

A Multi-user Videoconference-based Collaboration Tool:
Design and Implementation Issues

Cesar T. Pozzer, Luciana S. Lima, Alberto B. Raposo, Carlos J. G. Vieira
Tecgraf (Computer Graphics Group)

Computer Science Department – PUC-Rio, Brazil
pozzer, luciana, abraposo, jourdan@tecgraf.puc-rio.br

Abstract

This paper presents CSVTool (Collaboration
Supported by Video Tool), a video-based collaboration
tool designed to be simple, platform-independent, and
to support multiple users over unicast network. Some
design and implementation issues are stressed, such as
strategies for controlling user participation, which are
essential in this kind of collaborative setting, where
many participants may interact with each other through
audio and video streams. Moreover, we present aspects
related to the introduction of the tool in a large
company.

1. Introduction

Nowadays, with the increase of computer processing

power and network performance, it is becoming viable,
especially in large companies, the use of videoconferen-
cing tools for a number of purposes, such as meetings
and cooperative work among specialists in different
areas.

Audiovisual media allows a transparent flow of
information among users with their distinct models,
projects and applications. Videoconferencing, when
using available intranet connections, may be a suitable
strategy to overcome geographical distances, share
professional information, reduce costs of traveling, and
optimize working hours efficiency.

These collaborative settings, where many
participants can interact through audio and video
streams using peer to peer connections, bring up some
problems mainly related to bandwidth and CPU
limitations that may become critical when the number of
connections increase without control. Any solution to
this kind of problem will impose restrictions in the way
participants access the collaborative session or in the
quality of the media.

In this paper we describe some design and
implementation aspects of CSVTool, a tool
implemented using Java, CORBA and JMF (Java Media
Framework) [1], designed for providing collaborative
features to applications with limited or no collaborative
resources, used by geographically distributed teams [2].

This article is organized as follows. The next section
addresses the necessities that guided the development of
CSVTool. Section 3 analyzes some related tools.
Section 4 introduces the tool and presents key
implementation issues, such as participation control and
user interface. Finally, the experience on introducing
the tool in a large company is discussed in Section 5.
Section 6 concludes this paper.

2. Tool features

The visual integration of applications running in

different locations allows geographically distributed
end-users to work collaboratively. This reduces
communication barriers and increases productivity. In
cases where the application itself doesn’t offer
collaboration support, the videoconference may be a
suitable possibility for information exchange. Besides
this main factor, the development of CSVTool is also
guided by other requirements related to the highly
heterogeneous nature of the problem such as:
• Adaptability: the tool must be platform-independent,

running in different operating systems and
architectures. It must also provide an easy
integration to distributed applications and be
customizable and configurable to different uses and
applications (see Section 5);

• Low cost: the tool must work on a simple computer
using a webcam, connected to an intranet. No
dedicated data channels are required, allowing easy
installation even for remote sites.

3. Existing tools

Currently, there are many tools, both commercial and

academic, for real time collaboration supporting audio,
video and textual communication. This section briefly
describes some of these tools, focusing on the
requirements considered in the implementation of
CSVTool.

The CUWorld from QuickNet [3] is the commercial
successor of CU-SeeMe, which was one of the first
videoconference solutions, originally developed at
Cornell University. It does not support data sharing and
its current version is restricted to MS-Windows. To

abraposo
Text Box
Proc. of the 9th International Conference on Computer Supported Cooperative Work in Design (CSCWiD), p. 547-552. Coventry, U.K., May 2005.

enable the connection of more than two participants, it
uses reflectors. In the free version reflectors are
proprietary protocols and software is only available for
UNIX platforms.

The NetMeeting/Messenger [4, 5] is a very popular
videoconference tool, since it is included in recent
versions of MS-Windows and has a simple user
interface. It offers resources for interface customization
and the substitution of audio and video codecs, since it
is based on Component Object Model. However it is
restricted to the MS-Windows platform and it is limited
to two-point conferences, unless used only as an
endpoint of a H.323 session controlled by a Multipoint
Control Unit (MCU).

Webex [6] is a commercial product providing
videoconference and collaboration services via Web.
Although this fact guarantees its platform
independency, it may only be integrated into Web-based
applications.

The VRVS (Virtual Rooms Videoconference
System) [7] is a multi-platform academic tool based on
the concept of virtual rooms, where distributed users
meet for collaboration. The communication among
participants is managed by a net of reflectors, used to
optimize bandwidth and to enable network load
balancing. Although VRVS fulfills many of the above
mentioned requirements, it is aimed at academic use.
The currently available reflectors are hosted in
academic institutions, and there is no reference in
business corporations, which is the proposal of
CSVTool.

