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hands / Sinǐsa Kolarić; adviser: Marcelo Gattass; co–adviser:
Alberto Barbosa Raposo. — 2008.

117 f.: il. (col.) ; 30 cm

Dissertação (Mestrado em Informática) — Pontif́ıcia
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Abstract

Kolarić, Sinǐsa; Gattass, Marcelo; Raposo, Alberto Barbosa. To-
wards direct spatial manipulation of virtual 3D objects us-
ing visual tracking and gesture recognition of unmarked
hands. Rio de Janeiro, 2008. 117p. MSc Thesis — Department of
Computer Science, Pontifical Catholic University of Rio de Janeiro.

The need to perform spatial manipulations (like selection, translation, ro-

tation, and scaling) of virtual 3D objects is common to many types of soft-

ware applications, including computer-aided design (CAD), computer-aided

modeling (CAM) and scientific and engineering visualization applications.

In this work, a prototype application for manipulation of 3D virtual objects

using free-hand 3D movements of bare (that is, unmarked, uninstrumented)

hands, as well as using one-handed and two-handed manipulation gestures,

is demonstrated. The user moves his hands in the work volume situated

immediately above the desktop, and the system effectively integrates both

hands (their centroids) into the virtual environment corresponding to this

work volume. The hands are being detected and their posture recognized

using the Viola-Jones detection method, and the hand posture recognition

thus obtained is then used for switching between manipulation modes. Full

3D tracking of up to two hands is obtained by a combination of 2D ”flocks-

of-KLT-features” tracking and 3D reconstruction based on stereo triangu-

lation.

Keywords
Direct manipulation of virtual 3D objects. Augmented reality. Mixed

reality. 3D input devices. 3D interaction techniques. Computer vision.

Hand detection. Hand tracking. Hand gesture recognition.



Resumo

Kolarić, Sinǐsa; Gattass, Marcelo; Raposo, Alberto Barbosa. Rumo
à manipulação direta espacial de objetos virtuais 3D us-
ando rastreamento baseado em visão e no reconhecimento
de gestos de mãos sem marcadores. Rio de Janeiro, 2008.
117p. Dissertação de mestrado — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

A necessidade de executar manipulações espaciais (como seleção, desloca-

mento, rotação, e escalamento) de objetos virtuais 3D é comum a muitos

tipos de aplicações do software, inclusive aplicações de computer-aided de-

sign (CAD), computer-aided modeling (CAM) e aplicações de visualização

cient́ıfica e de engenharia. Neste trabalho é apresentado um protótipo de

aplicação para manipulação de objetos virtuais 3D utilizando movimen-

tos livres de mãos e sem o uso de marcadores, podendo-se fazer gestos

com uma ou duas mãos. O usuário move as mãos no volume de trabalho

situado imediatamente acima da mesa, e o sistema integra ambas as mãos

(seus centróides) no ambiente virtual que corresponde a este volume de tra-

balho. As mãos são detectadas e seus gestos reconhecidos usando o método

de detecção de Viola-Jones. Tal reconhecimento de gestos é assim usado

para ligar e desligar modalidades da manipulação. O rastreamento 3D de

até duas mãos é então obtido por uma combinação de rastreamento 2D

chamado ”flocks-of-KLT-features” e reconstrução 3D baseada em trian-

gulação estéreo.

Palavras–chave
Manipulação direta espacial de objetos virtuais 3D. Realidade aumen-

tada. Realidade mista. Dispositivos de entrada 3D. Técnicas de interação

3D. Visão por computador. Detecção de mãos. Rastreamento de mãos.

Reconhecimento de gestos manuais.
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People don’t understand 3D. They experience it.

Ivan E. Sutherland, American computer scientist



1
Introduction

The author’s original intention, a couple of years ago, was to develop

a kind of an intuitive, dataglove-based interface for Computer-Aided Design

(CAD) applications. The idea was to interact with 3D geometry directly, i.e.

using hands, just as we interact with physical 3D objects in the real world.

However, while undoubtedly there exist application areas where datagloves

are the best and optimal choice, they (datagloves, sometimes also called cyber-

gloves) continue to be expensive, invasive, and essentially a niche technology.

Subsequently, it was in 2006 when the author came into contact with ad-

vanced computer-vision techniques (through the graduate-level course “Visão

Computacional e Realidade Aumentada”, held by professor Marcelo Gattass),

that the idea to use vision-based hand tracking for the same type of a CAD

interface, instead of using datagloves, was born.

However, using computer vision (CV) techniques to detect and track

human hands is difficult. Although in recent years many advances in the

field of vision-based hand tracking (and tracking of articulated structures in

general) have taken place, a lot of theoretical and practical problems remain.

For example, while detecting an arbitrarily oriented and illuminated human

hand in an digital image reliably, robustly and quickly is a difficult problem,

it is simply a non-issue with datagloves. Furthermore, tracking a hand using

CV techniques is even harder, while datagloves can do the same tracking with

almost exact precision. On the other hand, CV techniques adopted in this

work don’t require the user to don any device, and offer a complete freedom

of movements.

That said, and as I have already mentioned at the beginning of this

preface, the central theme and objective of this dissertation is actually the

manipulation of 3D objects using hands, and computer vision is “merely” our

vehicle to achieve that end. Put differently, the main motivation for doing

this work was to try to map manipulation operations as we know them

in the real, physical world (when we manipulate real objects), to a set of

corresponding manipulation operations in the virtual environments, so that

we can manipulate virtual 3D objects.
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1.1
Historical context

As of time of writing (second half of the first decade of the 21st century),

the field of computing is as alive and active as ever. Just in the last couple

of years, we’ve witnessed the meteoric rise of Google, Inc. (“organizing the

world’s information and making it universally accessible and useful”), the

widest possible dissemination of mobile computing platforms, and last but

not least a slow but steady switch (actually, a sea change) to many-core

and multi-core computing, which will soon have deep repercutions on how

we conceptualize, develop and use computer programs.

Taking a look at the hardware interfaces of our good old standard Per-

sonal Computer (PC), apparently we cannot find the same level of dynamism.

The peripherals we use to interact with our PCs practically haven’t changed

since the original IBM PC was ushered into the IT scene in 1981 — granted

the data buses have become wider and faster, processors tick at 3 GHz instead

of at 4.77 MHz, RAM and disk sizes are much more plentiful and the operating

systems that drive this hardware are much more complex and capable — but

the keyboard stayed almost the same as the one featured by the original IBM

PC, and the mouse is conceptually equivalent to the one Douglas Engelbart

invented and perfected in the 1960s. Furthermore, the technologies that were

predicted to revolutionize human-computer interfaces, like for example speech

recognition, haven’t come to realize their full potential.

Yet, exactly in the last couple of years preceding this work, we have

witnessed some interesting developments in the field of HCI1 (specifically,

launches of commercial products, which were of course preceeded by years

and even decades of academic and corporate research); characteristically, all

these developments try to provide more natural ways for users to interface

with computers, like for example touch and hand gestures.

For starters, in 2007 Microsoft Inc. introduced2 the Microsoft Surfacetm,

a computerized table whose tabletop (a touch-sensitive display) can detect

user’s touches and recognize physical objects by means of five infra-red cameras

situated beneath the surface. The device itself is built around the principles of

direct interaction (the user manipulates virtual objects using hands and/or

fingers), and multi-touch interaction (the user can apply one, several or all

his fingers to interact with the device; also, many users can interact with the

device at the same time).

Further, also in 2007, Apple Inc. launched a commercially successful

1HCI is the acronym for “Human-Computer Interaction”.
2www.microsoft.com/surface/
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product line which includes the iPod3 and the iPhone4 whose interfaces also

feature a touchscreen able to detect touching and dragging finger gestures.

Similarly to Microsoft’s Surface, it’s possible to stretch a photo by placing two

fingers on two opposite corners of the image, then spreading the fingers thus

enlarging or shrinking the image.

In an somewhat earlier development, Nintendo Inc. introduced in 2005

the gaming console Wii5 and the associated Wiimote, which actually acts as

an accelerometer and 3D position tracker; in conjuction with the associated

software, this system can recognize certain hand gestures. This way it’s pos-

sible, for example, to simulate hitting the tennis ball by doing the equivalent,

natural hand movement and gesture.

Finally, we have earlier devices that also support direct manipulation, like

MERL’s DiamondTouch6 [1], a multi-user, touch-and-gesture-activated screen

for supporting small group collaboration, and the Responsive Workbench [2],

a virtual work environment.

As a conclusion, there seems to exist a certain momentum towards more

natural and intuitive ways to interact with computers, although only time will

tell how successful this push for more intuitive and “natural” interfaces will

ultimately be.

1.2
The motivation

The motivation for this work is simply to try to use our own hands to

interact with 3D geometry, and also due to the author’s deep insatisfaction

with the current state of affairs in the field of 3D user interfaces. While the

mouse (and a number of specialized devices like 3D mice, SpaceBallTM and

SpaceNavigatorTM by 3Dconnexion Inc., and similar devices), have proved

their value in various 3D application contexts along the last several decades,

this work is an attempt to offer an arguably more natural and intuitive method

to interact with a 3D computer model, especially having certain types of

user communities in mind (for example, architectural and graphic designers,

sculptors, and artists in general).

3www.apple.com/ipod/
4www.apple.com/iphone/
5www.nintendo.com/wii/
6www.merl.com/projects/DiamondTouch/
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1.3
The scope covered by this dissertation

The title of this MSc dissertation is Direct spatial manipulation of

virtual 3D objects using vision-based tracking and gesture recogni-

tion of unmarked hands, which implies the following:

– Direct spatial manipulation — the expression “direct manipulation”

(without the adjective “spatial” or “3D”) refers to the technique of

making user interfaces more intuitive by representing the objects of

interest visually and letting the user manipulate them directly with an

input device like a mouse [3]. Consequently, “direct spatial manipulation”

or “direct 3D manipulation” can be considered to be a specialization of

direct manipulation, in the following way:

– we deal with the manipulation of virtual 3D geometric objects, as

dinstinguished for example from manipulation of 2D icons.

– we use free-form hand movements for spatial input, and

– there is a minimal (or equal to zero) spatial displacement between

the user’s physical hand (and of its virtual representation) and the

manipulated virtual 3D object.

– Virtual 3D objects — here the fact that we manipulate virtual

(computational) 3D models, instead of physical objects, is emphasized.

– Vision-based tracking of (unmarked) hands — “tracking”, in our

context, refers to the process and techniques for future position prediction

of a target object. “Hand tracking”, therefore, refers to the tracking of

human hand. Consequently, tracking of unmarked (i.e. uninstrumented,

unadorned, bare) hands refers to hand tracking which does not try to

instrument the hands in any way, like for example, by placing a marker

on the hand. Finally, we perform tracking using passive computer vision

techniques, that is, we do not consider active computer vision techniques

like for example projecting a pattern onto the object of interest.

– Vision-based gesture recognition of (unmarked) hands — again,

we use use passive computer vision techniques to recognize various hand

gestures (in our case, static gestures, that is, views of hand postures)

which modulate the movements of human hands in the workspace.

Therefore, according to the definitions above, this dissertation describes

an approach to direct spatial manipulation of virtual 3D objects, using passive

computer vision techniques to detect and track user’s hands in the workspace,

as well as recognize hand gestures made by the user in the workspace.



CHAPTER 1. INTRODUCTION 19

1.4
The structure of this MSc thesis

This MSc thesis consists of two parts: the first part describes related

work, and the second part describes the prototype software application.

The first part, Related Work, describes prior work done in all the areas

that are relevant to this MSc thesis, and consists of the following chapters:

– Chapter 2 describes the anatomy and biomechanical properties of the

human hand, as well as gives an overview of existing biomechanical

models of the human hand.

– Chapter 3 describes one-handed and two-handed gestures for manipu-

lation, as well as gives the theoretical framework for hand gestures and

hand gesture recognition.

– Chapter 4 describes interaction techniques for direct 3D manipulation.

– Chapter 5 gives an overview of computer vision topics for hand detection,

recognition and tracking.

– Finally, Appendix A gives a timeline of research in manipulation of

virtual geometrical objects.

The second part, Prototype Application, consists of the following

chapters and appendices:

– Chapter 6 describes all the aspects of the prototype application.

– Chapter 7 gives conclusions and future work.

– Appendix B describes the Viola-Jones detection method, which is used

in the prototype for hand detection.

– Appendix C describes KLT features, which are used in the prototype for

hand tracking.

– Appendix D describes the Hartley-Sturm triangulation method, which is

used in the prototype to perform 3D reconstruction of the tracked hand’s

position in workspace.



2
Human hand

Since this work deals with direct manipulation, i.e. manipulation using

hands, obviously human hands are of crucial importance for this exposition.

In order to approach the research and development of a 3D user interface

as the one proposed in this work, we must be familiar with the anatomy,

biomechanical properties and biomechanical models of human hand to a

sufficient degree.

2.1
Introduction

The human hand is a complex mechanical manipulator, able to perform

both delicate manipulations (e.g. a clocksmith trying to repair a watch) and

powerful manipulations (a gardener breaking and turning over earth with a

spade). Besides being a tool to achieve a goal (for example, “move the teacup

nearer”), hands are also a source of tactile feedback, obtained through the

sense of touch. Each hand is controlled by the opposing brain hemisphere —

for example, for right-handed people the right hand is controlled by the left

side of the brain.

2.2
Human hand anatomy

The human hand (Figure 2.1, adopted from [4]) is a highly articulate

object, consisting of 27 bones. (Note that the two bones at the bottom, radius

and ulna, do not belong to the hand, but to the arm.) The bones of the human

hand can be grouped as follows:

1. Wrist bones (carpals, carpus in Latin) — these bones include 8

bones called carpal bones, which are located between a) the two elbow

bones (radius and ulna) and b) the palm (metacarpus).

2. Palm bones (metacarpals, metacarpus in Latin) — these bones

include 5 bones called metacarpal bones (or simply metacarpals).
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Figure 2.1: A drawing of a human hand, with joins and bones emphasized

3. Finger bones (phalanges, also phalanges in Latin) — these bones

include 14 bones of all the fingers (thumb, index finger, middle finger,

ring finger/annualry and little finger). All fingers except the thumb have

three phalanges:

(a) proximal phalange,

(b) intermediate phalange, and

(c) distal phalange.

The thumb has just two phalanges (the intermediate phalange is miss-

ing):

(a) proximal, and

(b) distal.

For the illustration of muscles and tendons (cords or bands of inelastic

tissue connecting a muscle with its bony attachment) of the human hand, refer

to Figure 2.2, adopted from [4].
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Figure 2.2: Muscles and tendons of the human hand

2.3
Human hand modeling

Hand modeling can be defined in our context as the construction and use

of a computer-based 3D biomechanical model of human hand. A hand model is
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Figure 2.3: 3-d.o.f. hand model

therefore an approximation of the real human hand which, as has been shown

in Section 2.2, has 27 bones, of which 19 belong to the palm (5 of 19) and

fingers (14 of 19), and the remaining 8 belong to the wrist. The bones thus

form a system with a certain total count of degrees of freedom (d.o.f.), and

can be abstracted and modelled as such.

Various models, with various d.o.f. have been proposed in the literature.

The simplest possible hand model must be the one with just three d.o.f. (i.e.

one 3D position ~x = (x, y, z)). In this case, this 3D position then designates a

characteristic 3D point for a hand, for example the hand’s current mass center.

The highest number of d.o.f. for a hand model model is theoretically

unlimited, however in practice the highest number of d.o.f. ranges from 27 to

33 d.o.f.

Of course, it depends on the application which hand model we will choose.

For some applications, just 3 d.o.f. is sufficient, however for other application

only models with high d.o.f. will suffice.

