transparently to the users, the remote execution of programs which 

require high performance processing and handle seismic data of hundreds of 

gigabytes. 

After the first year of the WebSintesi development, the Dynamic InfoPAE 

project was started to attend Petrobras users who utilise emergency management 

applications, such as offshore stability analysis programs. To allow the reuse of 

the services already implemented for WebSintesi and to facilitate the development 

of new services and particular applications for the WebSintesi and for the 

Dynamic InfoPAE projects, the CSBase framework was created. 

Because of all these developments, we decided to take InfoGrid as an 

example of this first approach (Middleware) to delineate a prototype (described in 

Chapter 5) that will be one of the proofs of our metamodel. 

 

4.2.2. 
Pure Distributed Virtual Environments 

In this subsection, we investigate the second approach for developing 

distributed virtual environments, namely Pure Distributed Virtual Environments, 

in which specific distributed environments are developed to meet the 

requirements. This approach offers a higher abstraction level when compared to 

Middleware, in the sense that their protocols, architectures and systems provide 

the developers with APIs (Application Programmer's Interfaces) which are closer 

to the application level than to the implementation level. 
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4.2.2.1. 
SIMNET, DIS, and HLA 

Distributed Interactive Simulation (DIS) and its predecessor SIMNET are 

standards for distributed interactive simulations (Locke, 1993; Youngman, 2006). 

DIS retains a replicated database and uses dead reckoning to keep track of others. 

Dead reckoning is a strategy for dealing with network latency problems. It 

involves packaging an entity's location, a time stamp, and a velocity vector. The 

host application receiving the data can then predict where the object should be. 

Each entity runs a local simulation together with the dead reckoning model, and 

when the two diverge by more than a certain tolerance a message is sent out to all 

participants to reconcile the discrepancy. 

DIS brings together several interesting ideas for distributed virtual reality: 

• Standard message formats. 

• No central server. 

• Dead reckoning. 

• Area of Interest Management (AOIM). 

• Potential use of multicasting. 

 

Multicast messages can be sent to a specified group of machines. 

Multicasting is popular in distributed virtual reality systems, particularly with 

systems that support large numbers of participants. Macedonia et al. (1995) state 

that some simulations have been shown to reduce network traffic by 90% by 

employing multicasting. 

A number of applications implement the DIS protocols, such as VR-Link 

(Morrison, 1995), Close Combat Tactical Trainer (CCTT) (Mastaglio & Callahan, 

1995), PARADISE (Singhal, 1996), and NPS Networked Vehicle Simulator 

(NPSNET) (Macedonia et al., 1995). NPSNET-V (Capps et al., 2000) is 

developed by the Naval Postgraduate School. It is implemented in Java, and 

incorporates the concept of an entity to represent a virtual world object. NPSNET-

V defines object entities which contain information about artefacts in the virtual 

environment (e.g., tanks, people). The entities define state information, such as 
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location and velocity. From a list of defined protocols, each entity can be imbued 

with a set of behaviours. 

The High Level Architecture (HLA) effort (Defense, 2006; Dahmann et al., 

1999) aims to facilitate the interoperability and composability of the broadest 

range of component-based simulations. The HLA did not originate as an open 

standard, but was later recognised and adopted by both the Object Management 

Group (OMG, 2006) and the Institute of Electrical and Electronics Engineers 

(IEEE, 2006). HLA development occurred in much the same way as did the DIS 

standard – namely, the initial design was produced within the U.S. Department of 

Defense and then delivered to an external body (IEEE and/or OMG) for 

standardisation (Singhal & Zyda, 1999). 

The HLA architecture can be thought as an object-oriented net-VE design. 

Each simulator, known as a federate, is a component that represents a collection 

of objects, each having a set of attributes and capable of initiating and receiving 

events. The federate registers each of its objects with a piece of middleware called 

Run-Time Infrastructure (RTI). The RTI collaborates with RTI instances in other 

hosts to learn about remote participants (objects) and delivers information about 

those participants to the local federate. The local federate, in turn, typically 

instantiates local objects representing those remote participants. Attribute updates 

and events are also exchanged through the RTI, which is responsible for handling 

area of interest management, time synchronisation, and other low-level net-VE 

services on behalf of the application. The collection of federates, along with their 

associated RTI instances, is termed a federation. Simulators in the federation send 

and receive state information via calls to and from the RTI (Singhal & Zyda, 

1999). HLA as an IEEE standard will be better discussed later in this chapter. 

 

4.2.2.2. 
DIVE 

DIVE (Distributed Interactive Virtual Environment) (Swedish, 2006) is 

developed by the Swedish Institute of Computer Science. The development effort 

focussed primarily on the distribution component of the virtual environment. 

Certainly, in its early days DIVE emerged as an important example of how to 

develop distributed virtual reality. 
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The distribution element is conceptually quite simple. Shared memory is 

provided over a network and the system controls the sending of signals to 

processes. DIVE implements a distributed fully replicated, dynamic database. It 

has the capability to add new objects and modify existing databases in a reliable 

and consistent fashion. Reliable multicast protocols and concurrency control are 

employed through a distributed locking mechanism to facilitate database updates. 

 

4.2.2.3. 
MASSIVE 

MASSIVE (Greenhalgh et al., 2000) is an object-oriented system developed 

at the University of Nottingham to support multi-user collaborative virtual 

environments. MASSIVE is based on a ‘spatial model’ of interaction (Benford et 

al., 1993). It is mainly developed as an academic research tool, for researchers 

investigating online collaboration in virtual environments. The work is focussed 

on promoting awareness of others in the virtual environment. 

The system supports interaction with the virtual environments via text, 2D 

and 3D graphical interfaces, and has support for real-time audio, allowing users to 

communicate with one another using speech. The emphasis is on user-to-user 

interaction, rather than on a user's interaction with objects in the environment. 

MASSIVE uses a combination of peer-to-peer and client/server processes. It 

employs multicasting as a collaboration baseline. 

 

4.2.2.4. 
Avango 

Avango is developed by the German National Research Centre for 

Information Technology (GMD) (Bierbaum & Just, 1998; Tramberend, 1999). It 

is ostensibly an object-oriented framework built atop Performer for constructing 

networked virtual environments. 

The major subsystems (interaction, graphics, networking) in a VR 

application are integrated into one. It provides a replicated scene graph across the 

network. The objects can be instantiated as either local or distributed (public or 

private). It defines two categories of objects: 

1. Nodes – define scene graph elements for rendering. 
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2. Sensors – import external device data into the application. 

 

Avango is built on a dataflow model using fields within the objects to 

support a generic streaming interface. The dataflow graph defines the behaviour 

of the objects in the world. 

Avango has a C++ API and a binding to an interpreted language, Scheme 

(Dybvig, 1996). Typically complex and performance-critical functionalities are 

implemented in C++. From then on, the application is implemented using Scheme 

scripts. 

Avango uses a process group model. Each group member is guaranteed to 

receive delivered network messages in exactly the same order. In addition, when a 

new member joins the group, all communication is suspended until the new 

member's state is updated. This guarantees state consistency. 

 

4.2.2.5. 
DEVA/MAVERIK 

DEVA (Pettifer et al., 2000) is a distributed virtual reality kernel developed 

by the Advanced Interfaces Group at Manchester University. 

DEVA supports databases comprising virtual objects. DEVA decouples a 

virtual object's representation into client-side and server-side objects. The server-

side part represents the virtual object and defines its behaviour, some of which 

may be generic and some may be specific to the application. The client-side part 

contains interpretations of this behaviour, and only responds to instructions from 

the server. The messages from the server to the client are similar to a high-level 

vocabulary used to describe the effect of the behaviour. DEVA establishes a locus 

of control by managing states in one place. This means that the state of an entity 

can be managed locally rather than in the server if this is appropriate. 

Rather than using dead reckoning to combat lag and jitter, DEVA uses 

“twines” (Marsh et al., 1999), which smooth over irregular updates. 

DEVA is tightly coupled to a VR kernel (MAVERIK (Hubbold et al., 

2001)), which provides rendering, input, output and spatial management 

capabilities. The main advantage is that application data does not need to be 

duplicated and stored in a specific data structure such as a scene graph; instead, 
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MAVERIK promotes the use of an application's own data structures. This avoids 

the need to conform to a rigid and potentially inappropriate data structure. 

 

4.2.2.6. 
Other DVEs 

Virginia Tech's DIVERSE toolkit (DTK) (Arsenault et al., 2001) is designed 

to aid implementation of distributed VR applications and is available both under 

the Gnu Public License (GPL) and the LGPL. The toolkit is implemented as a 

C++ API to a server and clients. It provides an extensible but relatively low-level 

library for distribution rather than a VR framework. 

COVISE (Collaborative Visualisation and Simulation Environment) 

(Rantzau et al., 1998) exploits high-speed network infrastructures in distributed 

computing and collaborative engineering. It focusses predominantly on 

visualising high end supercomputing problems. COVER (2006), based on IRIS 

Performer, provides visualisation support. COVISE mediates a distributed session 

through a system of turn-taking. The database is fully replicated across nodes at 

connection. All user input, system output, and system administration is handled at 

a single point, reducing the complexity of keeping all users synchronised, but at 

the expense of round trip delays and the potential liability of the central point of 

control becoming a bottleneck as more users are added. 

CAVERNsoft (Park et al., 2000) combines a networking library and a 

database. It facilitates the development of collaborative interactive virtual 

environments. CAVERNsoft is based on a client-server model. Applications use 

the Information Request Broker (IRB) to mediate communication between 

network instantiations. Users may request the type of network connection they 

wish to use. CAVERNsoft supplies the option of TCP/IP, UDP or IP/Multicast. 

The user defines the desired bandwidth and acceptable network attributes (latency, 

jitter), and the remote IRB attempts to comply. In this way the user specifies the 

desired quality of service on startup. 

There are also more general VR frameworks that provide support for 

implementing DVEs. For example, VR Juggler (Bierbaum et al., 2001) has a 

networking support provided through an abstract Network manager. Another 

example is Bamboo (Watsen & Zyda, 1998), built on top of the ADAPTIVE 
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Communication Environment (ACE) (Schmidt, 1994), which provides the system 

with networking, concurrency (threading) and synchronisation functions. 

 

4.2.2.7. 
HLA 

Distributed simulation is an application of distributed system technology 

that enables models to be linked together over networks such as the Internet so 

that they work together (or interoperate) during a simulation run. The HLA (High 

Level Architecture) is a standard that defines the distributed system technology to 

make this interoperability possible. Rather than a networking protocol (wire 

standard) like DIS, HLA defines an architecture with a set of API Standards. 

Simulation applications (known as federates in HLA) communicate by making 

calls to the HLA APIs. A piece of software known as the RTI (Run-time 

Infrastructure) implements the HLA API, and is responsible for transporting data 

from one federate to another. Like DIS, HLA Standards are owned by IEEE. 

