

Coordination of Collaborative Activities: A Framework for the Definition of
Tasks Interdependencies

Abstract

The coordination of interdependencies between tasks
in collaborative environments is a very important and
difficult endeavor. The separation between tasks and
interdependencies allows for the use of different
coordination policies in the same collaborative
environment by changing only the coordination
mechanisms that control the interdependencies. This
paper presents a framework for the definition of
interdependencies that frequently occur in collaborative
activities. By means of a clear characterization of
interdependencies, it is possible to identify coordination
mechanisms to manage them, opening the way toward a
powerful coordination tool capable of encompassing a
wide range of collaborative applications. An
implementation of the coordination model of a
collaborative virtual environment based on the proposed
framework is given as example.

1. Introduction

A definition for collaborative work that is frequently
cited in the literature [21] is that of Karl Marx, written in
1867. According to Marx, collaborative work is defined
as “multiple individuals working together in a planned
way in the same production process or in different but
connected production processes.” In the kernel of this
definition is the notion of planning, which ensures that the
collective activity results from individual tasks.

The notion of planning is realized in CSCW
(Computer Supported Cooperative Work) by what has
been called articulation work, defined as “a set of
activities required to manage the distributed nature of
cooperative work” [21]. The articulation work is the

additional effort required to obtain the actual
collaboration from the sum of individual tasks. Among
the activities of articulation work that can be mentioned
are the identification of the objectives of the group work,
the mapping of these objectives into tasks, the
participants’ selection, the distribution of tasks among
them, and the coordination of tasks execution.

An important aspect of collaborative work is the notion
of task interdependency. This interdependency is always
positive, in the sense that each participant wants the
works of others to succeed. However, it is not always
harmonious. It is necessary for coordination between
tasks to exist in order to guarantee the efficiency of the
collaboration. Without coordination, there is the risk that
participants would get involved in conflicting or repetitive
tasks. Coordination, in this context, is defined as “the act
of managing interdependencies between activities
performed to achieve a goal” [11]. It is the most important
of the articulation work’s activities because it represents
the dynamic aspect of articulation, demanding to be
“renegotiated” almost continuously during a collaborative
effort. The other activities of the articulation work are
concluded before the beginning of the collaboration and
seldom need to be altered.

The great challenge in proposing coordination
mechanisms to control collaborative activities is to
achieve the flexibility demanded by the dynamism of the
interaction between partners. A step toward this flexibility
is achieved by means of a clear separation between
“articulation work, i.e., the work devoted to activity
coordination and coordinated work, i.e., the work devoted
to their articulated execution in the target domain” [23].

One of the advantages of this approach is the
possibility of altering coordination policies by simply
altering the coordination mechanisms for the
interdependencies, without the necessity of altering the
core of the collaborative system. Additionally,
interdependencies and their coordination mechanisms

Alberto B. Raposo, Léo P. Magalhães, Ivan L. M. Ricarte
Dept. of Computer Engineering and Industrial Automation

School of Electrical and Computer Engineering
State University of Campinas (UNICAMP) – Brazil

{alberto, leopini, ricarte}@dca.fee.unicamp.br

Hugo Fuks
Software Engineering Laboratory

Computer Science Dept.
Catholic Univ. of Rio de Janeiro –Brazil

hugo@inf.puc-rio.br

abraposo
Proc. of the 7th Workshop on Groupware - CRIWG'2001, p.170 - 179. Darmstadt, Germany. IEEE Computer Society Press, 2001.

may be reused. It is possible to characterize different
kinds of interdependencies and identify the coordination
mechanisms to manage them, creating a set of
interdependencies and respective coordination
mechanisms capable of encompassing a wide range of
collaborative applications [12].

In this context, the present paper introduces a
framework for the definition of generic interdependencies
that occur between tasks in collaborative activities. In the
following section related works are discussed. The
interdependencies are studied in Section 3, where the
framework is presented. Section 4 exemplifies the
proposed model by means of the implementation of a
collaborative virtual environment. The paper resumes
with conclusions and suggestions for future research.

2. Related work

Collaborative systems with some kinds of coordination
mechanisms only started to appear in the second half of
the 1980s. However, they were restricted to specific
scenarios, because coordination protocols were rigidly
defined, restraining dynamic modifications. Collaborative
systems containing such characteristics have what has
been called coordination models of first generation. A
coordination protocol, however, may not encompass all
possible situations. Therefore, the user will eventually be
in a situation that requires a deviation from the protocol.
For that reason, in the 1990s systems were constructed
with more flexible and easily modifiable coordination
mechanisms (coordination models of second generation).

The second generation of coordination models has
three main characteristics: accessibility to application
designers and end users, interoperability and flexibility. In
general, it is possible to say that, in regard to
coordination, current collaborative systems are developed
to achieve at least one of these functionalities.