2.3.1
3 d.o.f. hand model

This model (Figure 2.3) can be considered the simplest possible 3D hand

model, because in this model the human hand is represented by one single 3D

point ~x = (x, y, z), and has therefore just 3 degrees of freedom. The criteria

for deriving ~x is diverse, and can range from the mass centroid (barycentre) all

the way to the mean of a number of “good features to track” (see Appendix

C on page 113).
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Figure 2.4: Rehg-Kanade 27 d.o.f. hand
model

2.3.2
27 d.o.f. hand models

Rehg-Kanade model

Figure 2.4 depicts the Rehg-Kanade hand model, described in [5]. Here

the hand is modelled as a collection of five kinematic chains (four fingers +

thumb) attached to a base (the palm):

– the palm is modelled as a rigid block with 6 d.o.f. — 3 for position and

3 for orientation.

– each of the four fingers are planar mechanisms with 4 d.o.f. — 3 d.o.f.

determine the finger’s configuration within the plane, while the 4th d.o.f.

is reserved for abduction (i.e. finger movements away from the central

axis).

– the thumb is modelled as a 5-d.o.f. mechanism, using the approach

described in [6]

Wu-Huang model

The Wu-Huang model [7] (see Figure 2.5) is similar to the Rehg-Kanade

model, with the same number of d.o.f. and the same distribution of d.o.f.

2.3.3
33 d.o.f. hand models

Model by Nirei et al

In [8] the hand is modelled as a collection of 21 segments and 20 joints,

thus giving us a 33-d.o.f. hand model (see Figure 2.6):
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Figure 2.5: Wu-Huang 27 d.o.f. hand model

Figure 2.6: 33 d.o.f. hand
model by Nirei et al



3
Hand gestures for manipulation

The previous chapter demonstrated how we can parametrize individual

parts of the human hand, using biomechanical structures with various total

numbers of degrees of freedom. Given this data (the trajectory of hand and its

parts in space and time), we can recognize gestures made by the hand.

3.1
One-handed and gestures in general

As per Figure 3.1 adopted from [9], any hand movement can be classified

as 1) gesture or 2) unintentional movement [10], [11], [9].

Figure 3.1: Taxonomy of gestures. In this work mostly the manipulative
gestures (see extreme left of the figure) will be considered

There are two major classes of gestures:

1. Manipulative gestures — in this work, we are mainly interested in

these gestures. Manipulative gestures act directly on objects in the real

or virtual environment, like grabbing, moving, touching, rotating and

stretching an object. For example [11], a pianist‘s hand movements are

meant to touch the piano keys. Differently from an orchestral conductor’s

hand motions, the pianist’s hand and finger motions are not meant to
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communicate with anyone, but to simply touch (manipulate) the piano

keys in order to produce music.

Some manipulative gestures are amenable to be processed by computer

vision techniques, in order to manipulate 3D virtual objects. For example,

a closed fist can be interpreted as a grabbing of a virtual object.

2. Communicative gestures — meant for visual interpretation, not for

acting on objects. These gestures try to convey a message, an informa-

tion. For example, an orchestral conductor’s hand motions are intended

to communicate temporal, affective and interpretative information to the

orchestra, NOT to act on an object.

Communicative gestures are further subdivided into (see Figure 3.1):

– Acts — the movements performed relate directly to the intended

interpretation.

– Mimetic gestures — imitate some actions and can be consid-

ered pantomimes. These are characterized by their “iconicity”.

For example, a smoker going through the motion of “lighting-

up” with a cigarette in his mouth indicates that he needs a

light. Such gestures are usually generated on-the-fly without

predetermined convention. The more novel the pantomime, the

more exaggerated the motion would be to convey its intent.
– Deictic gestures — point at something, and as such are very

interesting for HCI. Subdivided into: specific — to select a

particular object or location, generic — elicit the identity of a

class of object by picking one of its members, and metonymic

— when pointing at an object in order to signify some entity

related to it.

– Symbols — a type of motion short-hand.

– Referential gestures — designated objects or concepts. For

example, circular motion of index finger may be a referent for a

wheel. Or, rubbing the index finger and the thumb in a circular

fashion, is referential to money.
– Modalizing gestures — serve in conjuction with some other

means of communication (for example speech) to indicate the

opinion of the communicator. For example, at a party, one

might say to another, “Have you seen your husband?” (holding

her hands apart to indicate that he is overweight). The resulting

chuckle would not be understandable if one listened only to an

audio transcript of the exchange.
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3.2
Two-handed gestures

The seminal work for two-handed gestures is Guiard’s work [12]. Guiard

classifies manual tasks into the following three categories:

1. Unimanual tasks — to perform these tasks only one hand is necessary.

Examples include combing one’s hair, or dropping an object.

2. Bimanual tasks — two hands are necessary to perform these tasks.

Can be divided into:

– Bimanual symmetric tasks — both hands have an equal role in

performing an activity/task which can be either 1) in the same phase

(for example, rowing) or 2) out of phase (for example, climbing a

mountain, or boxing).

– Bimanual asymmetric tasks — for these tasks, in right-handed

people, motion produced by the right hand tends to be articulated

with motion produced by the left. A complex coordination between

both hands is required, as in for example playing a guitar, or writing

something on a paper with a pen.

Section 6.4 on page 58 shows how:

– manipulation operations OP SELECT, OP DESELECTand OP TRANSLATEwere

implemented in this work, in order to perform unimanual tasks of selec-

tion, deselection, and translation of virtual 3D objects.

– manipulation operation OP SCALEwas implemented in this work in order

to perform bimanual-symmetric task of scaling virtual 3D objects.

– manipulation operation OP ROTATEwas implemented in this work in order

to perform bimanual-asymmetric task of rotating virtual 3D objects.

3.3
Modeling of hand gestures

In this section, the theoretical background on hand gesture modeling

(spatial and temporal) will be given, based on exposition in [9]. Hand gesture

modeling can be:

– spatial, and

– temporal.
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3.3.1
Spatial modeling of gestures

Hand and arm movements trace trajectories in 3D space, therefore an

useful gesture model must include a formal parametrization of the paths that

all bones of the hand (finger bones, palm bones . . . ) and the arm (humerus,

ulma, radius . . . ) trace in the 3D space.

Definition 1 A complete gesture model for HCI is one whose parameters

belong to the parameter space S for one-handed gestures defined as:

S = {~x : position of all hand and arm joints, and fingertips, in 3D space}

Note that the dimensionality of S is relatively high (at least 23 × 3 = 69),

because we have 23 hand and arm joints, and fingertips, for one hand.

Definition 2 Let ~h(t) ∈ S be a vector that describes the hand pose within

a 3D Euclidean space at time t in the parameter space S. A hand gesture

is then represented by a trajectory in the parameter space S over a suitably

defined time interval I = (a, b) ⊂ R.

The time interval I is also called “gesture interval”.

3.3.2
Temporal modeling of gestures

Human gestures happen in time. In order to differentiate gestures from

unintentional hand and arm movements, we have to determine the gesture

interval I. Kendon [13] calls this gesture interval I a “gesture phrase”,

consisting of the following three phases:

1. Preparation — a preparatory movement that sets the hand in motion

from some resting position.

2. Nucleus (Peak, Stroke) — has some definite form and enhanced

dynamic qualities.

3. Retraction — here hand either 1) returns to the resting position or 2)

repositions for the new gesture phase.

The only exception to this “preparation-nucleus-retraction” rule are the so-

called “beats” that are related to the rhythmic structure of the speech.

Definition 3 The following set of rules determines the temporal segmentation

of gestures:
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1. Gesture interval consists of three phases: preparation, stroke and retrac-

tion.

2. Hand pose during the stroke follows a classifiable path in the parameter

space S.

3. Gestures are confined to a specified spatial volume (workspace).

4. Repetitive hand movements are gestures.

5. Manipulative hand gestures have longer gesture interval lengths than

communicative gestures.

3.4
Hand gesture recognition

Gesture recognition attempts to classify the trajectory of arm and hand in

the parameter space S as a member of some meaningful subset of the parameter

subset S. See Figure 3.2 adopted from [9].

Figure 3.2: Gesture interpretation. The Recognition phase has the hand
pose (Model Parameters), the database of all defined gestures (classes of
trajectories) and a Grammar (serving to influence the gesture recognition
depending on the current working context) as input parameters
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Relevant classification methods include:

– Hidden Markov models — here a gesture being modelled is assumed

to be a Markov process with unknown parameters, and the goal then is

to determine these unknown parameters from the estimated hand pose.

– K-means algorithm — this algorithm classifies input gestures into

clusters, where each cluster is defined by its object attributes.

– Neural networks — here a network of artificial neurons, which has

previously been trained, tries to classify a hand trajectory in S as a

gesture.



4
Interaction techniques for direct 3D manipulation

Interaction techniques can be defined as [14] the methods used to accom-

plish a given task via the given interface.

Interaction techniques include both hardware and software components.

Software components translate (map) input information captured by these

input devices into system actions, which in their turn exercise an effect on the

geometry of the 3D scene.

Captured input can include information such as the path followed by

the hand moving through space, or a button pressed. This input is then

transformed into a desired manipulation action, such as selecting, translating,

rotating or scaling a virtual 3D object.

4.1
Selecting virtual 3D objects

Selecting a virtual 3D object is the task of acquiring or identifying a

particular object from the entire set of objects available [14]. The parameters

of the selection task include:

1. Vector User −→ Target 3D object (i.e. distance and direction)

2. Size of the target 3D object

3. Density of 3D objects around the target 3D object

4. Number of target 3D objects to be selected

5. Occlusion of the target 3D object.

Further, each selection operation consists of the following three sub-operations

(or subtasks), which decompose even further:

1. User indicates the 3D object (that is, user points at the 3D object):

– by occluding the object

– by touching the object — can be through a list, voice selection,

automatic or iconic objects.
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– by pointing at the object — can be 2D, through 3D gaze, or 3D

hand.

– by selecting the object indirectly

2. User confirms the selection (that is, user triggers the selection):

– by triggering some event, for example by pressing a button

– by doing a hand gesture, for example by touching mutually two

fingertips

– by saying a voice command, for example “SELECT!”

– by no explicit command — in this case it suffices to move the

pointer into the object.

3. User obtains feedback from the system whether the 3D object has

been selected or not through:

– text/symbolic feedback, for example by printing out the message

“OBJECT X SELECTED” to standard output (console)

– aural (audio) feedback, by playing back a sound

– visual feedback, for example by coloring the object in a distinct

color

– force/tactile feedback, for example by shaking the haptic hand.

4.2
Translating virtual 3D objects

Translating a virtual 3D object is the task of changing the 3D position

of an object [14]. Before we can translate an object it has to be selected (see

Section 4.1). The parameters of the translation task include:

1. Vector User −→ Initial position (i.e. distance and direction)

2. Vector User −→ Target position (i.e. distance and direction)

3. Precision required for translation.

Given these parameters, the translation vector Initial position −→ Target

position is then the difference between the second and the first vector above,

constrained by the given precision Precision.

Since the target 3D object has been selected, now the user’s hand motion

can be mapped directly to the user’s virtual hand motion in the VE, which

therefore also translates the selected 3D object. Various mappings between the

user’s real hand and virtual hand are possible:
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Figure 4.1: Go-go technique extends
the hand non-linearly for ~r > ~rr

– Classical (simple) virtual hand. Here the relation between the the

virtual hand’s position ~pv = (xv, yv, zv) and the real hand’s position

~pr = (xr, yr, zr) is a simple one:

~pv = α~pr

where α is a scaling factor between the real and virtual coordinate

systems.

– Go-Go technique by Poupyrev et al. [15], see Figure 4.1. Instead of

two Cartesian coordinate systems, here we use two 3D polar coordinate

systems, one of the VE and the other one of the physical world, and

both have the origin at the same point — in the centre of the user (for

example, in the centre of the user’s head or at the centre of the user’s

torso). Here a 3D point is determined by the coordinate tuple (r, φ, θ)

which in turn defines the radius vector ~r.

If the vector ~rr = (rr, φr, θr) points from the origin to the hand in the

physical world, then the corresponding radius vector ~rv = (rv, φv, θv) =

(rv, φr, θr) (note that the angles stay the same) in the VE coordinate

system is

rv =

{
rr if rr ≤ D

rr + α(rr −D)2 otherwise

where α is a scaling factor between the real and virtual coordinate

systems and D is some threshold distance. The formula above expresses

the fact that when the physical hand is close to the body, its movements

correspond linearly to the virtual hand’s movements. However if the user

extends his hand beyond distance D, the arm’s length grows at quadratic

rate, thus enabling the user to translate the object to remote positions.

– Other translation techniques. Besides these two mappings between

the user’s real hand and virtual hand, which enable us to translate a 3D

object, other translation techniques are available however are not relevant

for this exposition. These techniques include World-in-Miniature [16]



CHAPTER 4. INTERACTION TECHNIQUES FOR DIRECT 3D
MANIPULATION 35

where the user can manipulate iconic (shrank, downsized) representations

of 3D objects, “Stretch Go-Go” [17] and ray-casting techniques where the

translation is not hand-centered, but relative to the hand-object axis.

4.3
Rotating virtual 3D objects

Rotating a virtual 3D object is the task of changing the orientation of an

object [14]. Before we can rotate an object it has to be selected (see Section

4.1). The parameters of the rotation task include:

1. Distance to target 3D object

2. Initial rotation

3. Final rotation or Amount of rotation

4. Precision required for rotation.

Given these parameters, we rotate the select object by either the angle

Final rotation − Initial rotation or the angle Amount of rotation,

starting at the angle Initial rotation, and respecting the given precision

Precision.

Since the target 3D object has been selected, now the user’s hand

orientation can be mapped directly to the user’s virtual hand orientation in

the VE, which therefore also rotates the selected 3D object. For this, we use

the same mapping as discussed in Section 4.2.

4.4
Scaling virtual 3D objects

Scaling a virtual 3D object is the task of adjusting an object, according

to a scale. Before we can scale an object it has to be selected (see Section 4.1).

Mine [18] lists two types of scaling:

– Uniform scaling — here the selected object is scaled by the same factor

along all three extents (dimensions) equally.

– Non-uniform scaling — here the selected object is scaled along each

dimension separately.

Mine [18] also lists two key parameters for a scaling operation:

– Scaling factor — this is the real number which multiplies one (in

the case of non-uniform scaling), or all three dimensions (in the case

of uniform scaling) of the object being scaled. The scaling factor can be:
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– Hand-controlled

– Controlled through a physical control

– Controlled through a virtual control

– Center of scaling — determines the behaviour of the scaling operation.

It is the point which all objects move towards when you scale down and

all points move away from when scaling up. Center of scaling can be

on/in the:

– Object — for object centered scaling, the center of scaling is defined

to be the center of the selected object.

– Hand — in hand centered scaling, all selected objects will scale

about the current location of the hand.

– User-defined point — alternately, objects can scale about some

user defined center of scaling. User defined centers of scaling can

be specified via direct interaction (e.g. the user can grab some icon

representing the center of scaling and move it about) or by using

some remote agent which the user moves (via remote control) to

specify the desired center of scaling.



5
Computer vision for hand recognition

5.1
Cameras

A camera, in its everyday meaning, is a device for taking photographs,

which in their turn are 2D representations of a 3D scene in the form of either

1) a raster image file, 2) a printout or 3) a transparent slide. In this work,

we’re mainly interested in digital cameras. They are capable to produce raster

image files (see Section 5.2 for more on digital images), suitable for computer

processing.

Real cameras can be modeled using various mathematical models. In

mathematical terms, a camera model (frequently called camera as well) is

defined as a mapping between the 3D (Euclidean) world being observed and

the resulting 2D image:

camera: 3D scene −→ 2D image

For the purposes of this exposition, one mathematical model in particular

satisfies our needs: the pinhole camera model.

5.1.1
Pinhole camera model

The pinhole camera (Figure 5.1) consists of a hollow box, whose side has

been perforated by a small hole, called pinhole. (Alternative name for pinhole

is optical center, designated by ~C in Figure 5.1). Light emanating from the

scene enters the pinhole and gets projected onto the inner surface (screen)

opposite to the hole. The screen has a light-sensitive surface (either an CCD

or CMOS chip in the case of digital cameras, and photographic film in the case

of analog cameras) which enables the camera to record the 3D scene.