There are three documents that comprise the HLA Standard, all available from 

IEEE (2006): 

• IEEE 1516-2000 – IEEE Standard for Modeling and Simulation 

(M&S) High Level Architecture (HLA) – Framework and Rules: 

provides the rules and definitions for implementing and using HLA. 

Its IEEE product code is SH94882; 

• IEEE 1516.1-2000 – IEEE Standard for Modeling and Simulation 

(M&S) High Level Architecture (HLA) – Federate Interface 

Specification: defines the various services provided by an HLA RTI 

(see Figure 12), and contains the APIs. Its IEEE product code is 

SH94883; 

• IEEE 1516.2-2000 – IEEE Standard for Modeling and Simulation 

(M&S) High Level Architecture (HLA) – Object Model Template 

(OMT) Specification: defines the format used for describing object 

models in HLA. An object model dictates what kinds of data a 

particular set of HLA federates will be exchanging. The IEEE 

product code for this document is SH94884. 
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There is a fourth document that is not technically part of the definition of 

HLA, but that defines some of the recommended practices for using HLA. It is 

called IEEE 1516.3-2003 – IEEE Recommended Practice for High Level 

Architecture (HLA) Federation Development and Execution Process (FEDEP), 

and its IEEE product code is SH95088. 

While the IEEE 1516 series of standards represents the "current" version of 

HLA, many HLA simulations are still using an earlier version known as HLA 1.3. 

This version was maintained by DMSO (Defense Modeling and Simulation 

Office) and the U.S. Department of Defense prior to IEEE Standardization. 

 
Figure 12 - HLA and RTI (Dahmann et al., 1999) 

 

The HLA was initially developed for the US Department of Defense for 

simulating battlefield scenarios. The HLA emergent standard from IEEE has the 

following characteristics: 

• Supports simulations composed of different simulation components. 

• Supports real-time environment and large complex simulation 

problems. 

• Supports reusability: component simulation models can be reused in 

different simulation scenarios and applications. 

• Supports interoperability: reusable component simulations can be 

combined with other components without the need of re-coding. 
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We can thus conclude that HLA fulfils our requirement of real-time 

collaboration support as well as seems to be a flexible component-based 

architecture, in accordance to all the principles we have been pursuing so far. Also 

HLA seems to suit many aspects of a collaborative workspace for disaster 

management in the oil & gas area, except for the fact that it is mainly developed to 

have many nodes with precise real-time update, while in the oil & gas area there 

are fewer nodes but with higher visualisation demands. 

The use of the HLA standard is not restricted to distributed virtual 

environments, which means that, as the demand for integration of processes, 

systems, and databases within companies continues to grow, this is one of the 

approaches that should be considered while defining integration solutions. 

The fundamental concepts in HLA are: 

• Federate: when a simulation is implemented as part of an HLA-

compliant simulation, it is referred to as a federate. 

• Federation: is a collection of federates working together to solve a 

specific problem. 

 

Note that federations can include more than simulations. They can also 

include interfaces to human operators/players, to real hardware, and to general 

software performing functions such as data collection, data analysis, and data 

display. 

The three main components in HLA are: 

• HLA Rules: 

o Ensure proper interaction of federates in a federation. 

o Describe the responsibilities of federates and federations. 

• Interface Specification: 

o Defines Run-time Infrastructure (RTI) services and interfaces. 

o Identifies “callback” functions each federate must provide. 

• Object Model Template (OMT): 

o Prescribes the format and syntax for recording information. 

o Establishes the format of key models: 

 Federation Object Model (FOM). 

 Simulation Object Model (SOM). 
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 Management Object Model (MOM). 

 

Figure 13 shows a high level, logical view of an executing HLA Federation. 

All of the components shown in the figure are part of a single federation with the 

exception of RtiExec. A brief description of each of these components is provided 

below: 

• Federate: an HLA-compliant simulation component program, plus a 

SOM. 

• Federation: a simulation composed of a set of federates interacting 

via the RTI services, plus a FOM. 

• FedExec: manages the federation. It allows federates to join and to 

resign from the federation, and facilitates data exchange between 

participating federates. 

• FDD file: FOM Document Data file, contains information derived 

from the FOM and used by the RTI at runtime. 

• RtiExec: a global process that manages the creation and destruction 

of FedExec's. 

• RID file: RTI Initialization Data. RTI vendor-specific information 

needed to run an RTI. 

 
Figure 13 - Logical View of an HLA Federation (McLeod, 2006) 
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We then consider a system using HLA with multiple Federations in 

execution. This system is running two federations: Federation 1 and Federation 2. 

Though one system may run two federations, the HLA Rules specify that they are 

independent from each other and may not exchange any information. This system 

is illustrated in Figure 14, and has the following components: 

 
• There is a single RtiExec and RTI.RID file, shared by both 

federations. 

• Each Federation contains its own FedExec and FDD file. FedExec1 

controls the execution of Federation 1, FedExec2 controls the 

execution of Federation 2. 

• Federation 1 contains two federates: the White Federate and the 

Green Federate. 

• Federation 2 contains three federates: the Purple, Orange, and Blue 

Federates. 

 

 
Figure 14 - The Big Picture – Federations in Execution (McLeod, 2006) 

 

In Figure 15, we show the steps in the process of starting a federation 

execution: 

1. When a federation is run, the RtiExec is started first. 
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2. Then a federate, acting as a manager, creates a federation execution 

by invoking the RTI method createFederationExecution. 

3. Then a name is reserved with RtiExec, a FedExec process is 

spawned, and that FedExec registers its communication address with 

RtiExec. The federation execution is underway. 

4. Once a federation execution exists, other federates can join it. 

RtiExec is consulted to get the address of FedExec, and 

joinFederationExecution() is invoked on FedExec. Additional 

federates can join via the same process. 

 

In face of all these characteristics, we have chosen HLA as an example of 

this second approach (Pure DVEs) to delineate a prototype (Chapter 5) to be one 

of the proofs of our metamodel, as the InfoGrid was chosen as a platform of the 

first approach (Middleware). 

 
Figure 15 - Steps in the Process of Federation Execution (McLeod, 2006) 

 

We still had to choose the HLA Run-time Infrastructure (RTI) to be used 

with our prototype. Our requirements were: 

• To be open-source. 

• To be freely redistributable. 



 

76 

Based on these requirements and on the fact that it was well documented in 

a master's thesis, we chose XRTI – The Extensible Run-Time Infrastructure – 

from Kapolka (2003). Its basic characteristics are: 

• It has full compatibility with the HLA standard. 

• It specifies a standardisable message protocol. 

• It supports dynamic-object model extension and composition. 

• It is written in Java and it uses XML object models. 

• It uses a pure client-server topology in which federates only 

communicate with one another through the XRTI Executive, a server 

application. 

• Federates maintain two channels to the Executive: a TCP 

(Transmission Control Protocol) channel for reliable communication 

and a UDP (User Datagram Protocol) channel for unreliable 

messaging. 
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5 
Activity-Centred Metamodel: Deriving Models and 
Prototypes 

In this chapter, we derive a first model for oil & gas offshore structures 

disaster management based on our multi-perspective metamodel. We also develop 

an HLA-compliant prototype as a proof-of-concept of the metamodel and discuss 

how the prototype could be implemented using InfoGrid. Still for the disaster 

management application, we present a second model and its prototype showing 

that we can derive different models for the same application. Finally, to validate 

the generality of the metamodel, we also delineate a model for another 

application, namely CAD visualisation in virtual environments. 

 

5.1. 
The Oil & Gas Offshore Structures Disaster Management Application 

The oil & gas offshore structures disaster management application was the 

one that motivated the creation of our metamodel. Investigating the application's 

requirements, we have followed a general-consensus academic recommendation, 

mentioned by Lauche (2005), which states that only a thorough understanding of 

the activities one is designing for will allow ICT systems to become meaningful 

tools suited to the task and the context of use. It is therefore important to not only 

interview but also observe users in practice and to make sense of these findings 

before consolidating them in the form of requirements. We have then conducted 

semi-structured interviews with key individuals and not only have observed their 

work practice but in fact have been participating with them in joint projects and 

activities for more than one decade. 

The disaster management of an oil & gas offshore structure – which can be a 

ship or a semi-submersible platform – is a complex operation involving several 

groups, such as the oil & gas company (in our particular case, the Brazilian 

company Petrobras), the rescue team, the health care centre, the press, among 
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others. We can then see that this is in fact an inter-organisational complex activity, 

with all the issues and characteristics already mentioned in Chapter 3. 

Figure 16 - Disaster management collaborative model: overall picture 
 

We now describe the main nodes present in the overall picture of the 

disaster management model shown in Figure 16: 

• Representing four organisations, there are four main nodes, 

Petrobras, Rescue Team, Health Care Centre, and Press, each one 

remotely located to the other. We can observe that Petrobras is in the 

centre of the whole activity, and we will concentrate our focus on 

and detail the Petrobras node. Before doing this, it is interesting to 

situate where most of the Petrobras offshore structures are located: 

in a region called Campos Basin, near Rio de Janeiro. 

• Inside the Petrobras node, we identify three main groups: the 

Technical Teams (TT) group, the Middle-level Managers (MM) 
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group, and the High-level Managers (HM) group, each one remotely 

located to the other. 

• The TT group is formed by two other technical sub-groups: the Task 

Force (TF) team and the Technical Support (TS) team. These two 

sub-groups are also remotely located to each other. 

• The TF team plays the main role in the whole disaster management 

activity, leading the decision-making process. It is constituted by 

specialists such as naval engineers, structural engineers, risers 

analysts, and oceanographers, in this example represented by three 

co-located technicians, namely T1, T2, and T3, without losing 

generality. They are brought together to a work environment 

allowing face-to-face communication, which has many facilities, 

such as access to remote databases that maintain CAD models and 

simulation models of the unit. This work environment could be 

arranged either near or distant from the disaster – what is important 

is having communication with the disaster area. In this integrated 

environment, the TF team runs different simulators in order to derive 

the best solution to save the offshore unit, permanently 

communicating with the TS team. They also maintain contact with 

the MM group informing about their work evolution and asking for 

approval for their derived solution. Once their solution is approved, 

they pass to the unit operator or to the rescue team the sequence of 

commands to be executed. It can be observed that we have not 

represented the operator in our overall picture since, in the terms of 

the collaboration application, he is not directly involved with the 

integrated simulation, merely receiving its final result. Also in some 

cases he is not directly connected with the other participants in terms 

of ICT. In fact, two possible situations could occur: (i) if the unit has 

not been heavily damaged, two or three operators can remain inside 

it and can receive orientation from the TF team (if some sort of 

communication remained available, we could include the operator in 

the collaborative application); or (ii) if the unit has been heavily 

damaged and has security problems, only divers would be capable of 

working there. 
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• The TS team, represented in our example by technicians T4, T5, and 

T6 without losing generality, can be invoked by the TF team to 

perform specialised simulations focussing on some particular issues 

that would not be possible to be done in the TF work environment, 

or to obtain another opinion or view about the problem. T4, T5, and 

T6 are technicians working in the same fields as the TF team. In our 

particular example, T4 and T5 are working co-located, possibly in a 

Numerical Simulation Centre, with T6 working remotely to them 

(from any other company site, or even interacting via mobile). 