The IBM Sametime [8] is a stable tool, portable for
MS-Windows and UNIX. It provides mechanisms for
managing the quality of the transmitted media and the
bandwidth use. Among the analyzed tools, Sametime
was one of the most complete. However, one of its
limitations is the use of the “hands-on” technique for
access control, i.e., the reception of audio and video is
restricted to a single participant at a time. Another
limitation of the tool is that its development toolkit
restricts its coupling to MS-Windows or Web-based
applications.

4. CSVTool implementation issues

The CSVTool is based on a client/server model. The

server is responsible for the management of the
participants in a single collaborative session. It controls
messages exchange within the clients. The server is not
prone to traffic overburden because it does not receive
the “heavy traffic” (the streams), which is transmitted
directly between the clients. The server is located in a
fixed address within the corporate network.

The server/client communication is implemented in
CORBA, and the communication among clients for the
streams transmission is made via RTP (Real-Time
Protocol). CORBA was chosen because it provides

platform independence, is extensible and allows easy
integration with other distributed applications.

CSVTool is designed to operate in two different
modes, as a standalone videoconferencing tool or
integrated to a collaborative application. In the
integrated mode CSVTool creates a videoconference
session over a collaborative session already taking
place. The goal is to enable easy utilization,
initialization and high adaptability and coupling to
applications with collaboration resources in a
distributed environment. After the group initialization,
which is realized by the host application, the video
streams exchange among the participants is
automatically started by CSVTool.

4.1. Participation control

Without mechanisms for participation control, the

number of RTP connections may increase drastically,
overloading CPUs and networks. Considering the
existence of a network with low bandwidth nodes, the
problem is even more noticeable. However, within a set
of connections some of them are more important than
others. The user should have an easy way to select
information by relevance, avoiding unnecessary
connections that may act just as bandwidth consumer.
Participation control must be able to associate
collaborative session parameters and user centric fields.

Our approach seeks to balance between quality and
data availability, in a way that the user can select
explicitly the desired send/receive RTP connections
from/to any other participant in the session. In case of
network overload, the user may keep active most
important connections only. By observing stream
quality, the user may iteratively remove connections in
favor of the most important ones, until data presentation
reaches an adequate level. Video compression level may
also be used as an additional resource for controlling the
ratio between quality/performance and data relevance.

To implement these participation policies, each
individual connection is represented by boolean values
organized as bi-dimensional square matrices,
representing the intentions and permissions on sending
and receiving streams among all participants. These
matrices, by means of message exchange, move
between clients and server, whenever necessary.

The matrices dimension is the number of
participants, so they increase as new participants enter
the session. We define four kinds of boolean matrices to
treat each media type:
1. Key: shapes the collaborative session format. It is

generated in the server, taking into account the
desired or available capture devices in each
participant’s machine. Moreover, session types can
also be defined. In a classroom session, the students
are able to send streams to the professor, who is able
to send streams to all the students. In a public
session, each participant may send/receive streams

to/from all the others. The session type parameter
has higher priority than others.

2. Intention: stores users’ send/receive intentions
to/from others participants. It is subordinated to the
key matrix. This means that when the key is false for
a given field, this must be false in the intention
matrix too. This matrix is individual for each
participant.

3. Connection: results from the compilation of all
participants’ intention matrices. Taking into account
all send and receive intentions, this matrix
continuously express enabled connections. A
connection is established when send and receive
intentions of correlate participants are true.

4. External Intention: complementary to the connection
matrix, this one reflects connections that are not
established because just one side decided not enable
the stream. For example, when participant A wants
to send audio to B but B doesn’t want to receive. It’s
useful to notify B (considered in this case, from A’s
perspective, as an external participant) that A wants
to talk to him/her. The values of this matrix are
considered just when a given connection is not
established.
These four kinds of matrices are used to control, to

notify and, especially, to limit all active connections.
The way data is stored depends on the type of the
matrix. In key and connection, just lines are used. For
the intentions, lines represent send intentions, while
columns, receive intentions.

All participants are associated with an ID that is used
as an index when accessing matrices’ lines and
columns.

In subsections 4.1.1 and 4.1.2, we analyze those
matrices from the client and server perspectives. Some
matrix examples are presented representing parameters
for a given hypothetical situation in order to clarify the
proposed strategy.

4.1.1. Client perspective. When a user starts the client
application, the capture devices to be used in the
collaborative session must be selected. These devices,
represented as boolean values are sent to the server,
which initializes the key, connection and external
intention matrices for that participant. These three
matrices, including data from other participants, are sent
back to the client. This information is used to set up the
graphical interface (see Section 4.2) that reflects which
connections can be established.

The server is informed when clients’ intentions are
changed. At this time, connection and external matrices
are rebuilt and sent to all clients, which update their
interfaces and the connections (by creating or removing
RTP connections) in order to keep the session
consistent. Figure 1 presents some video matrices for a
session with three participants (a similar configuration
is used for audio).