Due to the geometry of the image-creating process (which can be easily

understood looking at Figure 5.1), the projected image is reversed (i.e. upside-

down). Also, the smaller the hole is, the projected image is sharper due to the
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Figure 5.1: Pinhole camera, with pinhole (i.e. optical center) at ~C

smaller number of light rays falling onto one specific spot in the image plane;

and vice versa, light rays emanating from one particular position in 3D scene

fall on just one spot on the screen. On the other hand, very small pinholes lead

to the aberration of the image because light entering the box starts to suffer

the phenomenon of wave difraction. Also, too small a hole permits just a very

low amount of light energy to enter the box, which leads to exposure times

which are simply too long for many purposes.

Since the projected image is upside down, we sometimes replace the

screen with another (hypothetical) screen between the optical centre ~C and

the 3D scene, thus creating a virtual image which has the same orientation as

the 3D scene:

Figure 5.2: Pinhole camera with screen in the front of ~C

5.2
Digital images

Digital images we refer to in this work are the so-called intensity images,

two-dimensional discrete arrays of picture elements (also called pixels) with M

rows and N columns, where each of the M × N pixels measure the amount

of visible electromagnetic energy (i.e. light) that fell onto that position at the

moment the image was taken.

An image can also be considered a planar (2D) coordinate system, where

the origin is fixed at the upper-left corner, and where each 2D point (u, v) is
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Figure 5.3: A digital image consisting of 48× 43 pixels

defined by its horizontal distance u from the origin and its vertical distance v

from the origin.

5.3
Mono vision

This section deals with mono-vision, which is a vision obtained using just

one camera. We’ll determine mathematically how a specific 3D point P with

the associated position vector ~X = (X, Y, Z) gets projected into a specific 2D

pixel point ~u = (u, v) in the raster image.

5.3.1
Relevant coordinate systems

There are four coordinate systems (Figure 5.4) involved in the computa-

tion of the 2D raster image of a 3D scene:

1. World coordinate system (WCS) — this is our global, absolute 3D

system. In this work, WCS is fixed on the table, so that +x points to

the right, +y away from the user and +z up. We designate the origin of

WCS by O.

2. Camera coordinate system (CCS) — this 3D coordinate system is

fixed so that its origin Oc is at the camera’s optical centre. No imagine

that you’re peeping through the camera’s optical finder. In this case, +x

is to the right, +y is up, and +z points to the user.
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Figure 5.4: Coordinate systems in the world–camera–projection–raster image
chain.

3. Projection plane coordinate system (PCS) — this is a 2D coordi-

nate system embedded into the projection plane. The origin Op is fixed

at the orthogonal projection of the camera’s optical centre onto the pro-

jection plane, +x axis points right, and +y points up.

4. Raster image coordinate system (ICS) — this is a final 2D coor-

dinate system, which expresses the position of a point in PCS relative

to the grid defined by the rectangular array of pixels. In this work, the

origin o = (ox, oy) of ICS is fixed at the upper left corner of the image

produced in PCS. The +x points therefore to the right, and +y points

down.

5.3.2
Transformations between coordinate systems

As we have seen, we need to deal with four coordinate systems: WCS,

CCS, PCS and ICS. Therefore, we have to consider three coordinate transfor-

mations between (three of) them, in order to understand mathematically how

the 2D raster image forms from the 3D scene:

1. CCS ←− [ WCS

2. PCS ←− [ CCS

3. ICS ←− [ PCS

Schematically:

Raster image (2D) ←−[ Projection plane (2D) ←−[ Camera (3D) ←−[ World (3D)

or equivalently:

ICS←− [ PCS←− [ CCS←− [ WCS
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or, using coordinates:

(u, v)←− [ (up, up)←− [ (Xc, Yc, Zc)←− [ (X, Y, Z)

CCS ←− [ WCS

Here, 3D world (i.e. expressed in WCS) coordinates (X, Y, Z) are being

re-computed as 3D camera coordinates (Xc, Yc, Zc) (i.e. CCS coordinates).

Let P be a 3D point, ~X = (X, Y, Z) its representation in WCS, and ~Xc =

(Xc, Yc, Zc) be the presentation (i.e. coordinates) of P in CCS. It holds:

~Xc ←− [ ~X

~Xc = R ~X + ~t Xc

Yc

Zc

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


 X

Y

Z

+

 t1

t2

t3


where R is an 3× 3 rotation matrix that rotates WCS relative to CCS (i.e. its

columns are coordinates of the unitary vectors that make up a base in WCS,

relative to the vector base of CCS), and ~t = (t1, t2, t3)
τ is the vector

−−→
OcO

(the vector from the camera’s origin to the world’s origin). See Figure 5.5 that

depicts the transition from WCS to CCS.

Figure 5.5: Going from 3D world to 3D camera coordinates (CCS ←− [ WCS)

The rotation matrix R and translation vector ~t are also called extrin-

sic parameters of the camera. Extrinsic parameters determine the camera’s
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location and orientation relative to WCS.

PCS ←− [ CCS

Having now calculated CCS coordinates ~Xc = (Xc, Yc, Zc), we can

compute 2D coordinates ~up = (up, vp) of the projection of ~Xc onto the camera’s

projection plane. We’ll use the pinhole camera model.

~up ←− [ ~Xc

(up, vp) =

(
f
Xc

Zc
, f

Yc
Zc

)
(5-1)

For the computation in Eq. 5-1 to take place, we of course must know the value

of f (focal length of the camera, expressed in meters). Parameter f is one of

the so-called intrinsic parameters of the camera.

ICS ←− [ PCS

Finally, the projected 2D point ~up = (up, vp) can now be expressed

relative to the pixel array grid as a 2D point ~u = (u, v). Note that ~up = (up, vp)

is expressed in meters, while ~u = (u, v) is expressed in pixels.

~u←− [ ~up

(u, v) =

(
−up
sx

+ ox,−
vp
sy

+ oy

)
[
u

v

]
=

[
−up

sx
+ ox

−vp

sy
+ oy

]
For this computation, we must know the values of sx and sy (dimensions of

one sensor element in the CCD/CMOS chip, expressed in meters), and ox and

oy (translation values for the raster image origin). Parameters sx, sy, ox, oy also

belong to the set of intrinsic parameters of the camera.

Composing transformations PCS ←− [ CCS and ICS ←− [ PCS

Composing transformations PCS ←− [ CCS and ICS ←− [ PCS we obtain

the transformation ICS ←− [ CCS:

ICS←− [ PCS←− [ CCS
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that is, we go from the 3D camera system CCS to the 2D raster image system

directly:

ICS←− [ CCS

(u, v) =

(
− f
sx
· Xc

Zc
+ ox,−

f

sy
· Yc
Zc

+ oy

)
If we now define fx = f

sx
and fy = f

sy
we obtain

(u, v) =

(
−fx ·

Xc

Zc
+ ox,−fy ·

Yc
Zc

+ oy

)
When working with vision setups, we rarely get to know focal length f of the

camera exactly (only when we have the camera manufacturer data). Instead,

using calibration techniques (see Section 5.3.3) we usually obtain just fx and

fy (focal lengths expressed in pixels). Using the same calibration techniques

we also obtain ox and oy (expressed in pixels as well), which are coordinates of

the image center (principal point), which is the intersection between the image

plane and the optical axis (line through Oc, perpendicular to the image plane).

Considering this, in this work we frequently ignore PCS and go straight

from CCS (3D camera system) to ICS (2D raster image system). Thus the

pipeline looks like this:

Raster image (2D) ←− [ Camera (3D) ←− [ World (3D)

or equivalently:

ICS←− [ CCS←− [ WCS

or, using coordinates:

(u, v)←− [ (Xc, Xc, Zc)←− [ (X, Y, Z)

5.3.3
Mono-camera calibration

The (mono) camera calibration is a process where all the parameters

of a camera are being determined. The parameters include intrinsic camera

parameters and extrinsic camera parameters.

– Intrinsic camera parameters:

– fx ∈ R, fy ∈ R: two focal lengths in the x- and y-direction (in pixels)

– ox ∈ N, oy ∈ N: two integer x- and y-coordinates of the image center

(in pixels). Note that when we are working with subpixel precision,

we have ox ∈ R, oy ∈ R (in pixels, but we use real numbers here)
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– α = sy

sx
: pixel aspect ratio (pixel deformation)(dimensionless)

– k1, k2: two radial distortion coefficients (dimensionless)

– Extrinsic camera parameters:

– rotation matrix R (dimensionless) and

– translation vector ~t (in meters).

While there exist many calibration techniques, i.e. methods to extract

both the extrinsic and intrinsic camera parameters listed above, we focus on

the method by Zhang [19].

5.3.4
Zhang’s camera calibration method

Zhang’s camera calibration method [19] enables the user to obtain intrin-

sic and extrinsic camera parameters taking several (at least two) snapshots of a

planar pattern (for example, a checkerboard consisting of a grid of alternating

black and white squares, or any other planar pattern with easily distinguish-

able features). For example, Figure 5.5 shows a camera observing an 8 × 7

checkerboard pattern.

The method first finds an initial solution using a closed-form expression.

This solution is then refined using the Levenberg-Marquardt algorithm, which

is a nonlinear minimization method.

5.4
Stereo vision

Stereo vision, or stereopsis, is the main mechanism through which humans

perceive spatial depth. In stereopsis, a 3D point P gets projected into two

different locations on both eyes’ retinas. The difference between these two

locations, called stereo disparity, is then processed by the brain which, in

conjuction with other factors (like for example eye-to-eye distance), estimates

the depth coordinate of the point P .

In the computational context, stereo vision is obtained using two cameras.

We say that two cameras, when employed to compute stereo, make up a stereo

rig. Just like a in the case of mono vision, stereo vision has its own geometry.

Figure 5.6 shows the geometry of a stereo rig.
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Figure 5.6: Stereo rig. If the two cameras take a snapshot at the same instant,
the two photos make a stereo pair of photos.

5.4.1
Stereo 3D reconstruction

The expression “stereo 3D reconstruction” refers to the process of de-

termining the 3D structure and 3D position of an observed object, given a

number N of correspondences {(~u1, ~u
′
1), (~u2, ~u

′
2), . . . , (~uN , ~u

′
N)} in the left and

right image of the stereo input stream.

Reconstruction based on triangulation

Triangulation is a method of determining the position of a fixed point

using another two fixed points a known distance apart. Therefore, triangulation

is a stereo 3D reconstruction of just one corresponding pair. Having one

correspondence (~u1, ~u
′
1) of one observed (photographed) point feature P , we

can use triangulation to determine the 3D location (X, Y, Z) of this feature.

Supposing that a point P is visible in both images, and that we know the

pixel coordinates ~u and ~u′ of both projections of the point P in both images,

we can easily compute two rays in space — one ray passing through the left

camera’s optical centre and ~u, and the second ray through the right camera’s

optical centre and ~u′. The triangulation problem is then equivalent to finding

the intersection of these two rays in space.

However, there exist several problems with this approach. If we knew

~u, ~u′ and camera’s parameters exactly, of course we would be able to recover

P easily, using formulas of elementary vector algebra. The problems are the

following:

– Floating-point arithmetics errors — since we use floating-point

arithmetics (because all the underlying parameters are actually contin-

uous physical values), we induce numerical errors to the triangulation
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process. As a consequence of this, the two rays can never intersect ex-

actly.

– Measurement errors — we can never measure ~u, ~u′ and determine

camera’s parameters exactly. As a consequence, we can never compute

the intersection of two rays exactly.

Due to the aforementioned problems, which leads to the fact that the

two rays do not cross in space, we must find other solutions to determining 3D

point ~X using triangulation. An overview of available triangulation methods

can be found in [20]. In this work, we will mention (and later implement)

two triangulation methods: a simple one, called Mid-point triangulation

method, and the optimal one (under the assumption of Gaussian noise), called

Polynomial triangulation method.

Figure 5.7: Triangulation. Knowing 3D positions of optical centers ~C, ~C ′,
focal lengths f, f ′ and 2D positions ~u, ~u′, we can determine 3D position ~X
using various triangulation methods (for example, mid-point and polynomial
triangulation methods).

Mid-point triangulation method This is probably the simplest and fastest

possible triangulation method, however with serious shortcomings (see [20]).

Suppose that the corresponding (matched) 2D points are ~u = (u, v) and

~u′ = (u′, v′), i.e. ~u, ~u′ are images of an 3D point ~X = (X, Y, Z) in the left and

right image. The point ~X lies at the interesection of two rays: first ray from C

through ~u and the second ray from C ′ through ~u′ (see Figure 5.8). However,

since the two rays do not actually meet in space due to the aforementioned

issues, we can only approximate the intersection of two rays. In this method,

mid-point method, we approximate this intersection with the point that lies

at the minimum distance to both rays.

To extract ~X, suppose first that we work in the left camera’s coordinate

system. Let r, r′ be two rays:
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Figure 5.8: Mid-point triangulation method, which finds the point ~X as the
point that lies at the minimum distance to both rays: first ray from C through
~u, and the second ray from C ′ through ~u′.

– r = {α · ~u | α ∈ R} the ray through C and ~u, and

– r′ = {~̂t+ β · R̂τ · ~u′ | β ∈ R} the ray through C ′ and ~u′.

. . . where R̂ = R′Rτ , and ~̂t = ~t − R̂τ~t′. Let ~a be a vector orthogonal to both

r and r′. Point ~X is now in the middle of the segment parallel to ~a that joins

both rays r and r′.

Now let ~Y = α0 · ~u one endpoint of the segment, and ~Z = ~̂t+ β0 · R̂τ · ~u′

the other endpoint of the segment. Parameters α0 and β0 are now computed

solving the following system of linear equations:

α0~u− β0R
τ ~u′ + γ(~u× (Rτ ~u′)) = ~t

The desired 3D point ~X is now simply

~X =
~Y + ~Z

2

Polynomial triangulation method This method [20] gives an optimal global

solution to the triangulation problem. Further, the algorithm employed is non-

iterative and simple in concept, has low computation requirements and has

superior performance compared with other methods.

Formulated as a least-squares minimization problem, the method com-

putes image points û, û′ such that

d(u, û)2 + d(u′, û′)2 → min, û′τFû = 0

where d(∗, ∗) is the Euclidean distance function and F the fundamental matrix

of the stereo rig. Assuming Gaussian error distribution (tracking of u, u′ is noisy

because of digitization errors), the points û, û′ are the most likely values for
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true image correspondences. Since the corresponding rays through û, û′ meet

exactly in 3D space, we can now find easily x (the global position of the hand in

the workspace) using other triangulation methods, for example the mid-point

triangulation described above in Section 5.4.1.

5.5
Color spaces

Since we are interested in visual hand recognition, and human hand is

of course covered with skin, we also have to consider the color of human skin

when trying to detect a hand in an image. According to [21], human skin color

can be conveniently represented and processed in the following color spaces:

– Basic color spaces (RGB, normalized RGB, CIE-XYZ) — these are the

so-called “default” color spaces, because they are ubiquitous and their

properties are well know and defined.

– Perceptual color spaces (HSI/HSV/HSL, TSL) — the HSI/HSV/HSL

model models “perceptual” qualities like hue, saturation and intensity

(also called brightness, lightness or value). The TSL model quantifies

tint (hue with white added), saturation and lightness.

– Orthogonal color spaces (YCbCr, YIQ, YUV, YES) — these reduce

the redundancy present in the RGB model, and model the color with

as statistically independent components as possible. Luminance and

chrominance components are separated, therefore these spaces are the

favorable choice for skin detection.

– Perceptually uniform color spaces (CIE-Lab, CIE-Luv) — in these

spaces, the luminance L and the chroma ab or uv are obtained through a

non-linear mapping of XYZ coordinates. The advantage of these spaces

is that they can represent color in a perceptually uniform way. The

downside is that computing CIE-Lab, CIE-Luv colors is computationally

expensive.