• The MM is constituted by middle-level managers, in our example 

DM1 and DM2 (DM for Decision Maker) working co-located in a 

company office, with one of them usually being responsible for 

making the final decision. They have a good overall knowledge 

about the technical issues and work constantly interacting with the 

TT group. They also communicate with the HM group, informing 

about the work evolution and occasionally seeking confirmation or 

advice from this group when they need to make a more critical 

decision. 

• The HM group, in our example a single manager, DM3, which could 

be a director working at the company headquarters, periodically 

receives from the MM group information about the work evolution 

and sometimes is requested by them to provide confirmation or 

advice concerning a particular critical issue. 

 

After investigating the activities involved in this disaster scenario, 

identifying their requirements in terms of ICT, we decided to concentrate on the 

Technical Teams group to develop a first prototype of collaborative application 

implementing a particular model of our Activity-Centred metamodel. 

This first prototype is more particularly related to the work performed by 

the Task Force group, including the simulators they run, their mutual 

communication and their interaction with the Middle-level Manager group. In 

terms of this last group, for the sake of simplifying the prototype, we are going to 

consider only one middle-level manager integrated in the collaborative 

application. 
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We first investigate how the Task Force group runs the different simulators 

and what the relationships among them are. During a crisis situation, Petrobras 

typically uses three simulators, which will be briefly described now. 

The first simulator to be run is SSTAB (Coelho et al., 2003), the Floating 

Units Stability system, used to analyse the static conditions of the floating unit 

(Figure 17). SSTAB uses as inputs the unit model obtained from a centralised 

system called GIEN and updated data from the unit obtained through a monitoring 

system called ECOS. Its outputs consist of five files, including the inertia matrix. 

Also available in every unit, besides being used during emergency situations, 

SSTAB can also be used for planning maintenance operations as well as for 

projecting new units. 

 
Figure 17 - SSTAB: Floating Units Stability system 

 

The second simulator is called WAMIT (2006) and uses as inputs the output 

files generated by SSTAB. It works in the frequency domain, deriving the 

excitation forces of the unit and water forces' reactions to lateral displacement. 

WAMIT is activated by a user interface program called WMG. 

Finally the third simulator to be executed is DYNASIM (Coelho et al., 

2001), for Dynamic Stability (Figure 18). It uses as inputs the results obtained 

from WAMIT as well as the parameters H and P, representing respectively the 
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height and the period of the wave at the moment of the disaster. DYNASIM 

works in the time domain and in fact has two other modules apart from the central 

module: a pre-processor called Pre-Dyna and a post-processor called Pos-Dyna. 

DYNASIM calculates the forces acting on the mooring lines and risers, and the 

over-turning moment. When these forces are considered extreme, a retrofeedback 

process is started, performing all the simulations again, beginning with SSTAB, to 

find another stable condition for the unit. 

 
Figure 18 - DYNASIM: Dynamic Stability system 

 

In order to better illustrate how the simulators communicate, we take the 

example of the P-34 FPSO (Floating Production, Storage and Offloading) unit and 

describe below the files and parameters that they use: 

• At the beginning of the SSTAB simulation, the SSTAB operator 

opens the file p34.sst, which contains the geometric model of the 

unit. 

• At the end of the SSTAB simulation, the SSTAB operator exports a 

WAMIT geometric data file with name p34.gdf. In fact, four other 

files are exported to WAMIT at this time, namely: fnames.wam, 

which contains the filename list; p34.pot, which is the Potential 
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Control File; p34.frc, which is the Force Control File; and p34.cfg, 

which is the WAMIT configuration file (WAMIT, 2006). 

• WAMIT then reads the five files exported by SSTAB and performs 

its simulation. 

• At the end of its simulation, WAMIT generates an output file called 

p34.out, containing the excitation forces acting on the unit. 

• The DYNASIM operator then opens the DYNASIM project file 

p34.prd. 

• He then opens the WAMIT output file p34.out, converting it to the 

WAMIT neutral file p34.wnf. 

• He finally enters with the environmental parameters H and P 

received, beginning the DYNASIM simulation. 

 

The method used to save an offshore unit has the goal of defining a 

sequence of commands to be passed to the unit operators or to the rescue team so 

that they can move the unit in a step by step mode from its initial unstable 

condition until it reaches back its normal equilibrium state. It is based on the 

following workflow: 

• We first use these three simulators (possibly using retrofeedback) to 

derive the initial conditions of the offshore unit. 

• We then define a next step configuration of tanks (e.g., moving 

water from a ballast tank of one side to a ballast tank of the opposite 

side, operating the tanks' valves) and simulate the unit in this new 

condition using again the three simulators. If we are not satisfied 

with the results obtained, we define another configuration of tanks 

and continue this process, experimenting iterative configurations, 

until we are satisfied with one of them. In this case, we say that we 

have reached the present step configuration of tanks. 

• From the configuration of the previous step, we now try to derive a 

new step configuration of tanks, using a process analogous to the 

one just described. 

• We repeat this process of deriving step configurations of tanks using 

our three simulators until we reach back a normal equilibrium state. 
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At the end of this whole process, we have a sequence of commands in terms 

of tank valve operations, corresponding to the achievement of each of the step 

configurations described above, in a step-by-step mode, which was exactly our 

goal. In the P-34 disaster, with no unit operators inside it, the actions were taken 

from outside of platform, using housings to fill the tanks. 

What we obtain as a result of employing the method above is a sequence of 

commands that constitutes a single strategy. We could of course apply this 

method many times deriving many strategies. We could also use field feedback 

after applying each step on the real unit, refining future steps with this new 

information. Finally we could gather changing conditions from the unit or the 

disaster area and introduce them in our simulations. In P-34, a surveyor ship 

called Salgueiro and the oceanographic group supplied environmental data 24 

hours a day. 

It is important to note that the executions of simulators SSTAB and 

DYNASIM are highly interactive visualisation processes. In a crisis situation, 

when we need to rapidly experiment many alternatives to respond to the disaster, 

this characteristic of the simulators is intensively explored. Also we have to 

consider that, in emergency situations, it is very important to be as fast as 

possible, because every single minute lost could be crucial in saving the unit. 

Thus, searching for points where we could save time, we found that, if WAMIT 

receives the results from SSTAB, it can be activated automatically on ending the 

SSTAB simulation. 

 

5.1.1. 
A First Model for the Disaster Management Collaborative Application 

In this subsection, we derive a first Activity-Centred model for the disaster 

management collaborative application. We concentrate on the Technical Teams 

group activity, which is mainly performed by the Task Force group members 

running their simulators (Figure 19). 
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Figure 19 - First model for the disaster management collaborative application, focussing 
on the integrated simulation 
 

 The top-level node of the technical part of this crisis scenario, the motive, 

is the Integrated Simulation, named IS, which has two remotely located main 

nodes, one in relation to the other: BR, the oil & gas company, and Press. 

Within BR, we created two remote groups, one in relation to the other, 

Technical Teams (TT) and Decision Makers (DM): 

•  TT is constituted by the Task Force (TF) team with members T0, 

T1, and T3, and the software agent S2, all of them co-located in the 

Task Force room and running their simulators. Since in our model 

TF is the only team inside TT, we are not explicitly representing it 

(if it has particular in- and out-policies, it should also be a node of 

our model). 

• DM in this model is constituted by a single manager DM1 (Decision 

Maker 1). Without losing generality, DM1 can be considered a 

single representative of all the participants not directly involved with 

the technical part of the simulation activity such as operators and 

other managers, who only receive from the TT group follow-up 

messages, commands to be executed (in case of operators) or 
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approval requests (in case of managers), giving them simple 

answers. 

 

The Press is represented by one single node that only receives periodical 

reports from the oil & gas company informing the disaster evolution. 

There are some cases in which we have a technical decision maker, directly 

participating in the simulation activity. For example, in the P-34 disaster, the 

decision maker was in the war room also running the simulators. In this case, it 

would be more appropriate to allocate the DM node inside the TT group. 

The load records for the nodes and edges correspondent to the network 

component of this first model are shown in Table 10. 

 

1 | 1 | Integrated Simulation | IS | GROUP | 0 | 6 | … 

1 | 2 | Oil & Gas Company | BR | GROUP | 1 | 6 | … 

1 | 3 | Press | PRESS | LEAF | 1 | 0 | … 

1 | 4 | Technical Teams | TT | GROUP | 2 | 6 | … 

1 | 5 | Decision Makers | DM | GROUP | 2 | 10 | … 

1 | 6 | Emergency Pilot | T0 | LEAF | 4 | 0 | … 

1 | 7 | SSTAB Operator | T1 | LEAF | 4 | 0 | … 

1 | 8 | WAMIT | S2 | LEAF | 4 | 0 | … 

1 | 9 | DYNASIM Operator | T3 | LEAF | 4 | 0 | … 

1 | 10 | Decision Maker 1 | DM1 | LEAF | 5 | 0 | … 

 

2 | 1 | Pilot-SSTAB channel | LOCAL | BIDIRECTED | 6 | 7 | … 

2 | 2 | WAMIT-Pilot channel | LOCAL | UNIDIRECTED | 8 | 6 | … 

2 | 3 | Pilot-DYNASIM channel | LOCAL | BIDIRECTED | 6 | 9 | … 

2 | 4 | SSTAB-WAMIT channel | LOCAL | BIDIRECTED | 7 | 8 | … 

2 | 5 | SSTAB-DYNASIM channel | LOCAL | BIDIRECTED | 7 | 9 | … 

2 | 6 | WAMIT-DYNASIM channel | LOCAL | UNIDIRECTED | 8 | 9 | … 

2 | 7 | technical-manager channel | REMOTE | BIDIRECTED| 4 | 5 | … 

2 | 8 | technical-press channel | REMOTE | UNIDIRECTED | 2 | 3 | … 

Table 10 - First model for the disaster management application: load records 

 

Apart from the interaction network component of the model just described, 

we also define role rules and the message attributes table in order to represent the 

following different roles played by the participant members in this disaster 

scenario: 
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• The Emergency Pilot T0 plays the main role in this disaster 

application, coordinating the collaborative session and leading the 

decision-making process. He asks the SSTAB operator (T1) to begin 

his simulation. After receiving a message from agent S2 indicating 

the end of its simulation, he asks the DYNASIM operator (T3) to 

begin his simulation, informing the current H and P values of the 

waves. On receiving a simulation conclusion message from T3, he 

makes a decision based on the force values acting on mooring lines 

and risers. If he understands that these forces are extreme, he asks T1 

to begin the whole process again, in order to find a new stable 

condition of the unit, and this loop continues until he is satisfied with 

the force values obtained. In this case, the simulation for the initial 

condition of the unit is considered finished. T0 then repeats this 

process for each configuration step of the method already described 

until he determines the end of the simulation process by achieving 

the sequence of commands desired. In this case, he makes contact 

with the Decision Maker (DM1), asking for his approval to their 

solution. If DM1 approves it, T0 then passes the sequence of 

commands to be executed by the unit operator (not represented here) 

to save the unit. 