Oval (Objects, Views, Agents and Links) is an
example of a tool for the construction of collaborative
applications in which the concerns about the accessibility
of the coordination mechanisms to end users prevail [13].
Another system sharing the same concerns is Ariadne,
which is a generic notation aiming to facilitate the
construction of coordination mechanisms in any
application involving collaborative work and, at the same
time, enabling application designers and users to build
and alter these mechanisms [22].

Interoperability is a generic term encompassing from
the integration of the heterogeneous communication
infrastructures of different organizations to the integration
of business processes [10]. From the coordination point of
view, interoperability imposes an even more challenging
problem, because it deals with the support for inter-group
collaboration, and not only intra-group (i.e., inside a well-
established group, with some predefined conventions).

Reconciler, for example, is a system whose main
objective is to manage the interoperability between
groups at the semantic level, conciliating their visions by
means of the treatment of terminology and unity conflicts,
among others [23].

The evidence that collaborative systems should not
impose rigid work or communication patterns led to the
development of systems that allow dynamic redefinitions
and temporary modifications in the coordination model
(flexibility in coordination). Intermezzo is an example of a
system with these characteristics that uses the notions of
policies and roles for the coordination of collaborative
activities [6]. Coordination policies are defined by means
of access control to data objects, which are assigned to
group of users with a certain role. Roles are assigned not
only before the collaboration, but they also change
dynamically during the collaboration.

Coordination languages, initially devoted to the
implementation of parallel applications [9], have also
been developed for the construction of collaborative
applications. The idea behind these languages is that it is
possible to construct a complete programming model by
separating the computation model from the coordination
model. The computation model is accomplished by
conventional programming languages and allows for the
construction of isolated activities. The coordination model
is what connects these isolated activities, establishing the
threads execution control and the communication among
them. DCWPL (Describing Collaborative Work
Programming Language) is an example of coordination
language for the implementation of collaborative
applications [5]. This language separates the description
of computational entities from the interaction rules
followed by workgroups. These rules may be altered at
runtime. In the present work, a similar separation is made
between tasks (computation) and interdependencies
(coordination).

2.1. Task interdependencies

The idea of creating a set of tasks interdependencies
and respective coordination mechanisms was proposed in
the coordination theory of Malone and Crowston [11].
They defined three types of elementary resource-based
dependencies (flow, fit and sharing) and worked with the
hypothesis that all other dependencies could be defined as
combinations or specializations of these basic types [14].
A flow dependency occurs when a task produces
resource(s) that will be used by another task. A fit
dependency arises when two or more tasks collectively
produce the same resource. A sharing dependency occurs
when two or more tasks use the same resource. In
addition to these three elementary types, three subtypes
were defined, namely, prerequisite, accessibility and
usability. Prerequisite is related to time and means that a

resource must be produced before it may be used.
Accessibility is related to place and implies having the
resource in the right place for use. Usability is related to
the resource itself, meaning that it should be “usable” for
the task that needs it. Summarizing, an “available
resource” means “the right thing, in the right place, at the
right time.”

The coordination theory was the inspiration of the
genres coordination proposal, which stresses the
coordination in relation to resources, place and time [25].
Resources, in particular, are treated according to three
characteristics, divisibility, concurrency and reusability.
Divisibility is related to how a resource is divided into
smaller parts without loosing its usability. Concurrency
refers to the simultaneous use of the complete resource
(i.e., without being divided). For example, if two users
want to eat the same chocolate, it should be divided; if
they want to view the same Web page, it is a case of
concurrency. The third characteristic of the resource,
reusability, means that the same resource may be
available several times (e.g., the Web page, but not the
chocolate). Aspects related to time and place are very
similar to that of the original coordination theory (“in the
right place, at the right time”).

Another work that should be mentioned uses the
interdependencies among activities to workflow
management [3]. In this case, interdependencies are
defined as “constraints on the occurrence and temporal
order of events” and are controlled by coordination
mechanisms defined as finite state automata, which
guarantee that they are not violated. The objective is to
create a global scheduler that satisfies all dependencies
defined for the workflow. A limitation of this work is that
it is restricted to temporal interdependencies and is
specific to workflow applications.

The present work starts with some of the ideas of these
previous works, and is refined by defining a larger set of
basic interdependencies and new dimensions for them.

3. Task interdependencies: A framework

Before presenting the framework, it is necessary to
clarify the definition of task as used in this work. In this
context, tasks are the “building blocks” of a collaborative
activity, which is defined as a coordinated set of tasks
realized by multiple actors to achieve a common goal.
Tasks may be atomic or composed of subtasks and are
connected to one another through interdependencies. The
granularity of a task is defined by the interdependencies it
has with other tasks. A group of subtasks with no external
interdependencies (i.e., interdependencies with another
task that does not belong to this group) can be considered
a task. For example, in the collaborative activity of
writing a book by several authors, the writing of a chapter
may be considered a high level task if it is a book of

readings. In this case, the subtasks associated to the
writing of a chapter have no relationship to those
associated to another chapter. On the other hand, if it is a
“regular” book (i.e., not divided into authored chapters), it
is possible that only more granular operations (such as the
writing of a section or a paragraph) may be considered
tasks, depending on the authors’ method of work.