– Other color spaces — color ratios like R/G and R/G+R/B +G/B.

5.6
Human skin modeling

Human skin detection can be viewed as a two-class classification problem

— given an image I in color space C, and given a pixel I(x, y) in image I at

position (x, y) with color c ∈ C, a detector fC outputs 1 if the pixel I(x, y) is

a skin pixel, and 0 otherwise (a non-skin pixel). The domain D(f) of classifier
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f is therefore the color space C, and its range R(f) is the set {0, 1}:

fC : C → {0, 1}

fC(c) =

{
1 if c deemed a skin color

0 otherwise

Again according to [21], human skin detection methods can be classified

as:

– Explicit skin-color space thresholding — skin colors of different

individuals cluster in a small region in color space. This method thus

simply marks this region; if a pixel falls within this region, it is deemed

a skin pixel. Has good skin detection rates, at the expense of high false

positives. Simple and fast, but with many limitations (e.g. illumination

must be controlled, threshold values differ for color spaces and different

illumination levels, is less accurate in case of shadows, and in case the

background contains objects with colors similar to skin color). Because of

the limitations, this approach is usually complemented with a dynamic

adaptation approach.

– Histogram model with naive Bayes classifiers — here a 2D or

3D color histogram is used to represent skin tones. This method is

stable, unaffected by occlusions and changes in view, and can be used

to differentiate a large number of objects. Slightly better than GMM or

MLP (see below). However, needs a very large training set, and has high

storage requirements.

– Gaussian classifiers (SGM, GMM) — Again, since skin colors of

different individuals cluster in a small region in color space, we can model

this skin distribution by a multivariate normal Gaussian distribution

(this is the so-called Single Gaussian Model — SGM) or by a sum of

individual Gaussians (the so-called Gaussian Mixture Models — GMM).

This approach generalizes well, with less training data, and has a small

storage requirements. Slightly inferior to histograms with naive Bayes

classifiers, however GMMs are popular because they can generalize very

well with less training data.

– Elliptical boundary model — Has performance slightly better than

GMM, and the computational complexity is as simple as training a SGM.

The downside is that it performs binary classifications only.

– Multi-layer perceptron (MLP) — a type of feed-forward neural net-

work. Outperforms (together with Bayesian classifiers) Gaussian models
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and Explicit skin-color space thresholding. Has very low storage require-

ments.

– Self-organizing map (SOM) — a type of neural network. Consistently

better than GMMs.

– Maximum entropy (MaxEnt) — a statistical method for estimating

probability distributions from data.

– Bayesian network (BN) — directed acyclic graphs that allow efficient

and effective representation of the joint probability density functions.

5.7
Image features

Detecting image features in an image is a low-level but fundamental task,

prerequisite for almost any higher-level computer-vision algorithm, like for

example camera calibration, line detection or tracking. The term local feature

designates a local property of the image, for example an edge, cross, closed

curve (ellipse, or circle), KLT feature or SIFT feature (more will be said about

KLT and SIFT in the text that follows).

If a feature is located in a region of an image, we call this region a “local

interest region”. And taking this local interest region into consideration, we

are then able to compute a “local descriptor”. Many types of descriptors have

been proposed so far in the literature. As a rule, local descriptors must be

invariant to image scale and rotation. In further text, terms “local descriptor”

and “local feature” are considered synonymous.

From the viewpoint of vision-based tracking (see also Section 5.11 on

page 53), features represent “hooks” onto which we can latch and observe

their displacements from frame to frame. By tracking these features, therefore,

we can track the objects to whom these features belong to. See Figure 5.9.

Figure 5.9: Tracking an object by tracking its features

The positive aspects of local features are:
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1. Abundance — even tiny objects can give rise to a large number of

features.

2. Computationally cheap — local features are generally cheap to com-

pute, which leads, in general, to real-time tracking performance.

3. Robustness — features are robust to: occlusion, noise, small changes in

viewpoint, and changes in illumination.

Some representative classes of features, listed from the oldest to the

newest work, include:

– Corners (Harris detector) — the basic idea is that shifting a small

window (for example, of 9 × 9 pixels) around a pixel should result in

large change in intensity, in any direction [22].

– KLT features — Kanada-Lucas-Tomasi (KLT) features, also called

“Good features to track”, are “good” in a well-defined formal, math-

ematical sense. In this approach, an image feature is deemed a KLT

feature only if it can be tracked in a simple, fast and accurate fashion.

See Appendix C on page 113 and reference papers [23] [24] [25] .

– SIFT features — SIFT stands for “Scale Invariant Features Trans-

form”. This method maximizes difference of Gaussians over space and

scale [26]. Note that this method has been patented.

– SURF features — SURF stands for “Speed Up Robust Features”, and

is a scale- and rotation-invariant interest point detector and descriptor. It

approximates or outperforms earlier methods with respect to repeatabil-

ity, distinctiveness and robustness, but can be computed and compared

much faster [27].

Note that there exist many more types of local features. For the performance

evaluation of various types of features, please refer to [28], which shows that

SIFT outperforms all methods. However note that the publication date of

this performance evaluation [28] is in 2005, while the SURF paper [27] was

published one year later (in 2006) and claims performance superior to SIFT.
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5.8
Hand detection

This is the process whereby a hand is detected (localized) in an image,

using computer vision techniques. Basically, this process tries to answer the

question “Is there a hand in this image?”. (Is the answer is affirmative, then

this process also returns the location of the hand in the image.) There exist

various approaches to detecting and localizing a hand in an image:

– Human skin detection — human skin has a characteristic color

signature which can be used to detect it (the skin) in an image.

Pros: skin color is surprisingly uniform (race - white/yellow/red/black,

or being suntanned doesn’t matter, since the hue does not change), so

color-based detection is achievable.

Cons: other skin-colored object (like for example user’s face, or other

users’ hands and/or faces, and so on) can enter into the image, and thus

confuse the detection process. Workarounds would include 1) restricting

the work area so that it contains hands only, or 2) to use hand’s salient

and discriminating features to dinstinguish it from other skin-colored

objects.

Other potential problem is insufficient illumination, whereby too dark

a workspace prevents efficient detection of human skin’s characteristic

hue. Potential workaround would include using supplementary infrared

cameras.

– Motion detection — human hands usually move at greater speeds

compared with other object in the scene.

Pros: when the background is static, motion-based detection is a practi-

cal and fast method to detect hands.

Cons: does not work when either the camera or parts of the background

move, which is frequently the case.

– Classifier-based detection — this is a machine-learning approach. A

classifier is a mapping f : X → Y from a feature space X to a discrete

set of labels Y . Classifiers can be seen as decision systems which accept

values of some features or characteristics of a situation as input and

produce as an output a discrete label related to the input values.

One representative of this approach is the Viola-Jones method [29], which

also uses AdaBoost [30] in order to construct so-called “strong classifiers”

from a combination of “weak classifiers”. Viola-Jones method can be
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applied to any type of object; effectiveness at detecting specifically hands

has also been investigated [31].

Pros: fast, high detection accuracy, very large and very complex set of

features possible (although in this work we are interested in hands only),

robust (works under wide range of conditions: variations of illumination,

scale, pose and camera).

Cons: a learning process (sometimes a very prolonged one) is needed.

However for hands this learning process can be significantly reduced [31].

– Hybrid detection methods — here two or more approaches are being

combined, in order to increase the robustness and reliability of hand

detection. For example, skin detection can be combined with motion

detection. Or, Viola-Jones method can be combined with skin detection

[31], and so on.

Pros: increased detection rate.

Cons: increased processing load.

Since Viola-Jones detection method has been used in the prototype

application (see Chapter 6, page 55), technicalities are given in detail in

Appendix B on page 106.

5.9
Hand segmentation

After the hand has been detected (localized) in the image, the hand must

be segmented i.e. the background must be extracted from the region containing

hand’s image. In other words, pixels belonging to the hand must be separated

from all the remaining pixels. Approaches and techniques:

– Thresholding — here a special auxiliary black & white image is created

for each frame, whereby pixels belonging to the hand are white, and all

the rest are black. Now combining this auxiliary image with the original

image (utilizing the binary operation AND), the pixels belonging to the

hand are being filtered out as they are, while all the remaining pixels are

filtered out/set to 0 (black).

– Morphological functions — functions like “dilate” and “erode” that

work on black & white images (like the auxiliary one obtained through

thresholding). Dilate operation causes objects to grow in size (get

“thicker”), and erosion causes elements to shrink (get “thinner”). These

functions serve to “improve” the hand region ultimately segmented from

the image.
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– Blobs — here contiguous regions of the image are being identified and

labelled. The region (“blob”) which contains the location of detected

hand is now the region depicting the hand.

5.10
Hand pose estimation

Now, given the extracted (segmented) hand region (blob), we can proceed

with estimating the parameters determining the hand’s posture in 3D space.

See Figure 5.10 for a classification of pose estimation approaches.

Figure 5.10: Taxonomy of hand pose estimation approaches

Partial hand pose estimation

Partial hand pose estimation relies on hand models with reduced number

of d.o.f., therefore it does not try to recover the full set of 26 d.o.f. As such

it relies on extracting appearance-based features like fingertips, orientation of

fingers, global position of the hand, contours (sillhouettes), contour centroids,

and curvature in order to reconstruct directly (i.e. without the help of a virtual

3D hand model) the pose of the partial model.

Full d.o.f. hand pose estimation

Differently from the partial hand pose estimation, the full d.o.f. hand pose

estimation does not try to compute pose directly from extracted features, but

instead uses the extracted features in order to execute a search in the parameter

space, so that a certain type of error can be minimized.
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– Model-based pose estimation — During the search, the 3D hand

model (collocated into a certain position and certain orientation in vir-

tual 3D space) is being projected onto a 2D image plane, and features

extracted from this image plane are then compared with features ex-

tracted from the source video image. Can be further subdivided into:

– Single-hypothesis model-based pose estimation — this one

is based on restricted (local) search and retains only one, the best,

estimate at each input image. The search is being done either a)

optimization methods, or b) applying physical forces on the 3D

hand model.

– Multiple-hypotheses model-based pose estimation — retains

several hypotheses about the hand pose. If one estimate gives a too

big an error, the next best one is used. A big majority of this type

of pose estimation utilizes Bayesian filtering or derivation thereof,

specifically a) particle filters, b) tree-based filters, c) Bayesian

networks, d) template database search, e) other approaches.

– Single-frame pose estimation — in this approach just one image

(or, in the case of multiple-camera setups, the set of images taken

at the same instant) is being used. Therefore, past parameter states

are not being used in order to restrict the scope of the search — the

whole (global) parameter space is being searched. An obvious advantage

is that no analysis of past states is necessary, and disadvantage that

the complete (and therefore computationally more expensive) search in

parameter space must be made, although there may be no real need for

that. Approaches:

– Classifiers — please refer to Section 5.8. Classifiers can also work

for pose estimation, not just detection, because classes of training

data can be tagged by a full, predetermined set of pose data. So

when a classifier detects a hand pattern in the image, we will

automatically know the pose too. For this to work, a virtual 3D

hand model must be used in order to produce training data (because

it’s practically impossible to determine pose data from pre-existing

photos of real hands).

– Database indexing — a large number of training samples (i.e.

images of the hand model projected in every possible way) can

be saved into a database, and then indexed in a special way.

The database is then searched for in order to retrieve the nearest

neighbour of the input image.
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– 2D-3D mapping — this is another learning approach. In a nut-

shell, here certain features are being computed from the (2D) input

image (like moments of the hand contour, invariant to the rotation

and scaling), and the mapping from this set of 2D features to the

set of 3D poses is then being taught to a special machine-learning

architecture named “Special Mapping Architecture”.

– Inverse kinematics — here the position of fingertips is being

used in order to compute joint angles. This reduces the problem

to a typical inverse kinematics problem, known for example in the

field of robotics. The difficulties in this approach are a) to detect

fingertips reliably, and 2) to solve the inverse kinematics problem

(i.e. computing the joint angles) correctly.

5.11
Hand tracking

Tracking is the process of estimating the position of a tracked object,

taking its previous position into consideration.

Since the hand is an articulate 3D structure, we can choose to track

the hand either in its original 3D space (in this case we say that we employ

model-based hand tracking), or in the 2D projection image plane (in this case

we employ the so-called appearance-based tracking). We can also talk about

hybrid tracking, a recent mode of tracking which combines elements of model-

and appearance-based tracking.

5.11.1
Appearance-based hand tracking

Various tracking methods in this class differ in what cues they use

for tracking — some, for example, use just one cue like skin color or hand

motion, and another use a combination of cues (for example, skin color and

motion). For example, in Camshift [32] just the hand’s color is being used

as a cue; in CONDENSATION [33], hand contours + hand motion, and in

ICONDENSATION [34] hand contours + hand motion + skin color; in “Flock

of Features” [35] a combination skin color + KLT features [25], [24] (see Section

5.11 for more on KLT features).

For example, KLT tracking takes advantage of the fact that images in a

video sequence are usually similar to each other. Due to the small time interval

between the frames, objects being tracked haven’t had the time to travel large

distances, or the shift (translation vector) between an object’s images in the

previous and current image is small. This fact leads to an algorithm which
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extracts this translation vector thus tracking the object. For technical details

on tracking based on KLT features, please refer to Appendix C on page 113.

5.11.2
Model-based hand tracking

Here the back-projection of a predefined 3D parametric hand model

is being matched against the input video frame. At each frame, extracted

features are being compared with the current 3D model, and the matching

error computed; if the error is too large, the 3D model is adjusted in the

attempt to decrease the error — if the error is still too big, we repeat the

model adjustment, otherwise we found a good matching and the tracking was

successful. Examples include the classic DigitEyes system [5], where a 27-d.o.f.

hand model is being tracked.

5.11.3
Hybrid hand tracking

Here elements of both the model-based and appearance-based tracking

are combined in an effort to get the best of two worlds. Shimada et al in [36] and

Athitsos and Sclaroff in [37] synthesize a large number of 2D views of a software

3D hand model, and tag each of these views by the corresponding, exact hand

pose vector. After this preprocessing step, appearance-based matching methods

are used to process real images.



6
Prototype application

As a constituent part of this work, a prototype application which demon-

strates the chosen approach to the manipulation of virtual 3D objects, has been

developed.

6.1
Requirements

The basic requirements for the prototype application were as follows:

– the application must run at interactive rates.

– the application must implement the following basic set of manipulation

operations: SELECT, DESELECT, TRANSLATE, ROTATE, SCALE.

– the hardware part must be based on commercial, off-the-shelf compo-

nents (standard PC, inexpensive low-resolution web cameras).

– the system shall use passive stereo vision in order to reconstruct 3D

position of the hand.

– the system shall use the 3 d.o.f. hand model (for each hand, therefore

effectively creating a 6 d.o.f. input device), as described in Section 2.3.1

on page 20.

6.2
Constraints, assumptions and restrictions

The constraints on the system were as follows: the workplace (Figure 6.1)

consists of a standard office cubicle equipped with a personal computer with

two cameras (i.e. a stereo pair) connected. Cameras are fixed at the top of

the cubicle and are directed down, at a certain angle, relative to the surface

of the desktop. A stereo pair of cameras enables us, due to the phenomenon

called stereo disparity, to estimate 3D positions of various hand features, thus

offering us a way to integrate our hands into the VE.

Accordingly, we define the workspace as the intersection of the two visual

cones defined by the respective cameras’ field of view — the user must move his
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Figure 6.1: The user’s workplace

hands in this working space, in order for the system to register hand movements

and gestures. If a hand exits the workspace, the system stops tracking the hand.

Also:

– Cameras are fixed, oriented downwards and towards the desktop surface.

and the background (desktop surface) does not change in time.

– Palms must always be approximately co-planar with the desk surface, in

order for the system to successfully detect hand postures.

– Illumination cannot be too weak, because in this case the pixel segmen-

tation process, based on human skin color, would fail.