• T1, the SSTAB operator, initiates a SSTAB simulation every time he 

receives an order from T0. He interactively studies many tank 

configurations trying to derive a step configuration of tanks 

according to the method described above and informs when he ends 

the simulation of this step. 

• S2, Simulator 2, is in fact a reactive agent instead of a real person 

(used here to save time). Upon receiving a message from T1 

indicating the end of his simulation, S2 automatically runs the 

WAMIT simulator using the information passed by T1 (SSTAB 

results). S2 informs the participant members when it initiates and 

finishes its simulation. 

• T3, the DYNASIM operator, initiates a DYNASIM simulation every 

time he receives an order from T0. He uses the other two simulators' 
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results, H, and P as inputs and interactively studies the dynamic 

stability of the unit based on these conditions. When he finishes his 

simulation, he informs the participants his result, which can be red 

(extreme forces acting), yellow (moderate forces acting) or green 

(light forces acting). 

• Finally DM1, the Decision Maker, receives from T0 the sequence of 

commands defining a strategy, and replies approving or not the 

defined strategy. In case he does not approve the strategy, he can ask 

T0 to restart the whole process again or he can further discuss the 

problem with the High-level Managers group, not represented here. 

 

We should note that all participants should be informed about one another's 

work during the whole collaborative session. 

Although the complete workflow is the one just described, to facilitate the 

understanding we are going to consider for the moment in our model only one 

configuration step with possible retrofeedback. With this simplification, the role 

rules correspondent to our workflow are the ones shown in Tables 11, 12, 13, and 

14. 

Apart from the on-arrive and the on-init rules, and the send and the display 

formulas already introduced in Chapter 3, we identified the need to define 

additional rules and formulas, following the Prolog terminology (SWI-Prolog, 

2006), in order to completely describe the role rules of our model: 

• when rule with arguments term and term_value: the rule is fired 

when term in the knowledge base has value term_value; 

• read formula: is used to read inputs from the console; 

• write formula: is used to write message contents in the message 

attributes table; 

• assert predicate with argument term: is used to add a fact or clause 

in the database. 

• abolish predicate with argument term: is used to remove a clause 

from the database (not being used in the present model). 
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We can now briefly describe the contents of Tables 11, 12, 13, and 14. In 

Table 11, we present the collaboration bus definition and the role rules for the 

Emergency Pilot. The bus in our example has one local channel and one remote 

channel. The rules defining the Emergency Pilot role are similar to those of the 

example already shown in Chapter 3, with a few new statements. When message 5 

arrives, the values H and P have to be read from the console (using the read 

formula) and written in the line correspondent to message 6 in the message 

attributes table (using the write formula) before sending it to the receivers. Also, 

when message 8 arrives, the term simulations_result has its value read from the 

console (using the read formula) and added to the knowledge database (using the 

assert predicate). Then the sequence of commands to be executed is determined 

by two subsequent when rules based on the value of simulations_result. Finally, 

the last sequence of commands to be executed is determined by the two last when 

rules based on the value of simulations_approval. It is interesting to note that, in 

both sequences of commands fired by the two when rules, we wait for the user to 

press a button (using the read formula), the first one to stop the simulation and the 

second one to send the press release to the Press. 

In Table 12, we present the role rules for the SSTAB operator and for the 

WAMIT simulator. The basic rules and formulas used are similar to the ones 

presented in Table 11, with a few differences. In the sequence of commands of the 

first on_arrive rule of the SSTAB operator role, we read SSTAB_begin_button and 

SSTAB_end_button (using the read formula) to respectively indicate the 

beginning and the end of the SSTAB simulation. In the WAMIT simulator role 

rules, as this simulator is automatically activated on arrival of message 3, we 

defined a method called wamit() to activate the WAMIT simulator. We also used 

a term called wamit_end to indicate the end of this simulator (used as an argument 

of the last when rule). 

In Table 13, we present the role rules for the DYNASIM operator, also with 

the same basic rules and formulas as the ones presented in Tables 11 and 12. An 

interesting aspect we can highlight here is the sequence of three when rules used 

to determine the sequence of commands to be executed after the end of the 

DYNASIM simulation. The selection of commands is made based on the value of 

the term DYNASIM_result, which has been previously read from the console and 

can assume one of three possible  values:  red,  indicating  that  there  are  extreme 
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collaboration integrated_simulation 

{ collaboration_bus {  

channel(local). 

channel(remote).} 

  role emergency_pilot //technician responsible for coordinating the simulations 

  { 

    on-init(integrated_simulation) :- 

      send(local, message_table(source(self), 1, dummy)). //send “Technician 1, please begin SSTAB simulation.” 

 

    on-arrive(local, message_table(dummy, 2, source(self))) :- 

      display(message_table(dummy, 2, source(self))). //display “SSTAB simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 3, source(self))) :- 

      display(message_table(dummy, 3, source(self))). //display “End of SSTAB simulation.” 

 

    on-arrive(local, message_table(dummy, 4, source(self))) :- 

      display(message_table(dummy, 4, source(self))). //display “WAMIT simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 5, source(self))) :- 

      display(message_table(dummy, 5, source(self))), //display “End of WAMIT simulation.” 

      read H and P, //read H and P from console 

      write message 6, //write message 6 with H and P values in the message attributes table 

      send(local, message_table(source(self), 6, dummy)). //send “Technician 3, please begin DYNASIM with h and p.” 

 

    on-arrive(local, message_table(dummy, 7, source(self))) :- 

      display(message_table(dummy, 7, source(self))). //display “DYNASIM simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 8, source(self))) :- 

      display(message_table(dummy, 8, source(self))), //display the DYNASIM result 

      read simulations_result, //read simulations_result (OK or not_OK) from console 

      assert simulations_result. //assert the simulations_result in the knowledge base 

 

    when(simulations_result, not_OK) :- 

      send(local, message_table(source(self), 9, dummy)), //send “A new cycle of simulations will begin.” 

      send(local, message_table(source(self), 1, dummy)). //send “Technician 1, please begin SSTAB simulation.” 

 

    when(simulations_result, OK) :- 

      send(remote, message_table(source(self), 10, dummy)). //send “Decision Maker, please approve the simulations.” 

 

    on-arrive(remote, message_table(dummy, 11, source(self))) :- 

      display(message_table(dummy, 11, source(self))). //display the decision made 

 

    when(simulations_approval, not_OK) :- 

        read stop_simulations_button. //read stop_simulations_button from console 

 

    when(simulations_approval, OK) :- 

      read send_to_press_button, //read send_to_press_button from console 

      send(remote, message_table(source(self), 12, dummy)). //send “New press release posted.” 

  } 

Table 11 - Collaboration bus definition and role rules for the Emergency Pilot 
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forces acting; yellow, indicating the action of moderate forces; or green, indicating 

the action of mild forces. 

 

 
  role technician_1 //technician responsible for executing the SSTAB simulation 

  { 

    on-arrive(local, message_table(dummy, 1, source(self))) :- 

      display(message_table(dummy, 1, source(self))), //display “Technician 1, please begin SSTAB simulation.” 

      read SSTAB_begin_button, //read SSTAB_begin_button from console 

      send(local, message_table(source(self), 2, dummy)), //send “SSTAB simulation has begun.” 

      read SSTAB_end_button, //read SSTAB_end_button from console 

      send(local, message_table(source(self), 3, dummy)). //send “End of SSTAB simulation.” 

 

    on-arrive(local, message_table(dummy, 4, source(self))) :- 

      display(message_table(dummy, 4, source(self))). //display “WAMIT simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 5, source(self))) :- 

      display(message_table(dummy, 5, source(self))). //display “End of WAMIT simulation.” 

 

    on-arrive(local, message_table(dummy, 7, source(self))) :- 

      display(message_table(dummy, 7, source(self))). //display “DYNASIM simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 8, source(self))) :- 

      display(message_table(dummy, 8, source(self))). //display the DYNASIM result 

 

    on-arrive(local, message_table(dummy, 9, source(self))) :- 

      display(message_table(dummy, 9, source(self))). //display “A new cycle of simulations will begin.” 

 

    on-arrive(local, message_table(dummy, 10, source(self))) :- 

      display(message_table(dummy, 10, source(self))). //display “Decision Maker, please approve the simulations.” 

 

    on-arrive(remote, message_table(dummy, 11, source(self))) :- 

      display(message_table(dummy, 11, source(self))). //display the decision made 

  } 

 

  role simulator_2 //WAMIT simulator 

  { 

    on-arrive(local, message_table(dummy, 3, source(self))) :- 

      wamit(), //begin WAMIT simulation 

      send(local, message_table(source(self), 4, dummy)). //send “WAMIT simulation has begun.” 

 

    when(wamit_end, OK) :- 

      send(local, message_table(source(self), 5, dummy)). //send “End of WAMIT simulation.” 

  } 

Table 12 - Role rules for the SSTAB operator and the WAMIT simulator 
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  role technician_3 //technician responsible for executing the DYNASIM simulation 

  { 

    on-arrive(local, message_table(dummy, 2, source(self))) :- 

      display(message_table(dummy, 2, source(self))). //display “SSTAB simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 3, source(self))) :- 

      display(message_table(dummy, 3, source(self))). //display “End of SSTAB simulation.” 

 

    on-arrive(local, message_table(dummy, 4, source(self))) :- 

      display(message_table(dummy, 4, source(self))). //display “WAMIT simulation has begun.” 

 

    on-arrive(local, message_table(dummy, 5, source(self))) :- 

      display(message_table(dummy, 5, source(self))). //display “End of WAMIT simulation.” 