Using this definition of task, it is possible to model a
collaborative activity in several abstraction levels, which
improves both the understandability and the feasibility of
the interacting rules that characterizes the whole process.
Collaborative activities, therefore, assume a more
manageable perspective, facilitating the identification of
coordination mechanisms for the interdependencies. The
term “coordination mechanism” means a “specialized
software device, which interacts with a specific software
application so as to support articulation work with respect
to the field of work as represented by the data structures
and functionalities of that application” [22].

The proposed framework is composed of two parts.
Initially (Section 3.1) a set of basic interdependencies that
occurs among tasks is defined. Then, some dimensions for
the interdependencies are defined (Section 3.2), which
may be viewed as additional characteristics or
specializations of them that will guide the identification of
adequate coordination mechanisms.

3.1. Basic interdependencies

Interdependencies in the proposed framework are
divided into two types, temporal and resource
management. Temporal interdependencies establish the
execution order of tasks. Resource management
dependencies are complementary to and independent of
temporal ones and deal with resource distribution among
tasks.

This separation between temporal and resource
management dependencies agrees with the coordination
model proposed by Ellis and Wainer [7]. According to
this model, the coordination in collaborative systems
could occur on two levels, the activity level and the object
level. At the activity level, the coordination model refers
to temporal dependencies, describing “the sequencing of
activities [tasks] that make up a procedure [collaborative
activity].” At the object level, the coordination model
refers to resource management dependencies, describing
“how the system deals with multiple participants’
sequential or simultaneous access to some set of objects.”

3.1.1. Temporal interdependencies. Temporal
dependencies establish an execution order for the tasks.
An example of such kind of dependency occurs in e-
commerce, in which a consumer order may only be
canceled before the product is delivered [17].

The set of temporal interdependencies of the
framework is based on temporal relations defined by
Allen [2]. According to him, there is a set of primitive and
mutually exclusive relations that could be applied over
time intervals (and not over time instants). This
characteristic made these relations suited for task
coordination purposes, because tasks are generally non-
instantaneous operations. Allen’s interval algebra is based
on seven basic relations, as illustrated in Figure 1.

 Based on the relations of Figure 1, a set of axioms is
defined to create the temporal logic. For example, there
are axioms to prove the mutual exclusion and the
exhaustivity of the basic relations and others to define
transitivity relations (e.g., if X during Y and Y before Z,
then it is inferred that X before Z) [1].

The temporal logic of Allen is defined in a context
where it is essential to have properties such as the
definition of a minimal set of basic relations, the mutual
exclusion among these relations and the possibility to
make inferences over them. Temporal interdependencies
between collaborative tasks, on the other hand, are
inserted in a different context. For this reason, it was
necessary to make some adaptations to Allen’s basic
relations, adding a couple of new relations and creating
some variations of those originally proposed. The main
difference in the context of collaborative activities is that
it is possible to relax some restrictions imposed by the
original relations. This introduces a degree of redundancy
from temporal logic’s point of view, but makes the
coordination model more understandable and manageable.
The result of the adaptation of Allen’s relations for the
context of collaborative activities is the set of 13 temporal
interdependencies presented below.

Consider two tasks T1 and T2 that occur, respectively,
in time intervals [t1i, t1f) and [t2i, t2f).

T1 equals T2 (t1i = t2i and t1f = t2f): This dependency
establishes that two tasks must occur simultaneously. It
is the same relation originally proposed by Allen.

T1 starts T2: This relation has been divided into two.
T1 startsA T2 (t1i = t2i and t1f < t2f): Both tasks must

start together and the first must finish first. It is the
original relation.

T1 startsB T2 (t1i = t2i): Variation of the original
relation, relaxing the obligation that the first task
must finish first. This variation makes sense
because in some situations it is required that both
tasks start together, but it does not matter when they
will finish.

T1 finishes T2: Similarly to the previous one, it is possible
to define two relations based on it.
T1 finishesA T2 (t1i > t2i and t1f = t2f): Both tasks

finish together, but the first must start after the
second. It is the original relation.

T1 finishesB T2 (t1f = t2f): Similarly to startsB, this
dependency is obtained from the original, relaxing
the restriction that T1 must start after T2. This
dependency is important for situations in which it
does not matter when tasks have begun, but they
must finish simultaneously.