– The hands must move approximately in the far-distance field of the

cameras, because if they move too near the cameras, the perspective

distortion gets large and 3D triangulation fails.

6.3
Hand postures defined

Figure 6.2 depicts the three hand postures we use in our application.

Note that the image depicts the right hand only, but both the left and the

right hand can assume these postures. (The left hand assumes postures which

are simply mirrored relative to the vertical axis.) Also please note that the hand
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postures shown in the image are inclined at an angle, which approximates the

natural hand inclination when it is being tracked in the workspace. We now

define the following hand postures (also called hand states), from which all the

manipulation operations are being defined, as follows:

1. HAND POSTURE OPEN — flat palm with all fingers spread apart

2. HAND POSTURE POINTING — all fingers closed, except the index finger

3. HAND POSTURE FIST — all fingers closed

Figure 6.2: Three hand postures utilized by the system: HAND POSTURE OPEN

(left), HAND POSTURE POINTING (middle) and HAND POSTURE FIST (right)

As a matter of convenience, we defined one more posture,

HAND POSTURE UNKNOWN, which designates any hand posture that is not

recognized by the system.

The criteria used when choosing postures and the mapping between

postures and manipulation operations were:

1. the “naturalness” of the posture, that is, the similarity between similar

hand movements and gestures when manipulating real, physical objects,

and

2. sufficient degree of inter-posture “otherness”, in other words the appear-

ances of postures had to be sufficiently different in order to achieve bet-

ter visual separability of postures, thus allowing better detection perfor-

mance.
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6.4
Manipulation operations implemented

This section gives the list of implemented hand gestures for the manip-

ulation of 3D virtual objects.

Using the hand postures defined in Section 6.3, we now define direct 3D

manipulation operations. Manipulation operations can be either one-handed or

two-handed:

1. OP SELECT (one-handed) — selects an object. Based on the posture

HAND POSTURE POINTING.

2. OP DESELECT (one-handed) — deselects an object. Based on the posture

HAND POSTURE POINTING.

3. OP TRANSLATE (one-handed) — translates (moves) selected objects.

Based on the posture HAND POSTURE FIST.

4. OP ROTATE (two-handed) — Rotates selected object. Based on two

HAND POSTURE POINTING hand postures.

5. OP SCALE (two-handed) — scales objects. Based on two

HAND POSTURE FIST hand postures.

Therefore, we have two two-handed spatial operations: OP ROTATE and

OP SCALE — these use both hands, the left and the right one, at the same

time. The remaining three spatial operations (OP SELECT, OP DESELECT and

OP TRANSLATE) are one-handed — must be performed by just one hand, either

just by the left or just by the right hand. Each of these operations will now be

described in detail.

6.4.1
Selecting and deselecting objects

Operation OP SELECT selects an object in the scene, while operation

OP DESELECT deselects an (already selected) 3D object. In order to (de)select a

3D object, the user extends the index finger of one and exactly one hand (thus

changing that hand’s state into HAND POSTURE POINTING), and moves the hand

into the object. (We emphasized “one and exactly one” because two tracked

hands which are in the HAND POSTURE POINTING state perform the operation

OP ROTATE, see Section 6.4.3.) As soon as the application detects that the

tracked hand’s centroid entered the interior of the object, while the hand is

in state HAND POSTURE POINTING, the objects gets (de)selected. The user can

now move her hand out of the object; the object stays (de)selected.
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In WIMP terms, operation OP SELECT is equivalent to moving the mouse

pointer onto a screen object (for example, onto an icon) and then pressing

the mouse button, thus selecting the icon. Similarly, operation OP DESELECT

is equivalent to moving the mouse pointer onto an already selected screen

object (for example, onto an already selected icon) and then pressing the mouse

button, which deselects the icon.

6.4.2
Translating objects

Operation OP TRANSLATE translates (moves) all the currently selected ob-

jects (Figure 6.3). For this to work, one and exactly one hand must be in the

HAND POSTURE FIST state. (We say “exactly one” because if both tracked

hands are in the HAND POSTURE FIST state, we will be performing the

OP SCALE operation, see Section 6.4.4.)

The operation initiates at the moment the user changes the state of

one (and exactly one) of her hands into HAND POSTURE FIST. The position of

that hand’s centroid is then the starting point of the translation vector. User

moves the hand about, and the selected objects move along too. When the

user decides the translation is just right, she changes the hand’s state into

HAND POSTURE OPEN thus terminating the OP TRANSLATE operation.

Figure 6.3: OP TRANSLATE operation, based on one HAND POSTURE FIST posture

6.4.3
Rotating objects

Operation OP ROTATE rotates all the currently selected objects (Figure

6.4). It is a bimanual-asymmetric operation (see Section 3.2 on page 25). At the

moment when the application detects that both hands have their index finger

extended (thus entering into the HAND POSTURE POINTING state), the hands’

respective positions (A for the left, and B for the right hand) get memorized

and defined as the vector ~u = B − A. If subsequent positions of both the left

and the right hand are C and D respectively, and if define ~v = D − C, then
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the current rotation axis is the vectorial cross-product ~u× ~v, and the rotation

angle is equal to the angle between vectors ~u and ~v.

The user can now move her hands about, and the selected objects

rotate around their (local) origins in real time. When the user decides to

stop the rotation, she changes both hands’ state into HAND POSTURE OPEN thus

terminating the OP ROTATE operation.

Figure 6.4: The two-handed OP ROTATE operation is based on two
HAND POSTURE POINTING postures. An example of a CCW rotation shown

6.4.4
Scaling objects

Operation OP SCALE scales all the currently selected objects (Figure 6.5).

It is a bimanual-symmetric operation (see Section 3.2 on page 25). At the

moment both hands enter into the HAND POSTURE FIST state, the locations

of both hands get memorized and defined as two points A,B. If subsequent

positions of both the left and the right hand are C and D respectively, then the

current scaling factor is defined simply as the ratio |C−D||A−B| , which is a ratio of

lengths: first length defined by points A and B, and the second length defined

by points C and D.

Therefore, during the scaling operation, the user can move her hands,

and the selected objects scale in real-time around their (local) origins, in

the directions defined by their local coordinate systems. When the user

decides to stop the scaling, she changes one (or both) hand’s state into

HAND POSTURE OPEN thus terminating the OP SCALE operation.

f

6.5
Control flow

Before anything, the stereo rig must be calibrated i.e. its parameters (in-

trinsic and extrinsic) determined. Only by knowing these camera parameters,
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Figure 6.5: The two-handed OP SCALE operation is based on two
HAND POSTURE FIST postures

can CV techniques (specifically, the triangulation technique adopted) recon-

struct 3D position of our hands in the workspace.

The set K of intrinsic parameters for a single camera includes two focal

lengths (fx, fy), the principal point (ox, oy) and four distortion parameters

(k1, k2, k3, k4):

K = {(fx, fy), (ox, oy), (k1, k2, k3, k4)}

We determined these intrinsic parameters using the Zhang’s method [19]. For

the calibration pattern we used a 8 × 7 checkerboard pattern.

Having determined two sets KL, KR of intrinsic parameters (for the

left and right camera), we can proceed to determining extrinsic parameters

(orientation and distance of a camera relative to the pattern). For this, we

now fix the 8 × 7 checkerboard on the desk surface, and orient cameras so

that they both have the pattern in their field of view.

Knowing both cameras’ intrinsic parameters, we can now compute the

extrinsic parameters (rotation matrices RL and RR, and translation vectors ~TL

and ~TR) of both cameras, relative to the pattern we’ve just fixed on the desk’s

surface. The extrinsic parameters R and ~T of the stereo rig are then simply

R = RRR
τ
L

~T = ~TL −Rτ ~TR

These parameters R and ~T now completely determine the geometry of our

stereo rig and allow us to perform absolute, Euclidean 3D reconstruction of

the hand’s 3D position in the workspace shown in Figure 6.1.

Another important concept is the fundamental matrix F , a 3× 3 matrix

of rank 2, which allows us to perform 3D reconstruction using the triangulation

method by see Hartley and Sturm [20]. We compute F from a set of N

corresponding image points {~xi ↔ ~x′i | i = 1, . . . , N}, whereby we determine

these image points as defining points of the squares of our calibration pattern

(a 8 × 7 checkerboard, which can be seen for example in Figure 6.3 on page
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59), detected in both the left and right image used for stereo rig calibration.

6.5.1
Hand detection

With the stereo rig calibrated, we can now proceed to detecting hands

in the stereo input video stream. Here detection serves for the purpose of

initiating the process of tracking, described in Section 6.5.3 below.

For this end, we define two “detection areas” (left and right), one for

each of both hands in the application client area. By definition, if a hand is

not being tracked, its “detection area” gets shown on the application screen as

a red rectangle, at the predetermined location and with a predetermined size.

If the user now moves her hand into the corresponding detection area, and puts

her hand into the predefined posture (HAND POSTURE OPEN has been chosen as

the tracking initialization posture), the system will detect the hand, output

the corresponding bounding rectangle and start tracking the hand within this

bounding rectangle. At this moment, the red rectangle disappears and is being

replaced by a green rectangle, signifying that that particular hand is currently

being tracked by the system.

For detection, the Viola-Jones method (see Appendix B on page 106) has

been chosen as the detection method, due to the following properties:

– invariance with regard to background

– insensitivity to changes in illumination/lighting

– invariance with regard to person

– invariance with regard to camera

– invariance with regard to scale

– fast execution.

It is a method which requires training & validation using four sets of samples:

– Two positive sample sets:

– Positive training set A — for this set we moved our right

hand in posture HAND POSTURE OPEN randomly in the workspace,

approximately under the natural inclination (see Figure 6.2 left),

under our lab’s standard lighting conditions, and took a number

(in the range of hundreds) photos containing the hand. Note that

“approximately natural inclination” indicates that we included a

number of shots of hands rotated to a degree (±15◦) relative to all

three axes, in order to increase the robustness of the classifier.
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– Positive validation set B — under the same conditions as above,

we took additional photos (few hundreds) to be used as validation

images after the training is complete.

– Two negative sample sets:

– Negative training set C — for the negatives, we took a num-

ber (> 1000) of images that do not contain hands in posture

HAND POSTURE OPEN, from two public domain image collections

(burningwell.org, easystockphotos.com).

– Negative validation set D — we took additional images as a

negative validation set (a couple of hundreds), from the same public

domain image collections.

We then used OpenCV facilities to train boosted cascades of weak classifiers

in the following way:

1. we manually marked bounding rectangles for hands in the positive

training samples, and saved the list of bounding rectangles in a file F .

2. before training, we set the required false positives threshold to be 10−6.

3. we ran the training tool on file F and on the two training sets, the positive

A and negative C. After the training has completed, we obtained a 15-

stage classifier for posture HAND POSTURE OPEN with detection rate of

approximately 98%.

4. we successfully tested the classifier using sets B and D.

5. we built the trained classifier into our prototype application. An OpenCV

function loads the classifier; other function detects hands in posture

HAND POSTURE OPEN in the current video frame. Note that we trained the

classifier with our right hand; for the left hand, before the recognition

stage we mirror the left side of the application area in order to be able

to use the same classifier to recognize the left hand.
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6.5.2
Hand segmentation based on human skin color

The hand detection method described above not only gives an answer

whether there is or isn’t a hand in an image, but also the bounding rectangle of

the image region containing the hand. Considering this region of interest (ROI)

only, we now make use of the characteristic hue of human skin to determine

the pixels belonging to a hand. The reason we perform this segmentation is to

increase the hand tracking robustness — see Section 6.5.3.

To this end, we used color histograms — both in the detection stage (us-

ing HSV color space), and for the learning (using normalized RGB histogram)

of the color of the hand that has just been detected, i.e. we perform color

learning immediately after the hand has been detected (pre-tracking stage).

6.5.3
Hand tracking

After a hand has been detected in an image, and hand pixels color-

segmented using the properties of the human skin, we start tracking it. For

tracking the method proposed by Kölsch in [35] has been chosen, which in turn

is based on Kanade-Lucas-Tomasi (KLT) features (see Appendix C on page

113), also called “good features to track”. KLT features are based on the early

work done in [23], and then developed further in [24] and [25]. To increase

robustness, the “Flocks of Features” approach to tracking by Kölsch adds two

additional properties to simple KLT tracking:

– tracked KLT features never exceed a predetermined maximum distance

from the median of all tracked KLT features, and

– tracked KLT features can never be closer to each other than a predeter-

mined minimum distance.

Differently from the application showcased by Kölsch in [35], which is able to

track only one hand using just one (monocular) camera, our application 1)

implements four fully independent object trackers (four due to each camera

tracking up to two hands), and 2) uses stereo disparity for 3D reconstruction

of the hand’s position in 3D workspace.

We now clarify what is meant by “tracking a hand”. After a hand has

been detected as explained in Section 6.5.1 in both cameras’ views, and hand

pixels color-segmented, up to N (for example, 100) KLT features are being

collocated on the hand (i.e. on the blob defined by the detected hand’s pixels).

By averaging in each frame the 2D positions of all of these N features, we

obtain a mean (average) position P of the hand being tracked. Therefore the



CHAPTER 6. PROTOTYPE APPLICATION 68

2D position P is the output of the tracking routine. Since we can have up to

two active (tracked) hands, and each hand gives rise to one triangulated 3D

position, we can have up to 2 × 3 = 6 d.o.f. at our disposal to implement

spatial manipulation operations.

3D reconstruction (triangulation)

Finally, with the two corresponding 2D points u, u′ tracked (point u in

the left camera view, point u′ it the right camera view, we can compute, in

real time, the global 3D position ~x = (x, y, z) of a hand (either the left or

the right hand) in the workspace. For this we use the triangulation method

by Hartley and Sturm [20], a fast, non-iterative method that always finds

the global optimum. Formulated as a least-squares minimization problem, the

method computes image points û, û′ such that

d(u, û)2 + d(u′, û′)2 → min, û′τFû = 0

where d(∗, ∗) is the Euclidean distance function and F the fundamental matrix

of the stereo rig (see Appendix D for more on the Hartley-Sturm triangulation

method). Assuming Gaussian error distribution (tracking of u, u′ is noisy

because of digitization errors), the points û, û′ are the most likely values for

true image correspondences. Since the corresponding rays through û, û′ meet

exactly in 3D space, we can now find easily ~x (the global position of the hand in

the workspace) using any other triangulation method, for example Mid-point

triangulation method described in Section 5.4.1 on page 43.

6.5.4
Hand posture recognition

The last step in the CV pipeline is the hand posture recognition, which

enables us to implement a simple static gesture recognition. For hand posture

recognition, we again use the Viola-Jones method. For this we repeated

the training process explained in Section 6.5.1, only with positive samples

containing other postures besides HAND POSTURE OPEN.

6.5.5
Activity diagram

A detailed integrated view (an activity/control flow diagram) of all the

CV-related processed described in this section can be seen in Figure 6.6.
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Figure 6.6: Detailed activity diagram for detection, tracking and posture
recognition
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6.6
Hardware and software configuration

All experiments were done on a personal computer equipped with an 2.66

GHz dual core processor, 2 GB RAM, and two web cameras connected to two

dedicated USB 2.0 ports grabbing 30 color frames per second at the resolution

of 320 × 240 pixels.

The software application was developed utilizing the C++ language,

together with the following libraries:

– OpenGL for low-level 3D graphics rendering

– GLUT for windows handling

– OpenCV computer vision library for low-level image processing and

extended Viola-Jones detection method (see Appendix B on page 106)

– A number of libraries were consulted and used to implement hand

tracking based on KLT features (see Appendix C on page 113). These

include:

– KLT implementation by Jean-Yves Bouguet, found in the OpenCV

library

– KLT implementation by Stan Birchfield at the Clemson University

(www.ces.clemson.edu/˜stb/klt/)

– KLT implementation by Mathias Kölsch found in the HandVu

library (www.movesinstitute.org/˜kolsch/HandVu/HandVu.html)

– GPU-based KLT implementation by Sudipta Sinha

at the University of North Carolina at Chapel Hill

(cs.unc.edu/˜ssinha/Research/GPU KLT/)

6.7
Tests and results

We’ll now assess qualitatively estimation accuracy for a hand’s position.