 

    on-arrive(local, message_table(dummy, 6, source(self))) :- 

      display(message_table(dummy, 6, source(self))), //display “Technician 3, please begin DYNASIM with h and p.” 

      read DYNASIM_begin_button, //read DYNASIM_begin_button from console 

      send(local, message_table(source(self), 7, dummy)), //send “DYNASIM simulation  has begun.” 

      read DYNASIM_result, //read DYNASIM_result from console (red, yellow or green) 

      assert DYNASIM_result. //assert the DYNASIM_result in the knowledge base 

 

    when(DYNASIM_result, red) :- 

      write message 8 with “Extreme forces: you should begin a new simulation cycle.”, 

      send(local, message_table(source(self), 8, dummy)). //send message 8 

 

    when(DYNASIM_result, yellow) :- 

      write message 8 with “Moderate forces: you should decide on performing or not a new simulation cycle.”, 

      send(local, message_table(source(self), 8, dummy)). //send message 8 

 

    when(DYNASIM_result, green) :- 

      write message 8 with “Mild forces: you can approve the present simulation.”, 

      send(local, message_table(source(self), 8, dummy)). //send message 8 

 

    on-arrive(local, message_table(dummy, 9, source(self))) :- 

      display(message_table(dummy, 9, source(self))). //display “A new cycle of simulations will begin.” 

 

    on-arrive(local, message_table(dummy, 10, source(self))) :- 

      display(message_table(dummy, 10, source(self))). //display “Decision Maker, please approve the simulations.” 

 

    on-arrive(remote, message_table(dummy, 11, source(self))) :- 

      display(message_table(dummy, 11, source(self))). //display the decision made 

  } 

Table 13 - Role rules for the DYNASIM operator 
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  role decision_maker //manager responsible for making the decision  

  { 

    on-arrive(remote, message_table(dummy, 2, source(self))) :- 

      display(message_table(dummy, 2, source(self))). //display “SSTAB simulation has begun.” 

 

    on-arrive(remote, message_table(dummy, 3, source(self))) :- 

      display(message_table(dummy, 3, source(self))). //display “End of SSTAB simulation.” 

 

    on-arrive(remote, message_table(dummy, 4, source(self))) :- 

      display(message_table(dummy, 4, source(self))). //display “WAMIT simulation has begun.” 

 

    on-arrive(remote, message_table(dummy, 5, source(self))) :- 

      display(message_table(dummy, 5, source(self))). //display “End of WAMIT simulation.” 

 

    on-arrive(remote, message_table(dummy, 7, source(self))) :- 

      display(message_table(dummy, 7, source(self))). //display “DYNASIM simulation has begun.” 

 

    on-arrive(remote, message_table(dummy, 8, source(self))) :- 

      display(message_table(dummy, 8, source(self))). //display the DYNASIM result 

 

    on-arrive(remote, message_table(dummy, 9, source(self))) :- 

      display(message_table(dummy, 9, source(self))). //display “A new cycle of simulations will begin.” 

 

    on-arrive(remote, message_table(dummy, 10, source(self))) :- 

      display(message_table(dummy, 10, source(self))), //display “Decision Maker, please approve the simulations.” 

      read simulations_approval, //read simulations_approval (OK or not_OK) from console 

      assert simulations_approval. //assert the simulations_approval in the knowledge base 

 

    when(simulations_approval, not_OK) :- 

      write message 11 with “Stop the simulations: higher level required.”, 

      send(remote, message_table(source(self), 11, dummy)). //send message 11 

 

    when(simulations_approval, OK) :- 

      write message 11 with “Simulations approved.”, 

      send(remote, message_table(source(self), 11, dummy)). //send message 11 

  } 

 

  role press //the press company receiving the press release  

  { 

    on-arrive(remote, message_table(dummy, 12, source(self))) :- 

      display(message_table(dummy, 12, source(self))). //display “New press release posted.” 

  } 

 

  role technical_teams //the Technical Teams node: role processed by node = post_processing execution node attribute 

  { 

    on-arrive(remote, message_table(dummy, 11, source(self))) :- 

      display(message_table(dummy, 11, source(self))). //pos_11_TT determines which nodes will receive message 11 

  } 

} 

Table 14 - Role rules for the Decision Maker, the Press and the Technical Teams 
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In Table 14, we present the role rules for the Decision Maker, the Press, and 

the Technical Teams group. Once again, the basic rules and formulas are similar 

to the ones already shown in Tables 11, 12, and 13. In the Decision Maker rules, 

we have a sequence similar to the one present in the Emergency Pilot role: when 

message 10 arrives, the term simulations_approval has its value read from the 

console (using the read formula) and added to the knowledge database (using the 

assert predicate); then the sequence of commands to be executed is determined by 

two subsequent when rules based on the value of simulations_approval. The Press 

role rule is simply one on-arrive fired on arrival of message 12, indicating that a 

new press release has been made available. Finally the Technical Teams group 

role is noteworthy because it is the only one of this example associated with a 

group: when message 11 arrives, the on-arrive rule fires and a message is 

displayed on the console informing that the post-processing module pos_11_TT is 

determining and re-routing message 11 to the appropriate receivers within TT to 

receive message 11 – in our example, leaf nodes T0 (Emergency Pilot), T1 

(SSTAB operator), and T3 (DYNASIM operator), as we can verify in Tables 11, 

12, and 13, in the on-arrive rules receiving message 11. 

In Table 15, we present the complete message attributes table for our first 

model, including the messages' contents field, to facilitate the understanding. It is 

important to note that some messages have constant contents, while others have 

contents that change as the workflow is being processed (in our model, messages 

8 and 11). 

In this table, we observe two columns corresponding to two of the most 

important elements that give flexibility to our metamodel: the pre- and the post-

processing modules. We can see, for example, that message 9 is sent to three 

different receivers – T1, T3, and DM1 – with one particular pre- and one 

particular post-processing module associated to each receiver. The same occurs 

with messages 2, 3, 4, 5, 7, 8, and 10. Also we can observe that, in the line 

associated to message 11, DM1 is sending the message to the TT group, which 

means that Pos_11_TT (executed by T0) will determine, in run-time, the TT leaf 

nodes to receive message 11: T0, T1, and T3. 

In order to better explore these pre- and post-processing capabilities of our 

metamodel, we are considering that T0, T1, DM1, and Press use the Portuguese 
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language while T3 uses English. This means that we should have automatic 

translations being executed by the following processing modules: 

• Pre_6_T3, Pre_9_T3, Pre_10_T3, Pre_2_T3, Pre_3_T3, Pre_4_T3, 

and Pre_5_T3: Portuguese to English. 

• Pos_7_T0, Pos_7_T1, Pos_7_DM1, Pos_8_T0, Pos_8_T1, and 

Pos_8_DM1: English to Portuguese. 

 
sender message_id receiver edge message content pre-processing post-processing

T0 1 T1 e1
Technician 1, please begin SSTAB
simulation. Pre_1_T1 Pos_1_T1

T0 6 T3 e3

Technician 3, please begin
DYNASIM simulation with H=h
and P=p. Pre_6_T3 Pos_6_T3

T0 9 T1 e1 A new simulation cycle will begin. Pre_9_T1 Pos_9_T1

T0 9 T3 e3 A new simulation cycle will begin. Pre_9_T3 Pos_9_T3

T0 9 DM1 e7 A new simulation cycle will begin. Pre_9_DM1 Pos_9_DM1

T0 10 DM1 e7
DM1, please validate the sequence
of commands. Pre_10_DM1 Pos_10_DM1

T0 10 T1 e1
DM1, please validate the sequence
of commands. Pre_10_T1 Pos_10_T1

T0 10 T3 e3
DM1, please validate the sequence
of commands. Pre_10_T3 Pos_10_T3

T0 12 PRESS e8 New press release posted. Pre_12_PRESS Pos_12_PRESS
T1 2 T0 e1 SSTAB simulation has begun. Pre_2_T0 Pos_2_T0
T1 2 T3 e5 SSTAB simulation has begun. Pre_2_T3 Pos_2_T3
T1 2 DM1 e7 SSTAB simulation has begun. Pre_2_DM1 Pos_2_DM1
T1 3 T0 e1 End of SSTAB simulation. Pre_3_T0 Pos_3_T0
T1 3 T3 e5 End of SSTAB simulation. Pre_3_T3 Pos_3_T3
T1 3 DM1 e7 End of SSTAB simulation. Pre_3_DM1 Pos_3_DM1
S2 4 T0 e2 WAMIT simulation has begun. Pre_4_T0 Pos_4_T0
S2 4 T1 e4 WAMIT simulation has begun. Pre_4_T1 Pos_4_T1
S2 4 T3 e6 WAMIT simulation has begun. Pre_4_T3 Pos_4_T3
S2 4 DM1 e7 WAMIT simulation has begun. Pre_4_DM1 Pos_4_DM1
S2 5 T0 e2 End of WAMIT simulation. Pre_5_T0 Pos_5_T0
S2 5 T1 e4 End of WAMIT simulation. Pre_5_T1 Pos_5_T1
S2 5 T3 e6 End of WAMIT simulation. Pre_5_T3 Pos_5_T3
S2 5 DM1 e7 End of WAMIT simulation. Pre_5_DM1 Pos_5_DM1

T3 7 T0 e3 DYNASIM simulation has begun. Pre_7_T0 Pos_7_T0

T3 7 T1 e5 DYNASIM simulation has begun. Pre_7_T1 Pos_7_T1

T3 7 DM1 e7 DYNASIM simulation has begun. Pre_7_DM1 Pos_7_DM1
T3 8 T0 e3 DYNASIM result. Pre_8_T0 Pos_8_T0
T3 8 T1 e5 DYNASIM result. Pre_8_T1 Pos_8_T1
T3 8 DM1 e7 DYNASIM result. Pre_8_DM1 Pos_8_DM1

DM1 11 TT e7 Decision made. Pre_11_TT Pos_11_TT  
Table 15 - Message attributes table for the first model for the disaster application 
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With the role rules and the message attributes table just described, we are 

able to keep the collaborative session data, such as name of the executor, date, and 

time of each action performed, in one database. This is a very useful feature, 

helping the specialists while elaborating an investigation report about the accident, 

as well as serving for training purposes. 

 

5.1.1.1. 
An HLA-Compliant Prototype for the First Model for the Disaster 
Management Collaborative Application 

We now reach the last step in developing our disaster management 

collaborative application, which is to map our model into an implementation-level 

architecture. In this first subsection, we present an HLA-compliant prototype for 

our first model (Figure 20). 

SSTAB
operator

T1

WAMIT

S2

COLLABORATION BUS

DYNASIM
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PRESS

EMERG.
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Figure 20 - HLA-compliant prototype for the first model for the disaster application 
 

Observing our Activity-Centred model of Figure 19, we see that, since all 

the nodes are connected, all participant members can constitute a single 
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Federation, which we call integrated_simulation according to the conceptual 

collaboration of Tables 11, 12, 13, and 14. 

We then associate a Federate with each participant member of the 

integrated_simulation Federation, namely T0, T1, T3, and DM1 (persons), S2 

(software agent), TT (group), and Press (company). Each Federate code is a Java 

program built based on the workflow rules written in a logic-based program. To 

enhance flexibility, the main method of each Federate is the one with name 

process_role, which receives as parameter the role to be played by the Federate, 

coded in a separate Java module. Using this strategy, we can code the workflow 

rules associated with a specific role directly into a separate module dedicated to 

this role. 