T1 before T2: This relation clearly illustrates the
difference between Allen’s temporal logic and task
interdependencies. It can be divided into three distinct
interdependencies.
T2 afterA T1 (t1f,n < t2i,n, ∀ n > 0, where n means the

nth execution of the task): T2 may only be executed
if T1 has already finished (the restriction occurs in
the execution of T2; T1 can be freely executed).
This dependency is the prerequisite relation, which
is very common in collaborative applications. In
this case, T2 may be executed only once after each
execution of T1.

X starts Y

X finishes Y

X before Y

X meets Y

X overlaps Y

X during Y

time

X equals Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Figure 1. Allen’s primitive relations between time intervals X and Y.

T2 afterB T1 (t1f,1 < t2i,n, ∀ n > 0): Variation of the
previous dependency, in which T2 may be executed
several times after a single execution of T1.

T1 beforeA T2 (t1f < t2i): From a temporal logic point
of view, this relation is the opposite of after (the
formal definition is the same). However, they
generate totally different coordination mechanisms.
Essentially, the difference is that in this case the
restriction occurs in the execution of T1, which may
not be executed anymore if T2 has already started
its execution. There is no restriction on the
execution of T2 (T2 does not have to wait for the
execution of T1, as would happen with the
dependency T2 afterA T1).

T1 meets T2 (t1f = t2i): T2 must start immediately after
the end of T1. It is the original relation.

T1 overlaps T2: This relation is divided into two types.
T1 overlapsA T2 (t1i < t2i < t1f < t2f): T1 starts before

T2 and T2 must start before the end of T1, which
must finish before T2. It is the original relation.

T1 overlapsB T2 (t1i < t2i < t1f): Variation of the
original relation, in which it does not matter which
task finishes first. The only obligations are that T1
starts before T2 and T2 starts before the end of T1.

T1 during T2: This relation is also adapted to generate
two new interdependencies.
T1 duringA T2 (t1i,n > t2i,n and t1f,n < t2f,n, ∀ n > 0): T1

must be totally executed during the execution of T2.
In this case, a single execution of T1 is allowed
during an execution of T2.

T1 duringB T2 (t1i,n > t2i,m and t1f,n < t2f,m, ∀ m > 0 and
∀ (n ≥ m)): Variation of the previous dependency,
in which T1 may be executed more than once
during a single execution of T2.

A consequence of the included redundancies is that
there is not a unique way to represent interdependencies
among tasks, but these redundancies give a more
manageable and understandable perspective to the model.

3.1.2. Resource management interdependencies. It has
been shown that combinations of Allen’s basic relations
could also represent resource-related interdependencies
[24]. For example, if two tasks, T1 and T2, may not use
the same resource simultaneously, it is possible to define
a “not parallel” dependency as the following statement:
T1 afterA T2 or T1 meets T2 or T2 afterA T1 or T2 meets
T1. However, it is important to reinforce the point that the
context of interest is that of collaborative activities, in
which the notion of resource is very strong. Therefore, it
is not reasonable to ignore this notion and treat the
problem of task interdependencies as a temporal logic
problem. Moreover, considering resource management
dependencies independently of temporal ones, a more

flexible model is created, allowing the designer to work
with each kind of dependency separately.

Resource management interdependencies in the
presented framework are complementary to temporal ones
and may be used in parallel to them. This kind of
interdependency deals with the distribution of resources
among the tasks. An example is when two or more users
simultaneously want to alter the same part of a document
in a collaborative authoring system [18]. Three basic
resource management dependencies are defined.

Sharing: A limited number of resources must be shared
among several tasks. It represents a common situation
that occurs, for example, when several users want to
edit a document. This dependency includes the notions
of divisibility and concurrency of the genres
coordination proposal previously discussed [25].

Simultaneity: A resource is available only if a certain
number of tasks request it simultaneously. It
represents, for instance, a machine that may only be
used with more than one operator.

Volatility: Indicates whether, after the use, the resource is
available again. For example, a printer is a non-volatile
resource, while a sheet of paper is volatile.

From the basic interdependencies discussed above, it is
possible to define composite interdependencies.

Sharing M + simultaneity N: Represents the situation in
which up to M groups of N tasks may share a resource.

Sharing M + volatility N: Situation in which up to M tasks
may share the resource, which can be used N times.

Simultaneity M + volatility N: The resource is assigned to
groups of M tasks simultaneously. This may be done N
times.

Sharing M + simultaneity N + volatility Q: Up to M
groups of N tasks may share a resource. This can be
done Q times.

Different than temporal dependencies, resource
management dependencies are not binary relations. It is
possible, for example, that more than two tasks share a
resource. Moreover, each of the above interdependencies
requires parameters indicating the number of resources to
be shared, the number of tasks that must request a
resource simultaneously and/or the number of times a
resource may be used (volatility).