Since the difference between hand’s estimated position and ground truth is

difficult to measure for an uninstrumented hand, we give here the figures

demonstrating the hand’s trajectory in space, from which we can deduce

visually the amount of noise present in estimated positions. We trace three

simple figures in space with the right hand: a line, a circle and a figure “eight”

(Figure 6.7).
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Figure 6.7: 3D plot of
estimated hand po-
sitions, obtained by
tracing a line, a circle
and an “eight” in the
workspace

6.7.1
Frames per second rates

Using the system described, we achieved tracking-related latencies from

7 to 30ms with just one hand tracked (i.e. with two trackers active), and up

to 60ms with both hands tracked (i.e. with all four trackers active). Taking

the application as a whole, i.e. taking all the other system processes into

consideration, we achieved frame rates from 8 to 15 fps.

6.7.2
Detection performance

In this section the results on detection performance, depending on various

training configurations, are presented. Viola-Jones detectors (see Appendix B

on page 106) for all three hand postures were trained with various training

parameters, and here their performance, relative to these parameters, will be

compared.

The parameters which define detector performance are:

– Number M of positives (i.e. images that contain at least one instance

of the hand in the targeted hand posture)

– Number N of negatives (i.e. images that don’t contain any instance

of the hand in the targeted hand posture)

– Number K of stages in the finalized cascaded detector

– Minimum hit rate α (for each stage). Note that the overall hit rate

for the finalized detector is then αK .

– Maximum false alarm rate β (for each stage). Note that the overall

maximum false rate for the finalized detector is then βK .
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The performance parameters being measured (relative to some set con-

taining test images — each of the three postures has its own such set) are:

– Total hits Θ — how many positive instances in the images from the

test set were correctly detected.

– Total misses Γ — how many positive instances in the images from the

test set weren’t detected.

– False hits Ω — how many hits were reported, although there wasn’t

any positive instance (in the target posture) in the image from the test

set, for all images in the set.

Note that by “detector performance” the manner of functioning in terms

of hit rates only is presupposed. In other words, the speed of detection is not

measured in this work, since in all cases it’s good enough (in the range from

10 to 30 ms) to process all frames at the grabbing frame rates.

Figure 6.8: A hit (left) and a hit and false hit (right). Posture
HAND POSTURE OPEN

Figure 6.9: A hit and multiple false hits (left), and a miss (right). Posture
HAND POSTURE OPEN
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Training times for detectors trained ranged from a couple of hours to

several days, using a current personal computer (2.4 GHz dual-core processor)

and with 1 GB RAM allocated to the training process.

Detector performance for HAND POSTURE OPEN

Here we compare the performance of various detectors for the hand

posture HAND POSTURE OPEN. To measure the performance, a set M ′ of 177

images has been created, some of which contained snapshots of the right hand

in the hand posture HAND POSTURE OPEN, taken at various heights (y-axis)

from the desk surface, and at various horizontal (x-axis) and depth (z-axis)

locations.

M N K α β
index positives negatives number of min. max. false

stages hit rate alarm rate

1 516 1000 8 0.995 0.5
2 545 1551 3 0.995 0.5
3 545 1551 3 0.995 0.4

Table 6.1: Training sets for HAND POSTURE OPEN

Please note training set #3 which has the same parameters as the set

#2 however with maximum false alarm set at 0.4.

M ′ Θ Γ Ω
index test set total total false

size hits misses hits

1 177 97 (54.80%) 80 (45.20%) 4 (2.26%)
2 177 154 (87.01%) 23 (12.99%) 813 (459.32%)
3 177 146 (82.46%) 31 (17.54%) 741 (418.64%)

Table 6.2: Detector performance for HAND POSTURE OPEN

We can see that the training set #1 achieved the highest number of stages

and consequently the lowest false hit rate. Sets #2 and #3 achieved required

leaf false alarm rate very early in the training phase, which however leads to

unacceptably high false hit rates.

Detector performance for HAND POSTURE POINTING

Here we compare performance of various detectors for the hand posture

HAND POSTURE POINTING. To measure the performance, a set M ′ of 162 (posi-

tive) images has been created some of which contained snapshots of the right
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hand in the hand posture HAND POSTURE POINTING, taken at various heights

(y-axis) from the desk surface, and at various horizontal (x-axis) and depth

(z-axis) locations.

M N K α β
index positives negatives number of min. max. false

stages hit rate alarm rate

1 233 1000 7 0.995 0.5
2 233 1000 10 0.995 0.3

Table 6.3: Training sets for HAND POSTURE POINTING

Training set #2 has the same parameters as the set #2 however with

maximum false alarm set at 0.3.

M ′ Θ Γ Ω
index test set total total false

size hits misses hits

1 162 115 (70.99%) 47 (29.01%) 1 (0.62%)
2 162 103 (63.58%) 59 (36.42%) 1 (0.62%)

Table 6.4: Detector performance for HAND POSTURE POINTING

As we can see, training sets #1 and #2 have the same false hit rates,

however, for larger test sets, we can expect the set #2 to outperform #1 due

to greater number of stages.

Detector performance for HAND POSTURE FIST

Here we compare performance of various detectors for the hand posture

HAND POSTURE FIST. To measure the performance, a set M ′ of 191 (positive)

images has been created some of which contained snapshots of the right hand

in the hand posture HAND POSTURE FIST, taken at various heights (y-axis)

from the desk surface, and at various horizontal (x-axis) and depth (z-axis)

locations.

As we can see, training set #2 has the same parameters as the set #1

however with maximum false alarm set at 0.3. Training set #4 has the same

parameters as the set #1 however with 1053 negatives instead of 1000, and

only four stages. Also, training sets #3 and #4 have an increased number

of positives (453). Sets #3 and #4 achieved required leaf false alarm rate

very early in the training phase, which led to low number of stages for these

detectors.
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M N K α β
index positives negatives number of min. max. false

stages hit rate alarm rate

1 222 1000 10 0.995 0.5
2 222 1000 10 0.995 0.3
3 453 1000 5 0.995 0.5
4 453 1053 4 0.995 0.5

Table 6.5: Training sets for HAND POSTURE FIST

M ′ Θ Γ Ω
index test set total total false

size hits misses hits

1 191 91 (47.64%) 100 (52.36%) 2 (1.05%)
2 191 78 (40.84%) 113 (59.16%) 3 (1.57%)
3 191 55 (28.80%) 136 (71.20%) 312 (163.35%)
4 191 63 (32.98%) 128 (67.02%) 406 (212.57%)

Table 6.6: Detector performance for HAND POSTURE FIST

We can see that the training set #2 has higher false hit rates than the

set #1, however this is probably due to statistical fluctuation. For larger test

sets, we can expect the set #2 to outperform #1 due to lower maximum false

alarm rate.

An example session while working with the application

In this section, several snapshots of the video taken when working with

the prototype application, are shown.

The scene consists of just two simple objects (wire-frame spheres) to be

manipulated; by default, the right sphere is already selected, which is indicated

by its red color. The left camera’s image (of the stereo camera pair) is being

rendered as a textured polygon at the bottom of the working volume, depicted

here as a simple box delineated by a couple of gray lines.

Finally, the top left corner contains a picture-in-picture movie of hands,

taken in real time with a third camera, in order to give a better overview of

gestures and operations being performed.
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Figure 6.10: The application upon startup. No hand has been detected yet,
therefore hands are not being tracked, thus no static gesture is being recog-
nized, thus no manipulation operation is being performed

Figure 6.11: Application started to track hands, after both of them assumed
posture HAND POSTURE OPEN. We can see that the application placed two flocks
of KLT features on both hands
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Figure 6.12: The right hand assumed posture HAND POSTURE POINTING, there-
fore the application started performing the operation OP SELECT using the
right hand

Figure 6.13: The right hand assumed posture HAND POSTURE FIST, therefore
the application started performing the operation OP TRANSLATE using the right
hand
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Figure 6.14: Both hands assumed posture HAND POSTURE OPEN, upon which the
previous manipulation operation has been cancelled

Figure 6.15: The left hand assumed posture HAND POSTURE POINTING, therefore
the application started performing the operation OP SELECT using the left hand



CHAPTER 6. PROTOTYPE APPLICATION 79

Figure 6.16: The left hand assumed posture HAND POSTURE FIST, therefore the
application started performing the operation OP TRANSLATE using the left hand

Figure 6.17: Both hands assumed posture HAND POSTURE FIST, therefore the
application started performing the operation OP SCALE using both hands
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Figure 6.18: Another example of OP SCALE

Figure 6.19: Both hands assumed posture HAND POSTURE POINTING, therefore
the application started performing the operation OP ROTATE using both hands



7
Conclusions and future work

In this work, a prototype system that is capable of performing 3D

manipulation operations of virtual 3D objects using user’s own hands directly,

is demonstrated. The system tracks bare (that is, unmarked, uninstrumented)

hands of the user and recognizes one-handed and two-handed static hand

gestures in a non-contact way using passive computer vision techniques, in

order to implement operations for manipulation of virtual 3D objects.

7.1
Contributions

Compared to existing approaches, this work brings about the following

contributions:

1. 3D UNMARKED HAND TRACKING — A very inexpensive way to

recover continuous 3D position of up to two unmarked hands in real

time.

2. SPATIAL INPUT — implementation of a novel 2 × 3 = 6 d.o.f. spatial

input device, using two stereo trackers based on the “Flocks-of-features”

[35] hand tracking and Viola-Jones method [29] applied to hand detection

and hand recognition, in order to implement state switching.

3. FREE-HAND SPATIAL MANIPULATION — implementing spatial op-

erations on top of this novel input spatial device, thus enabling the user

to manipulate virtual 3D objects using free-hand motions, without any

need to put any extra hardware onto his hands.

7.2
Future work

Future work includes the following:

1. Increasing the working volume (workspace) where the user can move his

hands by using wide-angle or fish-eye cameras.
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2. Expanding the system to work in more diverse environments, for example

by pointing the cameras towards the user, instead of having the cameras

point just downwards as shown in Figure 6.1 on page 56. This would be

convenient, for example, for notebook or desktop computer users, who

could clip a stereo pair of cameras onto their notebooks’ screens.

3. Increasing the expressiveness of direct manipulation by including fingers

into the manipulation operations. This probably entails implementing

some sort of model-based tracking, that is, using a parametric 3D hand

model.

4. Increasing the expressiveness of direct manipulation by including dy-

namic gestures into manipulation operations. This entails implementing

some sort of real-time dynamic gesture analysis, for example by using

Hidden Markov Models (HMMs).

5. Increasing the robustness of one-hand and two-hand tracking, perhaps

by implementing predictive filters like for example the Kalman filter.

6. Enriching the set of manipulation operations, especially by adding more

complex, physically based manipulation and deformation operations, like

“attract”, “repel”, “cut”, “shear”, “distort”, “emboss”, “drill”, “abrade”

and similar. Those operations, again, would be performed using just

unmarked hands.

7. Developing appropriate spatial and topological data structures for the

aforementioned manipulation and deformation operations.

8. Conduct appropriate usability studies.
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A
Timeline of manipulation-related research

The following chronologically sorted and annotated list contains publi-

cations that are related to direct spatial manipulation of virtual geometric

objects. The criteria to include a publication in this list are:

1. The publications must deal with manipulation of virtual geometrical

three-dimensional objects, and/or their 2D sections or projections.

2. The spatial 3D manipulation must be initiated and executed through an

interface involving human hands, fingers and/or arms, using any input

device.

The second criterion above practically means that both input done vision-

based tracking of human hands, as well as input done using devices like mice,

pens, tables, datagloves and all sorts of many-d.o.f. devices will be included.

The list is not meant to be exhaustive, but representative of prior work related

to manipulation of 3D geometry, using hands.

A.1
Pre-1980s

1963

– PhD thesis [38] by Ivan Sutherland that influenced almost everything we

know and think about computing, see Figures A.1 and A.2. The appli-

cation (Sketchpad, also known as “Robot Draftsman”) that Sutherland

developed as a part of his thesis used a light-pen to draw and manipu-

late (grab, copy and move) 2D shapes on the screen, changing their sizes

and using constraints. It can be considered to be the precursor to mod-

ern Computer-Aided Design (CAD) applications. This thesis influenced

the development of Xerox Star workstation which later on influenced the

development of Mac OS, Windows and X-Windows operating systems.
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Figure A.1: Sutherland’s Sketchpad in use (Lincoln TX-2 console, lightpen)

Figure A.2: Example of a drawing and calculation made in Sutherland’s
Sketchpad: truss load

1966

– [39] William Newman’s early system for architectural design. Based on a

PDP-7 computer, Type 340 Display and a type of light pen. The system

uses modular building blocks. The paper describes the approaches used

to organizing the display list for efficient manipulation and an algorithm

for computing areas of enclosed spaces.

1968

– [40] William Newman’s “reaction handler”, based on tablet and stylus.

Provided direct manipulation of graphical shapes. Introduced “light

handles”, a type of graphical potentiometer, which could be considered

the first “manipulation widget”.
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1976

– [41] “Designing surfaces in 3-D” system [41] by another pioneer in the

field of computer graphics (and co-founder of Silicon Graphics, Netscape

Communications and some other companies) James H. Clark. One of the

earliest interactive design systems for drawing free form 3D (parametric)

surfaces, utilizing HMD. The mechanically-tracked HMD utilized in

the Clark’s system was designed by Ivan Sutherland. Surfaces can be

controlled by manipulating control points on the associated wireframe

grid (see Figure A.4). The system used a 3-D wand that computed its

position my measuring its distance to the ceiling.

Figure A.3: James H. Clark’s system: 3D-wand (left) and HMD armature
(right)

Figure A.4: James H. Clark’s system: 3D surface being edited (left) and its
grid of control points (right)
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1977

– [42] Alan Kay’s (Xerox PARC) gives a vision of direct manipulation

interfaces for everyone, using the Smalltalk language and Dynabook.

A.2
1980s

1980

– Bolt’s “Put-That-There” system [43]. Uses hand gestures together with

speech input. Manipulates simple shapes on a large, wall-sized screen.

The user can, for example, point to a shape, and then utter a command to

modify the shape. Uses a “Media Room” by Negroponte [44], an enclosure

which supplants the CRT display and turns the whole room into a sort

of input-output space. The user sits in a modified chair: each arm of

the chair has a small joystick sensitive to direction and pressure. Besides

them there are two small touch-sensitive pads. On either sides of the chair

are located TV monitors, whose cathode tube’s surface has been coated

with a touch-sensitive surface. Commands: CREATE (“create a blue

square there”), MOVE (“move the blue triangle to the right of the green

square”), MAKE THAT (“make that blue triangle smaller”), DELETE

(“delete the large blue circle”), CALL THAT (“call that blue square

the calendar”). Six-d.o.f. Polheus tracker epoxied in a cube, attached to

user’s wrist via a watchband.

1983

– [3] Ben Shneiderman coins the expression “direct manipulation” and

defines its constituent components as well as psychological foundations.

Describes graphically-based interaction, visibility of objects, incremental

action and rapid feedback.

1987

– [12] Guiard gives a theoretical framework for the study of asymmetry

in the context of human bimanual action. Most skilled manual activities

involve two hands playing different roles. The two hands represent two

motors, which cooperate with one another as if they were assembled in

series, thereby forming a kinematic chain. In right-handed people, motion

produced by the right hand tends to be articulated with motion produced

by the left.
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Figure A.5: “Put-That-There” system by Bolt: manipulating shapes on the
wall-sized screen. The user currently points at the circular shape

1989

– 3-Draw, a 3D computer-aided design tool [45], [46], see Figure A.6.