In terms of the network part of our Activity-Centred model, in fact a tree, 

we have implemented it using linked lists in Java language. One interesting point 

we should consider here is the implementation of the send and the receive 

algorithms used by each Federate. 

We first remember that the HLA RTI chosen, XRTI, has as its 

communication model a client-server topology, with no point-to-point 

communication and simply sending the messages through a channel of the 

collaboration bus with no specific receiver. So, in order to implement some 

coordination rules specifically related to particular receivers, we had to think 

about a way of indicating receivers in messages. 

Associated with each message, XRTI has a byte array called 

userSuppliedTag. Our prototype has seven participants (six leaf nodes and one 

group node, TT) and so we use one byte of this array to represent each one of the 

message receivers, with each byte array position corresponding to one participant. 

We can now explain each one of the algorithms: 

• Send: this algorithm can be implemented in two basic forms. In the 

first one, we directly implement the conceptual algorithm described 

in Chapter 3, sending the same basic message to each different 

receiver associated with it in the message attributes table, using the 

userSuppliedTag to represent to which receiver the message is being 

sent (apart from also registering the message_id in it). This allows 

flexibility not only in terms of a different post-processing module 

associated with each pair (message_id, receiver) present in the 
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message table, but also in terms of pre-processing modules, since we 

will be able to execute a different one associated with each receiver. 

This seems to be reasonable regarding our application with few 

nodes. If we find that it would be more interesting to lose some 

flexibility and enhance the network performance, we can adopt 

another strategy. Before sending the message through the channel, 

we could process every line of the message attributes table 

associated to this particular pair (sender, message_id) and represent 

all the receivers found in the userSuppliedTag byte array. Then we 

send through the channel only one single message associated with 

this message_id, with all of its receivers indicated in the 

userSuppliedTag. In this way, we gain in network performance by 

decreasing its load and lose some flexibility for not being able to 

execute the pre-processing modules prescribed for each message 

associated with each receiver (bear in mind that we do not lose all 

the flexibility, since we still are able to execute the post-processing 

at the receiver side). Probably more interesting than using these two 

strategies would be to implement a mix of them: before sending the 

message through the channel, we still process every line of the 

message attributes table, but at this time, instead of only grouping 

messages using the pair (sender, message_id), we also verify if they 

use the same pre-processing module, in which case we combine the 

messages with the same attributes sender, message_id, and 

pre_processing into a single one via the userSuppliedTag. Using this 

strategy, we maintain all our original flexibility and reduce the 

network load to the possible minimum. 

• Receive: it simply verifies through the userSuppliedTag byte array if 

the message is destined to the present Federate and then uses the pair 

(message_id, receiver) to access the message attributes table and 

discover the post-processing module to be run. An interesting case is 

the one in which the receiver represented in the userSuppliedTag is a 

group node (TT in our prototype). Recalling Chapter 3, we already 

know that, for group nodes, there is an attribute indicating which leaf 

node (in our implementation, a Federate) will execute the receive 
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algorithm and then the post-processing module associated with the 

pair (message_id, group_node). This post-processing module will 

necessarily determine which receivers (leaf nodes) will receive the 

message. 

 

Some screenshots of this integrated simulation collaborative session using 

the first version of our HLA-compliant prototype can be seen in the Appendix. 

Beyond a message passing application (a restriction imposed by the real 

simulators available), we thought about forms of enhancing the collaboration. One 

simple feature that greatly improved awareness information was the addition of a 

video capture tool in each of the two interactive simulators, transmitting frames 

periodically through the bus to the other participants. In this way, they not only 

receive messages about beginning and ending a particular simulation, but also 

receive intermediate frames with the simulation evolution. 

We finish this subsection highlighting two points of the XRTI 

implementation: 

• The Management Object Model (MOM): each set of object model 

tables has object and/or interaction class structure tables that depict 

inheritance relationships between classes. For each class, there is a 

flag indicating if a Federate can publish, subscribe, publish and 

subscribe, or neither publish nor subscribe instances of the class. 

There are also tables describing object attributes and interaction 

parameters, such as name, data type, update type, update condition, 

ownership transfer capability, publication and subscription 

capability, available dimensions, transportation, and order types of 

each attribute of every object class. 

• The mergeFDD method: FDD means Federation Object Model 

Document Data. XRTI implements a method called mergeFDD that 

allows Federates to add contents of other FDDs to the current FOM 

during a Federation execution. This encourages the use of 

lightweight, composable models. So, under XRTI, Federates can 

specify an FDD containing only the MOM (a mandatory component 

of every FOM) as the initial FDD, then merge smaller FDDs into the 

FOM as needed. 
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5.1.1.2. 
An InfoGrid Prototype for the First Model for the Disaster 
Management Collaborative Application 

We now present in Table 16 an InfoGrid prototype for our first model for 

the disaster management collaborative application. 

The InfoGrid prototype is described in terms of sequential time events, with 

the first one responsible for creating the project which will contain our model. 

Each time event is initiated by a term indicating the time in which the event 

occurs: t0, t1, t2, t3, etc. Also, when another event occurs immediately after the 

occurrence of a previous one, we denote this by adding ∆ to the subscript, such as 

t3+∆ and t5+∆, occurring, respectively, immediately after t3 and t5 in our example. 

For each time event, we define a sequence of commands that are executed. The 

whole set of events and commands defines the collaborative application. 

 
t0: T0 creates a project 

     T0 authorises T1 and T3 to access the project 

     T0 sends persistent notifications 

     T0 writes data in the project (ex.: P-34 model) 

t1: T1 enters 

     T1 receives past and persistent notifications //edge e1 asynchronous 

     T1 remotely accesses the model in the project and executes SSTAB 

     T1 sends message to all notifying the beginning of SSTAB simulation 

t2: T3 receives notification by e-mail 

t3: T1 writes the SSTAB results in the project 

     T1 sends message to all notifying the end of SSTAB simulation 

     T1 sets parameters and activates S2 

t3+∆: all the participants receive notification of the activation of S2 simulation (automatic send by the system) 

t4: T3 enters 

     T3 receives notifications 

t5: all the participants receive notification of the end of S2 simulation (automatic send by the system) 

t5+∆: T3 accesses S2 result and starts DYNASIM 

       T3 sends message to all notifying the beginning of DYNASIM simulation 

t6: T3 writes the DYNASIM results in the project 

     T3 sends message to all notifying the end of DYNASIM simulation 

t7: T0 analyses DYNASIM results 

     T0 sends message to DM asking for his approval 

t8: DM receives notification by e-mail 

     DM enters 

     DM analyses the results 

     DM notifies T0 about his approval 

t9: T0 extracts results to be published by Press 

     T0 sends the results to be published to Press 

Table 16 - InfoGrid prototype for the first model for the disaster application 



 

101 

An interesting aspect of the InfoGrid prototype is that it allows both 

persistent and volatile notifications. Also all the notifications can be sent by e-

mail, which can be the case for non-critical messages. 

 

5.1.2. 
A Second Model for the Disaster Management Collaborative 
Application 

We derived our first model for the disaster management application 

considering the actual simulators available today at Petrobras. Now imagine that 

we could configure our model ideally, with no implementation restrictions. A 

possible conceptual architecture would be one with all the participants separated 

from the simulations' engines and being capable of activating them remotely from 

other sites and to display their outputs using a local user interface program. We 

would then have the Task Force group again co-located in an especial room with 

all the required facilities, but at this time activating remotely the simulators 

available at other sites of the company. Again, since in our model TF is the only 

team inside TT, we are not explicitly representing it (if it had particular in- and 

out-policies, it should also be a node of our model). The Decision Maker 

continues to play his role of making the decision remotely to the Task Force. 

The model derived from our Activity-Centred metamodel and correspondent 

to this new scenario is the one shown in Figure 21. 

We can see that it was not difficult to accommodate the previous model to 

this new approach. All we had to do was define new nodes corresponding to each 

new simulation engine (S1 and S3) and define the interactions among them and 

with the other nodes. It is interesting to observe that in this second model we have 

as many agents (S1, S2, and S3) as persons (T0, T1, and T3). 

 

5.1.2.1. 
An HLA-Compliant Prototype for the Second Model for the Disaster 
Management Collaborative Application 

We now present the HLA-compliant prototype implementing the second 

model for the disaster management application (Figure 22). 
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Figure 21 - Second model for the disaster management collaborative application, 

focussing on the integrated simulation 
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Figure 22 - HLA-compliant prototype for the second model for the disaster application 
 

What differs in this second HLA prototype when compared to the first one 

is that now we have two new Federates, each one corresponding to each of the 
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new simulation engines: SSTAB and DYNASIM. SSTAB and DYNASIM 

operators still communicate with the other participants and now also with their 

respective simulation engines. The remaining nodes retain their previous 

behaviours. 

 

5.2. 
CAD Visualisation in Virtual Environments 

In order to validate the generality of the metamodel, we now delineate a 

model for another application, namely CAD visualisation in virtual environments. 

We again consider a case study of the Brazilian oil & gas company 

Petrobras. Suppose that one Exploration & Production (E&P) Unit is developing a 

project and that during a specific phase of the project they need to update and 

validate a CAD model within another E&P Unit and with the General Manager of 

the E&P Department. The typical workflow for this application would be as 

follows: 

• The technician from E&P Unit 1 sends the CAD model to E&P Unit 

2 so that it can be updated considering the unit's particular aspects. A 

first question that arises here is that E&P Unit 1 uses one CAD 

software (which we are going to name A) while E&P Unit 2 uses 

both this CAD software and another one from a second vendor 

(which we are going to name B), depending on the age of the CAD 

model (they use software A for the old models and software B for 

the new ones). This means that the application may have to convert 

models from software A to software B. 

• After having updated the CAD model, the technician from E&P Unit 

2 (using software A or B) then returns the model to the technician 

from E&P Unit 1. We can also have here the need to convert models, 

depending on the software being used at each side. 

• The technician from E&P Unit 1 now sends the updated model to be 

validated by the General Manager, who is working in a Virtual 

Reality environment. This means that once again we need model 

conversion, now from a CAD environment to a Virtual Reality 

environment. 
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• Finally the General Manager sends back a message to the technician 

from E&P Unit 1 telling whether he has or has not approved the 

updated model. 

 

In an emergency condition, the CAD visualisation system should be used by 

specialists to discuss the simulation results before they show them to the decision 

makers. 

 

5.2.1. 
A Model for CAD Visualisation in Virtual Environments 

We are now going to derive a complete Activity-Centred model for this new 

application. 

 

Motive: CAD visualisation in virtual environments

E&P 2

T1 T2
T0 DM1

e1 e2 DME&P 1

 
Figure 23 - Model for CAD visualisation in virtual environments 
 

First we define the network component as shown in Figure 23. There we can 

see three main nodes: node E&P 1 leading the collaborative application and, 

remotely located to it, node E&P 2 and node Decision Maker (DM). 