3.2. Dimensions of interdependencies

There is no claim here that the set of interdependency
types presented above is complete. Such affirmation could
only be made if it was possible to express with this model
all existent collaborative scenarios for all possible
contexts. Once it is impossible to enumerate all scenarios,
it must be learned from experience, using the model in
several collaborative scenarios in order to extend the

framework. One of the improvements brought about by
the use of the framework is the inclusion of what has been
called “dimensions” of interdependencies.

During the creation of coordination mechanisms
associated with the described interdependencies, the
necessity to treat some specific situations that were
common to all interdependencies was perceived. These
specific situations have been organized in the framework
as the referred dimensions, which are additional
characteristics of the basic interdependencies that
constitute guidelines for the identification of adequate
coordination mechanisms. Currently, two dimensions
have been identified, activeness/passiveness and
imprecision.

3.2.1. Activeness/passiveness. The same set of
interdependencies may generate completely different sets
of coordination mechanisms if they are considered active
or passive interdependencies. This is especially true for
temporal interdependencies and simultaneity (resource
management dependency).

In the active situation, a task “forces” the execution of
its interdependent tasks in order to achieve the desired
behavior. Here, the notion of prerequisite (i.e., a task
being ready) is not so strong as the order given by
interdependent tasks. In other words, it is the execution of
a task that determines the execution of others. An
example is when a user makes a change in a WYSIWIS
application, which must be immediately propagated to all
other users sharing this application. In this case, tasks are
related by the startsB interdependency, indicating that the
execution of one enacts the execution of others. A similar
situation could happen for simultaneity interdependency.
If a task wants to use a resource, it may start the execution
of other(s) that also use(s) the same resource in order to
reach the number of tasks needed to make use of the
resource.

It is possible to say that, for the active situation,
coordination mechanisms are built for guaranteeing that
tasks will be executed guided by their interdependencies.
Conversely, for the passive situation, coordination
mechanisms are built for guaranteeing that
interdependencies will not be violated, but they do not
guarantee that all tasks will be executed.

In the passive situation, a task does not force the
execution of interdependent tasks. When a task becomes
ready to execute but there is an interdependent task that
does not enable the validation of the interdependency, it
simply waits until the other also gets ready. For example,
in the startsB interdependency, if the first task is ready,
but not the other, they will only be executed when the
second gets ready. Here, the notion of prerequisite in
relation to the execution of tasks prevails.

The use of passive coordination mechanisms has
shown that there could be a number of situations subject

to deadlocks, especially if the task belongs to complex
activities. For example, in relation T1 equals T2, the agent
responsible for the execution of T2 (i.e., who realizes the
task – a human user, a software agent, etc.) could have an
alternative path that does not execute T2. In this case, the
agent responsible for the execution of T1 could be
blocked, waiting indefinitely for T2. To minimize this
kind of problem the use of timeouts in the coordination
mechanisms is proposed [19]. Two kinds of timeouts are
defined, which may be used in coordination mechanisms
for all interdependencies previously presented. In the first
kind (called timeoutA), an alternative task is executed
after a certain waiting period if the original task has not
yet been executed. This kind of timeout can be thought as
an “emergency procedure” to avoid that other tasks be
blocked. The second kind of timeout (timeoutB) sends
tasks back to their initial states after a certain waiting
period instead of executing an alternative task. The return
to the task initial state makes sense because, before
starting its execution, a task could have a resource
assigned to it. Therefore, it is necessary to release this
resource. TimeoutB is less “aggressive” than timeoutA, in
the sense that it does not overpass the interdependency,
but it only works when the agent responsible for the
execution of the blocked task has an alternative path that
does not execute that task.

Another possible consequence of passive coordination
mechanisms is that the non-execution of an expected task
may invalidate previous tasks. An example occurs in
relation T2 afterA T1. T1 may be executed without
restrictions, but in some cases it expects the execution of
T2 to be “validated.” A passive coordination mechanism,
however, does not guarantee that T2 will ever be
executed. For this reason, after a certain waiting period
the coordination mechanism should be able to warn the
agent responsible for executing T1 that its execution was
invalidated. This situation occurs, for example, in e-
commerce, where the processing of an order must be
followed by the payment. If the payment is not realized,
after a certain period the order should be canceled.

3.2.2. Imprecision. The use of the presented coordination
model has shown that it is sometimes very difficult to
completely define the interdependencies underlying
collaborative activities. This happens because these
relationships already may embed in their essence a not so
well defined (or fuzzy) semantics. This occurs, for
instance, when a second task wants to start its execution
when a first task is “almost finishing.” This scenario is
not accepted by conventional temporal interdependencies,
since tasks may only be synchronized by their starting or
finishing times. Such modeling imprecision is important
because it offers application designers a degree of
flexibility through which they may focus on their

customized version of the interdependency in a manner
more closely related to subjective human reasoning.