Output image is shown on a conventional non-stereo display. Capable

of drawing complex free-form shapes. Uses two 6-d.o.f. sensors - one

sensor is a configurable 3D drawing and editing tool, and the other sensor

controls an object’s position and orientation. One hand holds a tracked

palette that acts as a movable reference frame in modeling space. The

other hand holds a stylus and draws 2D curves on the palette. This

combination thus resulted in curves in 3D space. Users found the interface

natural and quick. Simultaneous use of two hands provided kinesthetic

feedback that enabled users to feel as though they were holding the

objects displayed on the screen.

A.3
1990s

1991

– VIDEODESK [47] — it consists of a large surface over which the user

moves his fingers, hands and arms, see Figure A.7. The system uses over-
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Figure A.6: 3-Draw by Sachs et al — based on two 6-d.o.f. sensors and a
conventional non-stereo display.

head video cameras to track the appearance and 2D hand position and

to detect image features such as the hand, fingers, and their orientation.

The system uses a large horizontal table with a bright background (for

easier detection and segmentation of hands). The geometry being ma-

nipulated is being modeled using splines. Control points on these splines

can then be controlled using index fingers and thumbs of both hands.

Similarly, using both index fingers it is possible to draw a circle on the

screen.

Figure A.7: Krueger’s VIDEODESK. Splines are controlled by fingertip posi-
tions.

A related, older system by the same author is VIDEOPLACE [48] which

tracks the whole body, not just hands. That is, the user uses his entire

body as input to the system. It was installed as a part of a large

installation on the Computers and Art exhibit at IBM building in New

York, US. The author has linked this environment with VIDEODESK.
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1992

– [49] Hand gestures initiate and terminate fundamental actions (translate,

scale, rotate) that change the state of virtual world. Manual input device

may be an instrumented glove or or a hand-held device with buttons.

Specifies transforms for grabbing an object, flying, scaling the world.

– [50] A specification of 3D manipulation operations, based on hand ges-

tures. Three basic gestures (touching, pointing and gripping) are defined.

Touching is a simple gesture with no extra information; by tracking the

logical hand in virtual 3D space, and using collision detection, it is said

that the hand “touched” an object if the hand collided with the object.

Pointing requires an extended index finger; its fingertip position then

defines the starting point of the pointing, and the orientation of the in-

dex finger is the pointing direction. Using this information it is possible

to determine the 3D object pointed at. Finally, gripping is defined as an

analog of the click-and-drag operation in classical 2D WIMP interfaces.

– [51] Describes what is to become Open Inventor. Describes manipulators

(trackball, one-axis scale, jack, handle box, spot light, directional light,

one-axis translate).

– Conner et al [52] describe three-dimensional widgets (Figure [52]). Gives

precise state diagrams. Virtual sphere, handles, snapping, color picker,

rack, cone tree.

(a) (b) (c)

Figure A.8: Widgets by Conner et al. Translating a knife along its x axis (a),
rotating a knife along an axis (b), and scaling a knife along an axis (c)

– [53] 3DM (Three-Dimensional Modeler). An interactive surface-modeling

system. It uses a stereo HDM, and one single bat with 6 d.o.f. User can

create 3D objects. Walking, flying, grabbing the world, scaling the user.
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1994

– [54] A survey of design issues for developing effective free-space 3D user

interfaces. People do not innately understand 3D reality, but rather they

experience it. Concepts that facilitate 3D space perception: spatial ref-

erences, relative vs. absolute gestures, two-handed interaction, multisen-

sory feedback, physical constraints, head tracking techniques. Coarse vs.

precise positioning tasks: gridding and snapping. Dynamics and size of

the working volume of user’s hands. Use of mice and keyboards in com-

bination with free-space input devices; voice input, touch screen; hybrid

interfaces. Clutching mechanisms. Importance of ergonomic details in

spatial interfaces.

– [55] THRED (Two-Handed Refining EDitor). Output images displayed

on a conventional, non-stereo monitor. The user manipulates two 3D po-

sition and orientation trackers with three buttons (i.e. button-enhanced

Bats, that is, standard Polhemus sensors with three buttons attached),

for each hand. Four postures for holding the Bat. Dominant hand for

picking and manipulation, less-dominant hand for context setting. Sys-

tem intended for free-form sketching of polygonal surfaces (terrains, nat-

ural objects). Surfaces are hierarchically-refined polygonal surfaces based

on quadrilaterals.

– A real elastic object, made from electrically conductive polyurethane,

is being used as an input device for 3D shape deformation [56], see

Figure A.9. The operation of twisting while bending is possible. Any

combination of pressing, bending, twisting possible. A tactile input

device, thus giving haptic feedback.

Figure A.9: Murakami’s elastic cube for 3D deformation: schematic (left) and
usage (right)

– JDCAD [57] — input is a 6-d.o.f. bat, and output is a kinetic head-

tracked non-stereo display, see Figure A.10. Object selection using the
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spotlight metaphor; innovative menus (daisy, ring); object creation,

manipulation, viewing.

Figure A.10: JDCAD: schematic (left) and cone selection technique (right)

1995

– Mine discusses [18] virtual environment interaction techniques, and gives

an introduction to fundamental forms of interaction (Figure A.11):

movement (specifiying direction and speed), selection (local and at-a-

distance), manipulation (change in position, orientation and center of

rotation) and scaling (center of scaling and scaling center; uniform and

non-uniform scaling). Lists hand tracking, gesture recognition, pointing,

gaze direction. Lists physical and virtual controls. Gives coordinate

system transforms in an appendix.

Figure A.11: Mine’s local selection (left) and at-a-distance selection (right)

– HoloSketch [58], a VR system for 3D geometry creation and manipulation

(Figure A.12). Fishtank stereo CRT, head-tracked stereo glasses, 3D

mouse/wand (“one-fingered data glove”) augmented by an offset digitizer

rod, effectively making from it a six-axis wand. The wand tip feels like an

extension of index finger. This 3D mouse has three top buttons and one

side button. Multi-level 3D fade-up menu system, invoked by holding
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down right wand button. Modal editor (a single current drawing or

editing mode in force at any given moment). Draws rectangular solids,

spheres, ellipsoids, cylinders, cones, rings, free-form tubes, 3D text,

isolated line segments, free-form and polyline wires. Editing operations,

Significant gains in productivity over 2D interface technology reported.

Figure A.12: Deering’s Holosketch: head-tracked stereo glasses and 3D
mouse/wand (left) and 3D fade-up menu (right)

– [59] Visual interfaces (manipulators) for solids modeling. Similar to [51].

Free-form operators such as blends, sweeps, and deformations. Sweep

tool. Warp tool. Rail-tie tool. Rail-curve manipulation tool. Operator

space. Visual tool should provide visual clues on its function and use.

The design of the visual tool should be based on the user’s intuition on

how the operator should behave, not on the parameters to the operator.

– [60] PolyShop system. Two ChordGloves (datagloves which have electric

contacts on fingertips and on the palm) used for bimanual input. Two

hands used for translating, rotating and scaling of virtual objects. Hand

gestures, read from different combinations of contacts between fingers

and the palm.

– [16] Stoakley, Conway and Pausch present a two-handed architectural

design system named WIM (Worlds In Miniature). The user is fully

immersed into the virtual environment, and has a concurrent view to

a miniature hand-held copy of the entire world attached to a tracker

manipulated by the left hand. A clipboard is attached to the left tracker,

and the surface of the clipboard represents the floor of the WIM. The

right hand holds a ball containing another tracker with two buttons (the

first button for selecting objects, and the other for moving them). The
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WIM provides both an aerial perspective of the entire scene, and allows

the user to manipulate objects in the miniature version of the scene.

1996

– CHIMP (Chapel Hill Immersive Modeling Program) [61], see Figure

A.13. The system uses two separate bats, one for each hand. User can

perform a unimanual operation for translations and rotations, and a

bimanual symmetric movement for scaling. Uses action-at-a-distance for

remote selection and interaction with objects, look-at menus, constrained

object manipulation, flying, worlds-in-miniature, interactive numbers.

Figure A.13: CHIMP by Mine: Two-handed mode selection

– Go-go technique [15] for non-linear mapping for direct manipulation in

VEs. The technique interactively “grows” the user’s arm in order to reach

remote objects which are to be manipulated.

– [62] Zeleznik’s SKETCH system. Tries to bridge the gap between hand

sketches and computer-based modeling programs. Uses stroke gestures

to generate, move and rotate 3D solids.

1997

– [17] Evaluates techniques for grabbing and manipulating remote objects

in virtual environments. Techniques: arm-extension, ray-casting, world-

in-miniature (WIM), scaling the user, scaling the entire environment, go-

go technique, hybrid techniques. Conclusions: grabbing and manipulation

should be considered to be separate issues.

– Mine et al address [63] the lack of haptic feedback in VEs, see Figure

A.14. To compensate, authors propose exploiting the only real object user

has while in a VE — his own body. Thus the sense of proprioception.

Three forms of body-relative interaction: direct manipulation, physical

mnemonics, gestural actions. Select, grab, manipulate, release. Pull-down
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menus, hand-held widgets, head-butt zoom, look-at menus, two-handed

flying, throw-over-the-shoulder deletion, virtual object docking. Hand-

held tablet as a real surface to work on.

Figure A.14: Mine suggests proprioception as a way to address lack of haptic
feedback

– [64] Two-handed direct manipulation on a “Responsive Workbench” [2]

(Figures A.15 and A.16), a tabletop stereo display. Fakespace’s PINCH

gloves, stylus providing single dinstinguished point of action. Polhemus

6-d.o.f. tracker attached to stereo shutter glasses for head tracking. Four

basic navigational tasks identified: 1) user slides, lifts up and pushes down

the model; 2) user rotates the model around one of principal axes defined

by tabletop or model; 3) user zooms in or out; 4) user changes his position

relative to table thus relative to model, by walking around the table or

by moving the head closer to/away from model. Devices, manipulators,

tools. Tools can be unimanual (one-handed grab, panning, cutting plane,

opacity, temperature, particle, streamline), bimanual symmetric (sym-

metric scale, slide-and-turn, turntable, grab-and-twirl, grab-and-carry),

and bimanual asymmetric (grab-and-scale, trackball, zoom, free rotation,

axis rotation, heuristic rotation, pinch rotation, constrained translation).

Figure A.15: Responsive Workbench: stereo video projected on mirrors below
the desk (left), and persons observing a 3D house model displayed in stereo
(right)
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Figure A.16: Responsive Workbench: two-handed operation of zooming in

1998

– [65] Reviews the usability of various 6-d.o.f. input devices. Performance

measures: speed, accuracy, ease of learning, fatigue, coordination, de-

vice persistence and acquisition. Mices modified for 6 d.o.f., the Bat,

the Cricket, the MITS glove, Fingerball, Spaceball, SpaceMaster, Space

Mouse, Elastic General-purpose Grip (EGG), Multi-d.o.f. armatures.

Conclusion: none of the the existing devices fulfills all aspects of us-

ability requirement for 3D manipulation; however, many insights into

the characteristics and pros and cons of various designs; selection of var-

ious types of devices for different tasks (speed and short learning — free

moving devices; fatigue, control trajectory quality and coordination —

isometric or elastic rate control devices; )

– [66] “BUILD-IT” system. AR system, “Natural User Interface”. Tan-

gible, graspable control objects. To select an object, user puts a small

“brick” (that is, interaction handler) at the object’s position on the table.

The object can then be rotated, translated and fixed by manipulating its

associated brick. Multi-brick and multi-user interaction.

– “ErgoDesk” [67], see A.17. Interaction at ActiveDesk, a rear-projected

drafting table-size display, similar to Responsive Workbench [2]. User cre-

ates 3D geometry using 2D lightpen-based input. Two-handed operation

(user performs camera operations using a 3D tracker in his non-dominant

hand). Speech input. Users had difficulty in creating 3D models. Weak

modeling functionality. Many deficiencies in the hardware (display blur-

riness, tethered lightpen, noisy input from lightpen, difficult drawing in

3D).
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Figure A.17: ErgoDesk by Forsberg et al

– In [68], one- and two-handed gestures (deform, grasp, point, scale,

rotation) are used to model and manipulate 3D objects, using data gloves.

See Figure A.18.

Figure A.18: Some manipulation gestures by Nishino et al

1999

– [69], [70] “Surface Drawing”1 (Figures A.19 and A.20), a system for

drawing organic 3D shapes, intended for artists. Wired glasses. Wired

dataglove. Hand gestures. Users construct 3D shapes through “repeated

marking”. Hand marks 3D space in a semi-immersive environment (Re-

sponsive Workbench). Shapes created thus “float” in space above Re-

1schkolne.com/sdraw
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sponsive Workbench. Tangible tools for edition and manipulation. Tongs2

to move and scale 3D models. Magnet tool for free spatial hand motion.

Magnet tool for drawing and editing (for example, bending) of 3D ob-

jects.

Figure A.19: “Surface drawing” by Schkolne et al: modeling a guitar in five
steps

Figure A.20: “Surface drawing” by Schkolne et al: hand motions create 3D
shapes which “float” over the Responsive Workbench

2A tong is a device for taking hold of objects; usually has two hinged legs with handles
above and pointed hooks below.
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A.4
2000-2008

2000

– [71] Perceptive Workbench by Leibe et al. Objects are recognized and

tracked when placed on the display surface. Uses vision-based methods

for interaction. Can identify 3D hand position, pointing direction, and

arm gestures, which enhance selection, manipulation, and navigation

tasks. Similar to Responsive Workbench however it uses infrared light

instead.

2003

– [72] “RoomPlanner”. Works on tabletop displays (MERL DiamondTouch

used). Eight hand gestures defined. Tapping, dragging, flicking, catching,

freeform rotation and scaling, tool palette manipulation and selection,

parameter adjustment widget, flat hand, vertical hand, horizontal hand,

tilted horizontal hand, two vertical hands, two corner-shaped hands.

2004

– FingARtips [73] by Buchmann et al. The technique tracks hand gestures

by using image processing software and finger- and hand-based fiducial

markers. The approach allows users to interact with virtual content using

natural hand gestures.

– In [74], a sketching system prototype, utilizing gesture recognition and

data gloves, was developed. Gestures grab, scale, and drop have been

implemented (Figures A.21 and A.22).

Figure A.21: Operation GRAB in Pratini’s system

– In [75], vision-based gesture recognition utilizing white fingertip markers

and so-called “black light” is used in order to manipulate 3D virtual

objects in front of a large back-projection screen with two projectors for

passive stereo (the user wears polarized glasses).
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Figure A.22: Operation SCALE implemented as opening/closing the fist in
Pratini’s system

– In [76], a system for 3D translation and deformation using black gloves

with five colors for each finger, stereo vision and passive stereo rendering

is reported.

2005

– [77], [78] Gives a classification of 3D widgets, including 3D menus3.

Especially suited for desktop 3D systems; classification is made according

to interaction purpose. Four main classes of widgets:

1. widgets for direct 3D object interaction:

– object selection (direct selection, occlusion selection, distance

selection) and
– geometric manipulation (linear transformation, non-linear

transformation, high-level object manipulation).

2. widgets for 3D scene manipulation,

3. widgets for exploration and visualization, and

4. widgets for system/application control.

– In [79] unmarked hand gestures are being used for human-computer in-

teraction. The prototype applications learns the background’s character-

istics in order to segment the hand, and detects and tracks fingertips for

state switching.

3Online 3D-widget classification site: www.3d-components.org
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2007

– [80] An approach for direct manipulation of 3D scenes (Figure A.23),

based on visual, non-contact hand tracking and gesture recognition

was presented. The system supports translation, rotation and scaling

operations. The tracking cameras are located below the interaction

volume. Six d.o.f. input is provided using both hands; the system does

not require the user to wear any marker or any other kind of device.

Figure A.23: The setup by Bettio et al. The user stands in front of a large
stereo display, and manipulates the model using optically tracked hands.