Inside node E&P 1 we have one E&P technician (T0) running CAD 

software A. 

Inside node E&P 2 we have two E&P technicians, T1 running software A 

for old CAD models and T2 running software B for new CAD models. 

Finally inside node DM, we have General Manager DM1 (Decision Maker 

1) using a Virtual Reality software in a virtual environment. 
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Having defined the network component of our model, we are now going to 

present the role rules and the message attributes table defining the application 

workflow. 

The role rules for the E&P technician 0, the E&P Unit 2, the E&P 

technician 1, and the E&P technician 2 are shown in Table 17. The rules defining 

the role of E&P technician 0 are similar to those of the examples previously 

shown. The E&P Unit 2 group role has an on-arrive rule that fires upon receiving 

message 1, when we inform on the console that the post-processing module 

pos_1_EP2 is determining and re-routing the message to technicians from E&P 

Unit 2. In this example, we do not know in advance which of the two technicians 

from E&P Unit 2 will interact with the technician from E&P Unit 1. In spite of 

that, our model is still capable of accommodating this new situation, with post-

processing module pos_1_EP2 being responsible for determining which of the 

two technicians from E&P Unit 2 will participate in the collaborative session, 

depending on the date of the CAD model. 

The role rules for the decision maker are shown in Table 18. The 

noteworthy aspect of this role is that we have an on-arrive rule firing a sequence 

of commands on arrive of message 3. This sequence first displays a message 

requesting the model validation, then displays the updated CAD model, and waits 

until the decision maker validates or not the model displayed. 

It is important to note that, in both Tables, messages 1, 2, and 3 go with the 

model as an attached file. 

Finally in Table 19 we show the message attributes table for this model. We 

first note that, for simplification, we are replacing E&P Unit 2 with EP2. Second, 

only message_id together with receiver were not sufficient to designate our pre- 

and post-processing module names – we had also to consider the sender. This 

occurs because, although in fact not interacting simultaneously during the same 

collaborative session, T1 and T2 are both represented in the message attributes 

table as senders of messages with the same message_id (2). Simply also 

considering the sender while building the pre- and post-processing module names, 

our metamodel proved to be capable of handling this new condition. 
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collaboration CAD_VR_visualisation 

{ 

  collaboration_bus {  

channel(remote). 

     } 

 

  role E&P_Unit_1_technician_0 //technician responsible for coordinating the activities 

  { 

    on-init(CAD_VR_visualisation) :- 

      send(remote, message_table(source(self), 1, dummy)). //send “E&P Unit 2 technician, please update the CAD model.” 

 

    on-arrive(local, message_table(dummy, 2, source(self))) :- 

      display(message_table(dummy, 2, source(self))), //display “CAD model has been updated.” 

      display the updated CAD model, 

      read CAD_model_seen_button, //read CAD_model_seen_button from console 

      send(remote, message_table(source(self), 3, dummy)). //send “Decision Maker, please validate the model.” 

 

    on-arrive(remote, message_table(dummy, 4, source(self))) :- 

      display(message_table(dummy, 4, source(self))). //display the decision made 

  } 

 

  role E&P_Unit_2 //unit responsible for routing the CAD model to technician 1 or  2 

  { 

    on-arrive(local, message_table(dummy, 1, source(self))) :- 

      display(message_table(dummy, 1, source(self))). //pos_1_EP2 determines which technician will receive message 1 

  } 

 

  role E&P_Unit_2_technician_1 //technician responsible for updating the CAD model using software A 

  { 

    on-arrive(local, message_table(dummy, 1, source(self))) :- 

      display(message_table(dummy, 1, source(self))), //display “E&P_Unit_2 technician, please update the CAD model.” 

      read CAD_model_updated_button, //read CAD_model_updated_button from console 

      send(remote, message_table(source(self), 2, dummy)). //send “CAD model has been updated.” 

  } 

  role E&P_Unit_2_technician_2 //technician responsible for updating the CAD model using software B 

  { 

    on-arrive(local, message_table(dummy, 1, source(self))) :- 

      display(message_table(dummy, 1, source(self))), //display “E&P_Unit_2 technician, please update the CAD model.” 

      read CAD_model_updated_button, //read CAD_model_updated_button from console 

      send(remote, message_table(source(self), 2, dummy)). //send “CAD model has been updated.” 

  } 

 

Table 17 - Role rules for E&P technicians 0, 1, and 2, and for E&P Unit 2 

 

The last aspect to be considered about this application is the appropriate 

selection of processing modules (pre- or post-) to execute the conversion of the 

engineering models. We have to consider each particular message to select the 

appropriate processing module to it: 
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  role decision_maker //manager responsible for making the decision  

  { 

    on-arrive(remote, message_table(dummy, 3, source(self))) :- 

      display(message_table(dummy, 3, source(self))), //display “Decision Maker, please validate the model.” 

      display the updated CAD model, 

      read model_validated, //read model_validated (OK or not_OK) from console 

      assert model_validated. //assert model_validated in the knowledge base 

 

    when(model_validated, not_OK) :- 

      write message 4 with “The CAD model has not been validated.”, 

      send(remote, message_table(source(self), 4, dummy)). //send message 4 

 

    when(model_validated, OK) :- 

      write message 4 with “CAD model has been validated.”, 

      send(remote, message_table(source(self), 4, dummy)). //send message 4 

  } 

} 

Table 18 - Role rules for the decision maker 

 
sender message_id receiver edge pre-processing post-processing

T0 1 EP2 e1 Pre_1_EP2 Pos_1_EP2
T0 3 DM1 e2 Pre_3_DM1 Pos_3_DM1
T1 2 T0 e1 Pre1_2_T0 Pos1_2_T0
T2 2 T0 e1 Pre2_2_T0 Pos2_2_T0

DM1 4 T0 e2 Pre_4_T0 Pos_4_T0  
Table 19 - Message attributes table for the CAD visualisation application 
 

• Message 1: sent from T0 to E&P Unit 2. As T0 does not know in 

advance which software E&P Unit 2 will use, he simply sends the 

message with the model through the channel, without any 

conversion, and lets E&P Unit 2 determine if any conversion will 

occur. At the E&P Unit 2 side, the post-processing module 

Pos_1_EP2 will determine to which of the two E&P Unit 2 

technicians the message should be delivered, based on the date of the 

CAD model (this determines which software will be used). 

• Message 2: this message is sent by one of the two E&P Unit 2 

technicians to T0. If it is T1 who is participating in the collaborative 

session (using software A), there will not be any conversion while 

sending message 2. If it is T2 who is participating (using software 

B), then in this case the pre-processing module Pre2_2_T0 should 

convert the model from format B to format A, guaranteeing that it 

arrives at the T0 side already converted. This is important because, 
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using dummy as the sender in the on-arrive rules, we will not be 

capable of determining precisely in this case which line of the table 

corresponds to the message being received and so we will not be 

able to use the post-processing modules. Another alternative would 

be using source(sender) instead of dummy in the on-arrive rules (the 

sender information has to be included in the message), in order to be 

able to determine exactly the line of the message attributes table 

corresponding to an incoming message – in this case, we could use 

either the pre- or the post-processing module to make the conversion 

of formats. 

• Message 3: this is sent from T0 to DM1. In principle, we could use 

either the pre- or the post-processing module to convert the CAD 

model to the Virtual Reality environment model. But it seems more 

natural to allow the Decision Maker to use his post-processing 

module to make this conversion since he is the one who better 

knows the conditions and resources of the Virtual Reality 

environment. 

 

The objective of this second example was to validate the generality of the 

metamodel, applying it to another scenario, not related to emergencies. This new 

scenario brings at least two new interesting situations that our metamodel can 

accomplish. The first one is the fact that we have a group node (E&P Unit 2) 

containing two leaf nodes which do not communicate between themselves – the 

only communication with them comes through their parent node. The second one 

is the fact that we have two pre-defined participants in the network component 

and in the role rules – E&P Unit 2 Technicians 1 and 2 – which do not participate 

in the same collaborative session: there is a run-time selection based on an 

attribute of part of the message (the date of the CAD model transmitted with the 

message as an attached file). This causes the appearance of two lines in the 

message attributes table having the same message_id with two different senders, 

apparently failing to determine which of the lines is related to the message being 

received. However, by simply using the optional sender argument of the on-arrive 

rule with the sender information included in the message, we can deal with this 

situation. 
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6 
Conclusions and Future Work 

In this work we have proposed a multiple-perspective metamodel – the 

Activity-Centred metamodel – which mixes the Place-Centred and the People-

Centred perspectives in the degree required by the designer. It employs not a 

technology-driven but a human-centred approach – or better, as it also emphasises 

group and organisation level issues, a socially-centred approach (Neale et al., 

2004) or a mix of both (Gutwin & Greenberg, 1998). It allows experimenting and 

deriving models in two orthogonal dimensions: in relation to the number of group 

levels and breaking down a particular group level. Associating pre- and post-

communication processing to each of these levels, we could accommodate policy 

and privacy rules of organisations, even allowing inter-organisational work. 

In our metamodel, we have identified elements associated with each of the 

three components of the 3C collaboration model: the communication component 

is represented by the edges; the coordination component is represented by the 

edge specialisation elements, the role rules, and the message attributes table; and 

finally the cooperation component is formed by the different abstraction levels 

which represent the whole activity being performed, including all the applications 

being executed in the leaf nodes and the artefacts being produced or manipulated. 

The leaf nodes can indistinctly be persons or software agents. 

The metamodel allows flexibility in many dimensions. Separating high-level 

abstraction features from low-level implementation features allows the designer 

and the application developer to concentrate on their particular domain of 

expertise. The use of edges allows synchronous and asynchronous work. 

Separating the computational program and the coordination program (the role 

rules) allows programmers to concentrate on coordination issues with high-level 

abstraction. The role rules, written in a logic-based language, specify coordination 

policies and participants' roles, accommodating both tightly- and loosely-coupled 

work. With the participants divided in a number of fixed roles, the number of 

participants assuming these roles can be fluid and large. 
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More directly related to particular characteristics of its elements, the 

metamodel also provides a set of other flexibility features. It is customisable in the 

sense that it allows associating pre- and post-communication processing modules 

with each message sent. It allows parametric run-time changes such as changing 

the names of pre- and post-communication processing modules in the message 

attributes table, or even the possibility of changing the pre- and post-

communication codes before they have been loaded during a collaborative 

session. The roles are coded in modules separated from the computational 

program, in consonance with the principle of reusable collaborative software 

components. Finally, it also provides some extensibility, having the capability of 

adding new lines in the message attributes table, associating a specific message 

with new receivers, as well as loading new post-processing modules in run-time. 