The fuzzy sets theory offers adequate resources to
implement coordination mechanisms with such degree of
imprecision. In particular, a fuzzy Petri net-based
approach has been used for this purpose [20].

Taking into account temporal interdependencies, the
use of fuzzy coordination mechanisms may enhance the
degree of parallelism in the execution of tasks. At one
side, this happens because a task that would have to wait
for another to get ready may now start its execution when
the other is not completely ready. At the other side, it is
possible to define synchronization points before the actual
end of the tasks (i.e., if a first task is a prerequisite for a
second one, the latter can be able to start before the actual
end of the former). To realize these situations, consider a
hypothetical toy manufacturing system. In order to
assemble a doll, its legs and arms must be produced at the
same time by different machines. Therefore, it may be
said that both tasks have the equals interdependency.
However, if the production of legs takes a little longer,
this task could be started a bit before the production of
arms. Consider now a third task, the assembly of the doll,
which requires the arms and legs resulting from the
previous tasks. In the conventional situation, this task
may start only after the end of the first two tasks.
However, if there is an initial phase of this task that does
not require the legs and arms (e.g., the setup of the
assembly machine) it may be started when those pieces
are, say, 80% ready.

Another aspect of fuzzy coordination mechanisms is
that they significantly reduce the number of deadlock
situations, because a task not completely ready may
enable the execution of another.

For all these reasons, the use of fuzzy coordination
mechanisms may bring a higher degree of flexibility and
manageability to CSCW that should be explored.

3.3. Global vision

Figure 2 summarizes the framework presented in this
section. On a more abstract level, the interdependencies
among tasks are defined, separated into temporal and
resource management dependencies. On the middle level,
additional characteristics (dimensions) of the
interdependencies are identified for each situation. Then,
based on the interdependencies and their dimensions, it is
possible to build (or reuse) adequate coordination
mechanisms.

A set of coordination mechanisms based on this
framework, that uses Petri Nets (PNs) [16] as a modeling
tool has been presented elsewhere [17], [19]. The next
section shows a case study that uses some of these
coordination mechanisms for the implementation of a
collaborative videogame.

4. Case study

In Collaborative Virtual Environments (CVEs), users
are simultaneously present and may interact with objects
and other users. Currently, the development of CVEs has
been dominated by leisure activities, basically enabling
navigation through virtual scenarios and communication
with remote users [8]. This kind of activity is well
coordinated by the “social protocol,” that is characterized
by the absence of any coordination mechanism, trusting
the participants’ abilities to mediate interactions.
Therefore, there are a growing number of studies focusing
on interactions in CVEs (e.g., [15]). However, activities
related to cooperative work also require sophisticated
coordination mechanisms to be efficiently realized in this
kind of system. For this reason, CVEs are potential targets
for the proposed coordination model.

In this section a case study of a CVE where a user
interacts with an autonomous agent that represents a
second user is presented. The example implements a kind
of videogame based on the second “task” (activity) of
Heracles, from the Greek mythology. According to the
legend, Heracles had to kill the Hydra of Lerna, a monster
with nine heads that are regenerated after being severed.
In order to achieve his goal, Heracles needs the
collaboration of his nephew Iolaus, who cauterizes the
monster’s wounds after Heracles cuts off each head.
However, the last head cannot be severed by any weapon.
The solution is to bury the monster in a deep hole and
cover it with a huge stone.

Figure 3 illustrates an abstract PN-like model of the
videogame (open rectangles indicate interdependent
tasks). There are two identical nets, one representing the
user’s and the other representing the agent’s sequence of
tasks. Each net has two alternative paths, indicating that

Figure 2. Illustrative representation of the proposed
framework.

each “actor” (user or agent) may assume either role
(Heracles or Iolaus). The upper part of the nets represents
Heracles’ sequence of tasks. He must get the sword, sever
eight of the Hydra’s heads, throw the beast into the hole
and cover it with a stone. The lower part of the nets
represents Iolaus’ sequence of tasks. He must get the
torch, cauterize the wounds after Heracles has severed the
heads and dig the hole.

The definition of which actor will assume which role is
given by the interdependencies volatility 1 between the
tasks get_sword and get_torch. Since there are only one
sword and one torch available, the weapon’s choice
determines that each actor will assume a different role.
There is also an equals interdependency between
get_sword and get_torch of different actors. This
interdependency requires an active coordination
mechanism in order to force the agent to choose the other
weapon when the user chooses his/her weapon.

The interdependency sharing 1 among the tasks
get_sword, cut_head and cauterize is the “core” of the
game. When Heracles gets the sword, he is also assigned
eight resources that may be thought of as “abstract
authorizations” to cut Hydra’s heads. After he has severed

each head, a resource is released, indicating to Iolaus that
he may cauterize that wound. This dependency requires a
passive coordination mechanism, because it is not
necessary to force Iolaus to cauterize each head after it
has been severed. However, if the head wound is not
cauterized within a certain period after it has occurred,
this task returns to its initial state (timeoutB) and also
reassigns the resource to Heracles, indicating that he must
once again sever that head (the head is regenerated).