B
Viola-Jones detection method

The Viola-Jones detection method [29] is a multi-stage detection method

that has quickly found wide adoption in the computer vision community, due

to its high speed of detection, and high detection rates. Compared to the

best previously known detection methods [81] [82] [83] [84] [85], the Viola-

Jones method is significantly faster (around fifteen times [29]) while achieving

a comparable accuracy. There are four crucial features which distinguish this

method:

– Haar-like features — Viola-Jones method classifies images based on

the values of the so-called Haar-like features, which are simple features

based on rectangles. (They are called “Haar-like” due to their similarity

with the coefficients in the Haar wavelet transform.)

– Integral image — this is a novel data structure used in the pre-

processing step of this algorithm, which allows the subsequent phases

to run very quickly.

– AdaBoost-based learning — the learning part of the Viola-Jones

method is based on AdaBoost [30], which combines a relatively small

number of weak classifiers into a strong classifier.

– Cascading strong classifiers — this part of the Viola-Jones method

combines strong classifiers into a “cascade” which discard regions of no

interest quickly, thus leaving more processing times for regions that likely

contain objects of interest.

B.1
Haar-like features

Haar-like features are prominent local aspects of an image which can be

calculated very efficiently.

Let’s take a look at Figure B.1, which depicts the extended Viola-Jones

method [86]. Suppose we are dealing with a gray-level image I of W×H pixels.

As we will see in Section B.2, there is a very fast way to compute the sum of

all the pixels contained in either the upright rectangle, or rectangle inclined at

45◦. A rectangle r, either the upright or inclined one, can be defined as:
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Figure B.1: Two types of rectangles used in the extended Viola-Jones method:
1) upright rectangle, and 2) rectangle inclined at 45◦. We compute the sum of
all gray-level intensities in rectangle r using function sum(r).

r = (x, y, w, h, α) (B-1)

where

0 ≤ x < x+ w ≤ W, 0 ≤ y < y + h ≤ H

x, y ≥ 0, w, h > 0

α = 0◦ or 45◦

The set Φ of all possible Haar-like features φ can then be defined as:

Φ =

φ | φ =
∑

i∈{1, ..., N}

ωi · sum(ri)

 (B-2)

where N is an arbitrary number of rectangles chosen, ri are parametrizations

of those rectangles (see Equation (B-1)), ωi ∈ R are weights, and sum(ri) is

the function that sums all the intensity values of all the pixels contained in

rectangle ri.

The problem with set (B-2) is that is infinitely large, therefore we reduce

it to the following set:

Φ =

{
φ | φ = ω1 · sum(r1) + ω2 · sum(r2), ω1 = −1, ω2 =

area(r1)

area(r2)

}
(B-3)

Thus in this newly defined set (B-3) of features we restrictN to 2, and constrain

weights ω1, ω2 so that they have opposite signs and are used to compensate for

the difference in area size between rectangles r1, r2.
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We can now define the following set of 14 “template” or “prototype”

features (Figure B.2), which will allow us to obtain real features (those that

belong to set Φ in Equation (B-3)) by scaling and translating:

– Four edge features — two upright, two inclined

– Eight line features — four upright, four inclined

– Two center-surround features — one upright, one inclined

Figure B.2: Fourteen feature prototypes (templates) used in the extended
Viola-Jones method

Let now k = bW/wc and l = bH/hc. For seven upright features shown

in Figure B.2, by scaling and translating we can generate a total of

kl

(
W + 1− wk + 1

2

)(
H + 1− hl + 1

2

)
features, while for the remaining seven features inclined at 45◦ the total is

kl

(
W + 1− zk + 1

2

)(
H + 1− z l + 1

2

)
, z = w + h

Note that line features can be calculated using two rectangles only, first

rectangle r1 encompassing the black and white rectangle, and second rectangle

r2 encompassing the black rectangle. For example (Figure B.3), line feature (a)

with top left corner located at (5, 3) and dimensions 6×2 pixels can be written

as:

φ = −sum(5, 3, 6, 2, 0◦) +
12

4
sum(7, 3, 2, 2, 0◦)

which represents the combination of one big, encompassing 6×2 white rectangle

r1, and one smaller 2× 2 black rectangle r2 located in the middle of r1.
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Figure B.3: Example: computing a 6 × 2-pixel “line feature” (see Figure B.2,
feature (a) in the second row) whose top left corner is located at pixel (5, 3)

B.2
Integral images

Integral images are useful because, once computed, they enable the Viola-

Jones method to subsequently compute features in constant time, i.e. in O(1).

Let I be an W ×H gray-level image. We define integral image I∫ to be

an image of same dimensions, whose value at pixel (x, y) is defined by:

I∫ =
∑

u≤x, v≤y

I(u, v) (B-4)

Intuitively, pixel I∫ (x, y) contains the sum of all gray-level intensities for pixels

that are to the left and up (relative to pixel (x, y)) in the original image I.

Figure B.4: The value of pixel (x, y) of the integral image I∫ is equal to the
sum of all pixels left and up from (x, y) in image I

We can use the following two recurrent relations to compute integral

image I∫ in just one pass over the original image I:

s(x, y) = x(x, y − 1) + I(x, y), s(x,−1) = 0
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I∫ (x, y) = I∫ (x− 1, y) + s(x, y), I∫ (−1, y) = 0

Here s(x, y) is the function that sums up row values in a cumulative fashion.

Integral images have the following beneficial properties:

– To compute the sum of any rectangle (sub-area) within the image I, just

four array look-ups are needed.

– Therefore, the difference between two rectangles can be computed in just

eight array lookups.

– Since two-rectangle features shown in Figure B.2 involve two adjacent

rectangles, obviously just six array lookups are needed.

– Similarly, any three-rectangle features demands just eight array lookups.

B.3
AdaBoost-based learning

AdaBoost can be defined as “a general method for improving the accu-

racy of any given learning algorithm” [30]. As a special case, “any” learning

algorithm could mean a learning algorithm that guesses the right answer just

a little bit above 50%, i.e. just a little bit better than pure chance.

The AdaBoost algorithm:

– GIVEN: training set S = {(x1, y1), . . . , (xm, ym)} where xi ∈ X

(“instance space”) and yi ∈ {−1,+1} (“set of labels”). In our context,

instances {x1, x1, . . . , xm} are k × k-pixel images (for example, k = 25)

containing (yi = +1) or not containing (yi = −1) human hand.

– GOAL: to output a final hypothesis H(x) about the correct label for all

x ∈ X

– ALGORITHM:

– Initialize D1(i) = 1/m, i ∈ {1, . . . ,m}
– For t = 1, . . . , T :

1. Train weak learner using current distribution Dt

2. Get weak hypothesis ht:X → {−1,+1} from the weak learner,

so that error

εt =
∑

i: ht(xi)6=yi

Dt(i)

is low with respect to Dt

3. Choose factor

αt =
1

2
ln

1− εt
ε

Factor αt measures importance given to ht.
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4. Update Dt+1:

Dt+1(i) =
Dt(i)

Zt
×

{
e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

or equivalently

Dt+1(i) =
Dt(i)e

−αt yi ht(xi)

Zt

where Zt is the normalization factor (chosen so that Dt+1 is

a distribution). This step increases (decreases) the weight of

correctly (incorrectly) classified training example i ≡ (xi, yi).

– Output the final hypothesis H(x):

H(x):X → {−1,+1}

H(x) = sign

(
T∑
t=1

αtht(x)

)
, x ∈ X (B-5)

This final hypothesis (“strong classifier”) H(x) can be considered a weighted

majority vote of T weak hypotheses, and factor αt can be considered the weight

attributed to the weak hypothesis ht.

B.4
Cascading strong classifiers

In practice, a strong classifier (see Eq. B-5) can achieve any desired

accuracy, however the speed is dissatisfying. Because of this strong classifiers

are chained into the so-called “attentional cascade”, or just “cascade”, in

order to achieve high frame rates. In such a chain, all strong classifiers are

trained to detect approximately all objects and to reject a certain percentage

of subwindows that do not contain the object.

For example:

– the first strong classifier in the cascade could be made of just two

features, reject 50% of non-hand subwindows and detect hands correctly

in 99.999% of all subwindows.

– the second strong classifier could consist of five features, reject 80% and

detect correctly in 99.0% cases.

– the next six strong classifiers could consist of 25 features, reject 90% and

detect correctly in 98.0% cases.

– . . . and so on.
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Taking now these classifiers, and chaining them into a series, we would obtain a

cascade consisting of eight strong classifiers. The point in building a cascade is

that a cascade significantly reduces processing times: the first strong classifiers

reject many of subwindows that do not contain the object, while at the same

time detecting correctly almost 100% of all the subwindows containing the

object. All the subwindows that “passed through” the first strong classifier

now have to be processed by the second classifier, which rejects even more

subwindows, and so on. A subwindow must pass through all the classifiers in

order to be classified as “positive”.

Figure B.5: Cascade of strong classifiers using Haar-like features



C
KLT features

As was already mentioned in Section 5.7 on page 47, features are

properties of textured surfaces that allow us to “latch” onto them, see Figure

5.9 on page 47. By “latching” onto these features, we can thus effectively

“latch” onto the object being tracked, therefore tracking the object.

The mathematical details behind KLT features [23] [24] [25] will now

be given. Let I(x, y, t) be “gray-level image sequence” functions defined on a

sequence of M ×N arrays at time moments 0, 1, 2, . . . , L, i.e.:

I : {0, 1, 2, . . . , N − 1} × {0, 1, 2, . . . ,M − 1} × {0, 1, 2, . . . , L} −→ [0, 1]

where N is the width of the image, M height, and L the time instant for the

last image in the sequence. Let

I(x, y, t) = c, c ∈ [0, 1]

where c is a gray level between 0 (black) and 1 (white).

Let now W be a window in an image I, with dimensions M ′ ×N ′, with

the upper left corner located at (x′, y′). Then we can restrict function I to the

window W , thus obtaining function IW :

IW : W −→ [0, 1]

We are interested in tracking objects visible in the input image stream.

Put differently, there exist certain patterns in the input image sequence which

can be expressed formally like this:

I(x, y, t+ τ) = I(x− ξ, y − η, t) (C-1)

Intuitively, Equation C-1 says that, having the current image I(x− ξ, y−η, t),
we can compute the next image (at time t+ τ) by moving all the pixels from

the image I(x− ξ, y − η, t) by a displacement vector ~d = (ξ, η).

Let now define J(~x) = I(x, y, t+τ) and I(~x− ~d) = I(x−ξ, y−η, t). Note

that we omitted time parameter t for brevity (by definition, image J follows
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Figure C.1: Illustration of tracking based on KLT features. Window W is the
current window, for example a rectangle of 10×10 pixels. JW is the restriction of
I on the current window W . IW is the restriction of I on the previous window.
What is being searched for, is the displacement vector ~d, which enables us to
position window W correctly in the current image.

I). The we can rewrite Equation C-1 as

J(~x) = I(~x− ~d) + n(~x) (C-2)

where n(~x) represents noise present in J(~x). The desired displacement vector
~d is then computed minimizing the following area integral over W :

ε =

∫
W

(
I(~x− ~d)− J(~x)

)2

w(~x) d~x (C-3)

Function w(~x) is the weighting function, which can be set to a desired function,

for example to a constant function (w(~x) = 1) or to the Gaussian — depends

on the application.

The question now is how to solve Equation C-3 for ~d so that:

ε −→ min

Note that when ~d is small, we can develop I into its Taylor series:

I(~x− ~d) = I(~x)− ~g · ~d+ . . .
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. . . where ~g is a constant vector. We keep just the first two terms, so I(~x− ~d) =

I(~x)− ~g · ~d, therefore equation C-3 becomes

ε =

∫
W

(
I(~x− ~d)− J(~x)

)2

w(~x) d~x =

=

∫
W

(
I(~x)− ~g · ~d− J(~x)

)2

w(~x) d~x =

=

∫
W

(
h(~x)− ~g · ~d)

)2

w(~x) d~x (C-4)

where h(~x) = I(~x) − J(~x). Equation C-4 can now be solved in the closed

form, because ε is now a quadratic function. To find the minimum for ε, we

now differentiate Equation C-4 relative to ~d and set the resulting expression

to zero: ∫
W

(
h(~x)− ~g · ~d

)
~g w(~x) dA = 0

We can now replace (~g · ~d)~g by (~g · ~g τ ) ~d. Since ~d can be considered constant

for all pixels in W , we now obtain∫
W

h(~x) ~g w(~x) dA =

(∫
W

(~g · ~g τ ) w(~x) dA

)
· ~d

or simply switching the sides(∫
W

(~g · ~g τ ) w(~x) dA

)
· ~d =

∫
W

h(~x) ~g w(~x) dA

The previous equation can now be rewritten as

G~d = ~e (C-5)

where

G =

∫
W

(~g · ~g τ ) w(~x) dA

and

~e =

∫
W

h(~x) ~g w(~x) dA

Thus to find ~d, we must, for each pair of consecutive frames, first compute G,

then ~e, and then using the linear system C-5 we can compute ~d.



D
Hartley-Sturm triangulation method

The Hartley-Sturm triangulation method [20] is an algorithm that, under

the assumption of Gaussian noise present in image point measurements, gives

a provably optimal global solution to the triangulation problem.

In further text we assume that we know fundamental matrix F exactly,

and that any error is due either to 1) the digitalization process on the

CMOS/CCD chip of the camera, or 2) to the feature extraction process. It

is assumed that these errors follow Gaussian distribution.

Let:

~u↔ ~u′ — an noisy, incorrect measured pair of correspondent features for the

left and right camera respectively. This pair does not satisfy ~u′τF~u.

~̂u ↔ ~̂u
′

— a correct pair of correspondent features for the left and right

camera respectively. Point ~̂u should in general lie close to point ~u, and
~̂u
′

to ~u′. Points ~̂u, ~̂u
′

satisfy ~̂u
′τ
F~̂u.

The goal therefore is to find points ~̂u, ~̂u
′

that minimize the function(
d(~u, ~̂u)

)2

+
(
d(~u′, ~̂u

′
)
)2

(D-1)

where d(~u,~v) represents Euclidean distance between 2D points ~u,~v. This

minimization task is equivalent to finding real number t for which the following

cost function attains minimum:

s(t) =
t2

1 + f 2t2
+

(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
(D-2)

The algorithm (see [87], page 318):

– GOAL — compute 2D points ~̂u, ~̂u
′

that minimize Eq. D-1. Given are

measured 2D correspondent points ~u, ~u′, and fundamental matrix F .

– ALGORITHM:

1. define transformation matrices

T =

 1 −u
1 −v

1

 and T ′ =

 1 −u′

1 −v′

1





APPENDIX D. HARTLEY-STURM TRIANGULATION METHOD 120

2. replace F by T ′−τFT−1

3. compute epipoles ~e = (e1, e2, e3)
τ and ~e′ = (e′1, e

′
2, e
′
3)
τ so that

~e′τF = 0 and F~e = 0. Normalize ~e,~e′.

4. form matrices

R =

 e1 e2

−e2 e1

1

 and R′ =

 e′1 e′2

−e′2 e′1

1


5. replace F by R′FRτ

6. set f = e3, f
′ = e′3, a = F22, b = F23, c = F32, d = F33

7. form 6-degree polynomial

g(t) = t
(
(at+ b)2 + f ′2(ct+ d)

)2−(ad−bc)(1+f 2t2)2(at+b)(ct+d)

8. solve g(t) in order to obtain 6 roots

9. evaluate cost function s(t) (see Eq. D-2) at the real part of each

of the six roots. Also, find limt→∞ s(t). Select tmin that gives the

smallest value for s(t).

10. evaluate two lines ~l = (tf, 1,−t) and ~l′ = F (0, t, 1)τ = (−f ′(ct +

d), at + b, ct + d)τ at tmin, and find ~̂u, ~̂u
′

as the closest points on

these lines to the origin.

11. replace ~̂u by T−1Rτ ~̂u and ~̂u
′

by T ′−1R′τ ~̂u
′

12. compute the requested 3D point ~X by any other method, for

example by mid-point method.
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