The metamodel seems to have elements to be sufficiently generic to 

accommodate a range of applications as well as being specialisable for a particular 

domain. We also conclude that the metamodel offers conditions to develop a 

collaborative workspace: it allows sharing materials among a specific group and 

provides appropriate behaviours and awareness information to support 

cooperation. 

The metamodel allows storing all the elements of a collaborative session, 

such as the applications being executed in the leaf nodes, the artefacts being 

produced or manipulated, and the name of the executor of the application, as well 

as its date and time. This may be used at the conceptual level as a knowledge base 

for post-auditing or reconfiguration of the model in future sessions, as well as at 

the real-world level, helping specialists while elaborating an investigation report 

about the accident, or for training purposes. 

Another important characteristic of this work is that it was motivated by and 

was conducted in real-world settings, namely an oil & gas offshore structure 

disaster scenario. This seems to contribute to the CSCW field, since a review of 

CSCW evaluation studies concluded that less than half of them were conducted in 

real-world settings (Pinelle, 2000). We have conducted a survey on the main 

commercial emergency management systems available, concluding that they still 

lack full and suitable integration of simulators with high-performance 

visualisation systems. The decision of using HLA (High Level Architecture) as a 
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platform for our prototype favours the inclusion of more complex simulations, 

even those with high-performance visualisation requirements. 

We believe that, considering the generality of the metamodel, we may 

support other application domains, but only the ones related to the oil & gas area, 

in particular the emergency scenario ones, were thoroughly tested. 

After deriving from our metamodel an adequate model for the disaster 

scenario, we have implemented our first prototype, as a proof-of-concept of our 

metamodel, using an HLA run-time infrastructure, namely the XRTI. It comprises 

all the flexibility requirements demanded as well as is open-source and freely 

distributable. It has proven particularly suitable to accommodate a varying number 

of participants (in our model associated with roles) since HLA allows Federates to 

freely join or resign from Federations at any time during the collaborative session. 

We have also discussed how the prototype could be implemented using 

another implementation platform, InfoGrid. Still for the disaster management 

application, we have presented a second model and its prototype showing that we 

can derive different models for the same application. Finally, to validate the 

generality of the metamodel, we have also delineated a model for another 

application, namely CAD visualisation in virtual environments. 

In terms of contributions for Petrobras, this work has provided: 

• Improved understanding of ICT requirements from the oil & gas 

industry for supporting disaster management involving distributed 

expert teams. 

• Creation of a decision-making environment which integrates 

simulators, visualisation centres, and various experts for emergency 

situations. 

• Evaluation results of the prototypes within real industrial settings 

using experts involved in real disaster management situations. 

 

6.1. 
Future Work 

We have a lot of interesting future work related to the present one that could 

be developed in many dimensions. 
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First we consider our metamodel. Although providing the degree of 

flexibility mentioned above, there is still a lot of work to do in order to make our 

metamodel a fully flexible and evolving collaborative architecture: 

• First, it would be interesting to include a latecomer-joining 

mechanism such as Chung & Dewan's (2004) logger, capable of 

replaying recorded output messages, or an image copy method, since 

it is usual to have people joining and leaving collaborative sessions. 

• Second, particularly in the situation of an emergency scenario being 

considered, it would be very important to include an Expertise 

Recommender system, such as the one proposed by McDonald & 

Ackerman (2000), since in a crisis situation it is fundamental to 

locate the expertise necessary to solve the problem in the lesser 

possible time. 

• Third, again directly related to the particular case of emergency 

scenario, it seems that it would be interesting to include some kind 

of redundancy, in one or more of the dimensions considered by 

Tjora (2004): redundancy of functions, communicative redundancy, 

competence redundancy or technological redundancy. 

• Fourth, it should be investigated how the number of lines of the 

message attributes table escalates, considering many aspects such as 

the quantity of nodes and edges, the quantity of different messages, 

the quantity of variations of a same message, and the quantity of 

group nodes (which re-route messages). 

• Finally, we should investigate how to promote our metamodel from 

a customisable category to an adaptable category (Dourish, 1998), 

upgrading from the capability of adjusting parametric controls to the 

capability of reconfiguring its behaviour according to immediate 

patterns of use. We can think about implementing this in two phases. 

In a first phase, we would monitor the current activities and 

interactions among users to derive a diagnosis, which would serve as 

the base for possibly adjusting the model to the found pattern, and 

then use the adjusted model in subsequent collaborative sessions. In 
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a second phase, we would use some kind of learning mechanism to 

make these adjustments in run-time. 

 

The second dimension to be considered is that of tools to help the 

configuration and implementation of models: 

• Since we have identified the importance of being capable to rapidly 

reconfigure the model, especially in emergency situations, it would 

be very interesting to have some kind of diagram editor to configure 

and reconfigure models as well as automatically updating the 

database containing the network models. 

• Also it seems to be very useful to have automatic mappers of our 

role rules to the implementation programming languages being used. 

 

A third dimension to be considered is the issue of validating the metamodel. 

Validation is always a very complicated problem while developing a large system. 

We suggest validating the metamodel according to different aspects: 

• First, for a particular scenario and using the semi-formal 

representation constituted by the network model of our metamodel, 

the users should validate the particular model being employed, 

verifying, for example, if all the important groups are represented, if 

the groups are placed in their right positions, if there are no missing 

edges, and if the representation of local and remote nodes is correct. 

• Second, the users should verify all the role rules to see if they really 

reflect what is happening in the real world and if there is no missing 

rule. 

• Third, the users should verify if all the important pre- and post-

processing modules are represented in the message attributes table. 

Also, the users should verify if the messages being sent to group 

nodes are the appropriate ones. 

• In a second dimension of validation, we could implement a 

prototype for a particular application using different implementation 

platforms to validate the metamodel, as we have done with the 

emergency scenario application using HLA and InfoGrid. 
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• In a third dimension of validation, we could experiment different 

models for the same application, to verify how flexible the 

metamodel is, similarly to what has been presented in Subsections 

5.1.1 and 5.1.2. 

• Finally, in a fourth dimension of validation, to validate the generality 

of the metamodel, we should derive models for different types of 

applications. The CAD visualisation application (Section 5.2) is an 

example of this kind of validation.  

 

A fourth dimension to be considered in terms of future work is the one 

related to the HLA-compliant prototype. Although already including some 

features in our first prototype such as a video capture tool and an automatic 

language translator for small messages, there are still many new features that 

could be added to enhance our prototype. One of those could be a video 

teleconferencing facility allowing communication among the participants in real 

time. 

A fifth dimension is to fully develop the InfoGrid prototype so that we can 

compare it with the HLA-compliant prototype, identifying what are the 

advantages of each one of them. 

The sixth dimension is related to developing new applications to use and 

validate our metamodel under different conditions. One application that should be 

further developed is the CAD visualisation in virtual environments described in 

Chapter 5. Particularly in a multifunctional room or in a virtual reality 

environment, CAD interaction would be critical. Another application to be 

investigated in the near future is again one related to the oil & gas area, namely 

the Reservoir Dimensioning application. 

Finally, the seventh dimension of future work is the one related to 

enhancing the collaborative workspace for the disaster management application. 

This could be done in two main directions: 

• In order to simulate the operator's actions, the system should work 

with two different scenes, each of them with the possibility of 

choosing between the first- and the third-person  point of view: 

o The first scene would be the normal scene of the interactive 

simulators (SSTAB and DYNASIM), with the users visualising 
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the unit movements in the virtual world based on the stability 

conditions. 

o The second virtual scene would be the unit control room, so that 

the specialists could simulate unit reactions based on the 

activation of buttons. 

• In addition to these two virtual scenes, the system should have at 

least one and possibly two projections of the real world: 

o The most important one would be the image of the unit control 

room, captured by a video camera. With this, the users could 

observe and help the operator's actions in these extreme 

conditions. 

o A second possible one would be the outside image of the unit, 

again captured by a video camera possibly in a ship or in a 

helicopter, so that the users could observe the real situation of 

the unit. 
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Appendix: Screenshots of the HLA-Compliant Prototype 

In this Appendix, we present some screenshots of the execution of our 

HLA-compliant prototype. 

In Figure 24, we can see the collaborative session being initiated. It has 

seven tiled windows representing respectively, from top to bottom: (i) at the left 

side, the Executive server, the Emergency Pilot T0, the SSTAB operator T1, and 

the Press P1; (ii) at the right side, the software agent S2 executing the WAMIT 

simulator, the DYNASIM operator T3, and the Decision Maker DM1. It should be 

noted here that each of these participants could be using different machines, but 

they are using the same machine at this moment only to show the collaborative 

session on the same screen. Figures 25 to 45 show, in chronological order, a 

sequence of screenshots of the prototype execution. 

 
Figure 24 - Collaborative session being initiated 
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Figure 25 - The SSTAB operator T1 receives a message to initiate the SSTAB simulation 

 

 
Figure 26 - The SSTAB operator T1 initiates the SSTAB simulation 
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Figure 27 - Federates T0, T3, and DM1 receive a message from T1 telling that he has 

begun the SSTAB simulation 

 

 
Figure 28 - T1 exports a WAMIT geometric data file and terminates the SSTAB simulation 
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Figure 29 - T1 sends a message informing the end of SSTAB simulation, with S2 

automatically activating the WAMIT simulator 

 

 
Figure 30 - S2 sends automatically to federates T0, T1, T3, and DM1 a message 

informing the end of the WAMIT simulation 
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Figure 31 - The Emergency Pilot T0 sends the environmental data (H=5 and P=10) to the 

DYNASIM operator T3 

 

 
Figure 32 - The DYNASIM operator T3 receives the environmental data (H=5 and P=10) 

from T0 
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Figure 33 - The DYNASIM operator T3 sends a message informing that he will begin the 

DYNASIM simulation 

 

 
Figure 34 - The DYNASIM simulation is initiated 
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Figure 35 - DYNASIM reads and converts the WAMIT output file to a WAMIT neutral file 
 

 
Figure 36 - T3 enters the environmental data (H=5 and P=10) into DYNASIM 
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Figure 37 - T3 ends the DYNASIM simulation 

 

 
Figure 38 - T3 sends green signal for the DYNASIM simulation 
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Figure 39 - Federates T0, T1, and DM1 receive the message informing the result of the 

DYNASIM simulation 
 

 
Figure 40 - The Emergency Pilot T0 approves the results of the simulations 



 

134 

 
Figure 41 - The Decision Maker DM1 (and federates T1 and T3) receives from T0 a 

message asking him to validate the sequence of commands to be executed 

 

 
Figure 42 - The Decision Maker DM1 validates the sequence of commands to be 

executed 
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Figure 43 - Federates T0, T1, and T3 receive a message from DM1 telling that he has 

validated the sequence of commands to be executed 
 

 
Figure 44 - The Emergency Pilot T0 notifies the Press about the decision made, sending 

a press release 
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Figure 45 - The Press receives a message from T0 informing that a new press release is 

available 