There is also an interdependency afterA, indicating that
Heracles may only throw the monster in the hole if Iolaus
already has dug it. For this dependency, a passive
coordination mechanism was used.

The coordination mechanisms for the above
interdependencies were implemented using PNs. This
choice was made because, besides being easy to
understand, PNs offer a strong theoretical support for the
analysis of an environment’s behavior and supplementary
simulation techniques. Using the PN-based model, it is
possible to anticipate and test the behavior of
collaborative environments before their implementation.
A detailed description of the implemented coordination
mechanisms and the modeling and analysis of the game

Figure 3. Model of Heracles videogame.

has been presented elsewhere [19]. This example used
only precise coordination mechanisms, modeled by
“conventional” or high-level PNs, but imprecise ones
could be used by means of fuzzy PNs.

The videogame was implemented using the blaxxun
Contact [4], a client for multimedia communication that
provides resources for VRML (Virtual Reality Modeling
Language) visualization. The interaction with the user
occurs by means of buttons defined in a Java applet that
interacts with the VRML world via EAI (External
Authoring Interface), an interface that enables external
programs to interact with objects of a VRML scene. By
clicking on the applet’s buttons, the user orders the
execution of a task in the virtual world. Therefore, the
coordination mechanisms act on the interface’s buttons,
enabling or disabling them if their respective tasks are
enabled or not. In order to make the game more dynamic,
the agent’s behavior is aleatory, taking a variable amount
of time to begin the execution of the tasks imputed to it.
For example, when the user assumes the role of Heracles,
the agent (Iolaus) may not cauterize a head severed by
Heracles before it is regenerated. Figure 4 shows some
frames of the videogame (the nine heads of Hydra are
represented by nine monsters). Frames a and b show
Heracles’ interface, while frame c shows Iolaus’ interface.

The implementation of the videogame demonstrated
that, in order to be potentially reusable, coordination
mechanisms require a standard interface with the system
responsible for the execution of interdependent tasks. The
definition of such an interface is one of the next steps of
this work, as discussed in the following section.

5. Conclusions

This paper introduced a framework for the definition
of interdependencies among tasks in collaborative
activities. The framework also defines additional
characteristics for the interdependencies (the dimensions)
that show that it is possible to have several coordination
mechanisms for the same basic task interdependency. The
interdependencies and their dimensions provide
guidelines for the identification of the most appropriate
coordination mechanism in each situation.

The coordination model suggested by the presented
framework fits within the second generation because it
offers a degree of flexibility through separation of tasks
and interdependencies and is adequate for dealing with
interoperability aspects. This is so in the sense that the
interdependencies are generic (i.e., may be applied in a
wide range of collaborative applications) and the
implementation of coordination mechanisms may be
realized by any tool. Although the use of PN-based
coordination mechanisms has been stressed in the
example and in the cited references, the framework
clearly separates interdependencies from their

coordination mechanisms, enabling the use of different
implementation tools for the coordination mechanisms.

The set of interdependencies presented in the
framework does not claim to be complete, since it would
be very difficult to establish a framework with all possible
interdependencies between tasks. However, the
framework is extensible, in the sense that new
interdependencies and dimensions may be added to it,
enlarging the set of situations it encompasses.

A next step of this work is the implementation of
software components to implement the coordination
mechanisms. The component model will standardize an
event-based interaction between tasks and associated
coordination mechanisms in an implementation
independent manner. The implemented PN-based

a

b

c

Figure 4. Frames of the Heracles videogame.

mechanisms [19] may be one of the possible kernels of
these components.

The proposed framework will also constitute the basis
of an educational tool that plans to use CVEs as
experimental learning mechanisms.

Finally, it is important to reinforce that the
coordination of interdependent tasks in collaborative
activities is a problem that should be addressed to ensure
the effectiveness of the collaboration. The separation
between tasks and interdependencies, and a further
association between interdependencies and adequate
coordination mechanisms are important goals in this
direction. The framework presented here is a contribution
towards these goals.

Acknowledgments. A. Raposo is sponsored by FAPESP
(Foundation for Research Support of the State of São
Paulo, Brazil), grant n. 00/10247-3. H. Fuks has a
researcher productivity allowance from CNPq (Brazilian
National Research Council), grant n. 524557/96-9.
Thanks also to A. Coelho and A. Cruz for their helpful
insights.

6. References

[1] J. F. Allen, “Maintaining Knowledge about Temporal
Intervals”, Comm. of the ACM, 26(11): 832-843, Nov 1983.

[2] J. F. Allen, “Towards a General Theory of Action and
Time”, Artificial Intelligence, 23: 123-154, 1984.

[3] P. C. Attie et al., “Scheduling workflows by enforcing
intertask dependencies”, Distributed Systems Engineering
Journal, 3(4): 222-238, Dec 1996.

[4] blaxxun interactive, blaxxun Contact 4.4,
<http://www.blaxxun.com/ products/contact>, Aug 2000.

[5] M. Cortes, “A Coordination Language For Building
Collaborative Applications”, Computer Supported Cooperative
Work, 9(1): 5-31, 2000.

[6] W. K. Edwards, “Policies and Roles in Collaborative
Applications”, Conf. on Computer Supported Cooperative Work
(CSCW´96), pp. 11-20, 1996.

[7] C. A. Ellis, and J. Wainer, “A Conceptual Model of
Groupware”, Conf. on Computer Supported Cooperative Work
(CSCW´94), pp. 79-88, 1994.

[8] E. Frécon, and A. A. Nöu, “Building Distributed Virtual
Environments to Support Collaborative Work”, Symp. on Virtual
Reality Software and Technology (VRST´98), pp. 105-119, 1998.

[9] D. Gelernter, and N. Carriero, “Coordination Languages and
their Significance”, Comm. of the ACM, 35(2): 97-107, Feb
1992.

[10] W. Hasselbring, “Information System Integration”, Comm.
of the ACM, 43(6): 33-38, Jun 2000.

[11] T. W. Malone, and K. Crowston, “What is Coordination
Theory and How Can It Help Design Cooperative Work
Systems?”, Conf. on Computer-Supported Cooperative Work
(CSCW’90), pp. 357-370, 1990.

[12] T. W. Malone, and K. Crowston, “The Interdisciplinary
Study of Coordination”, ACM Computing Surveys, 26(1): 87-
119, Mar 1994.

[13] T. W. Malone, K.-W. Lai, and C. Fry, “Experiments with
Oval: A Radically Tailorable Tool for Cooperative Work”, ACM
Trans. Information Systems, 13(2): 177-205, Apr 1995.

[14] T. W. Malone et al., “Tools for inventing organizations:
Toward a handbook of organizational process”, Management
Science, 45: 425-443, 1999.

[15] T. Manninen, “Interaction in Networked Virtual
Environments as Communicative Action: Social Theory and
Multi-player Games”, 6th Int. Workshop on Groupware
(CRIWG’2000), pp. 154-157, 2000.

[16] T. Murata. Petri Nets: Properties, Analysis and
Applications. Proc. of the IEEE, 77(4): 541-580, Apr 1989.

[17] A. B. Raposo, L. P. Magalhães, and I. L. M. Ricarte, “Petri
Nets Based Coordination Mechanisms for Multi-Workflow
Environments”, Int. J. Computer Systems Science &
Engineering, 15(5): 315-326. Sp. Issue on Flexible Workflow
Technology Driving the Networked Economy, Sep 2000.

[18] A. B. Raposo, L. P. Magalhães, and I. L. M. Ricarte,
“Coordination Mechanisms for Collaborative Environments”, VI
Simpósio Brasileiro de Sistemas Multimídia e Hipermídia
(SBMIDIA’00), pp. 247-258, 2000. In Portuguese.

[19] A. B. Raposo, Coordination in Collaborative Environments
Using Petri Nets, Ph.D. Thesis, DCA – FEEC – UNICAMP,
October 2000. In Portuguese.

[20] A. B. Raposo, A. L. V. Coelho, L. P. Magalhães, and I. L.
M. Ricarte, “Using Fuzzy Petri Nets to Coordinate Collaborative
Activities”, Accepted to Joint 9th IFSA (International Fuzzy
Systems Association) World Congress and 20th NAFIPS (North
American Fuzzy Information Processing Society) Int. Conf.,
2001.

[21] K. Schmidt, and L. J. Bannon, “Taking CSCW Seriously –
Supporting Articulation Work”, Computer Supported
Cooperative Work, 1(1-2): 7-40, 1992.

[22] K. Schmidt, and C. Simone, “Coordination mechanisms:
Towards a conceptual foundation of CSCW systems design”,
Computer Supported Cooperative Work, 5(2-3): 155-200, 1996.

[23] C. Simone, G. Mark, and D. Giubbilei, “Interoperability as
a Means of Articulation Work”, Proc. Int. Conf. on Work
Activities Coordination and Collaboration (WACC’99), pp. 39-
48, 1999.

[24] T. Wahl, and K. Rothermel, “Representing Time in
Multimedia Systems”, Proc. IEEE Conf. on Multimedia
Computing and Systems, pp. 538-543, 1994.

[25] T. Yoshioka, and G. Herman, Coordinating Information
Using Genres, Center for Coordination Science, Sloan School of
Management, MIT, Working Paper CCS WP#214, 2000.