 A B C A B C

A T T A T T

B F F B F

C T T C F

 A B C A B C

A T A F

B F F B F

C F C F T

Figure 1. Example of matrices for controlling
permissions and intentions

Observing the global key matrix, one can notice that
it is a public session, since participants A and C may
send video to all the others. This is observed in the first
and third rows of the key matrix, which have only true
values. B’s restriction on sending video to the others
(false values on the second row of the key matrix) may
be a consequence of capture devices unavailability or
his/her own intentions. This also restricts the
participants from receiving video from B, which is
expressed at the A’s and C’s intention matrixes (the
dark ‘F’ in A’s and C’s intention matrices).

The remaining matrices represent the users’
intentions on sending and receiving video. For example,
A wants to send to B and C (first row of A’s intention
matrix) and doesn’t want to receive from C (third
element of first column of A’s intention matrix). A
cannot receive from B because B is not supposed to
send video. Observing B’s and C’s intention matrices, it
is possible to verify that B wants to receive video only
from A; C wants to send video only to B and doesn’t
want to receive from A.

4.1.2. Server perspective. The server acts as a manager
for participants, as well as for the audio and video
streams exchanged among them. By means of a
message broadcasting scheme, it communicates
participants about entrance and exit of others, builds
and sends new connection matrices as intentions
change, and redirects text messages to specific
participants.

There are four matrices stored in the server (two for
audio and two for video), global send and receive
intentions. Connection and external matrices are built
from those matrices. When the server receives an
intention matrix from a participant with a given ID, its
values are copied to the respective send and receive
matrices. Sending intentions are copied to rows of the
global send intentions matrix, and receiving intentions
to columns of the global receive intentions matrix, so
that direct Boolean operations can be performed
between these matrices to construct the connection
matrix. Figure 2 shows the server matrices
corresponding to the client matrices presented in Figure
1.

A´s send/receive IntentionsGlobal Key

C´s send/receive Intentions B´s send/receive Intentions

 A B C A B C

A T T A T F

B F F B F F

C F T C F F

 A B C A B C

A T T A T F

B F F B F F

C F T C F F

Figure 2. Server’s global matrices

In the situation of Figure 2, the only video
connection occurs between A and B, since A wants to
send to B (first row of global send intentions matrix),
and B wants to receive from A (second column of
global receive intentions matrix). A is not sending to C
because C, even though knowing that A wants to send
video, doesn’t want to receive. The same occurs among
C and B.

When building the global connection matrix it is not
necessary take into account the key matrix because it is
reflected in the graphical interface, disabling buttons
which actions are not allowed.

4.2. User interface

The graphical user interface design plays an

important role as a means for allowing user control and
awareness over the RTP connections related to him/her.
It should be as simple as possible and manage a large
number of participants. At the same time, the interface
should reflect the current configuration of the matrices
received from server (key, connection and external
intentions), which are expressed by means of styled
buttons, as presented in Figure 3.

Each external participant is represented by a floating
window placed inside the main window. In each
internal window there is a toolbar and a central panel
where received video data is presented. The panel size
can be configured, and it is initialized at the received
video size. The title of the internal window indicates the
login of the respective external participant.

The internal windows can be minimized or
maximized. When minimized (participant C in Figure
3), they are accessed in the buttons on menu bar of the
main window, with an icon indicating if any RTP
connection is active with that participant. In this
example, participant C is not active with A (hung up
phone icon), while participants B and D are active
(antenna icon). C can be called by just clicking in the
participant’s button. Obviously, this connection will
become active only if C wants to talk with A (C
send/receive intentions). When the remote participant
receives a call, a window message is displayed, in
conjunction with a ring sound.

Through the toolbar, local user intentions can be
expressed, and the user may be aware of the streams
that are active, those that may be activated, and those
that cannot. Moreover, it also offers additional buttons
for controlling text messages (chat), snapshots, among
others.

Each audio/video control button may assume five
different configurations:
1. Disabled: When the respective stream cannot be

active. It occurs when the capture device is
unavailable or disabled by the user or session type.
The button becomes gray.

2. Active: When the connection is active.
3. Off: When both participants don’t want to activate

the stream. The button is dashed and hachured.
4. Waiting: When the local participant wants to

activate the streams, but the remote participant
doesn’t. The button is hachured.

Figure 3. CSVTool GUI from participant A’s perspective, who receives a video

stream from B and the desktop content from D.

External Intention Global Connection

Global Receive Intentions Global Send Intentions

5. External: When the remote participant wants to
activate the streams, but the local participant
doesn’t. The button is dashed.
Figure 4 shows the toolbars button representations

that may be available for two participants (A and B).
Each toolbar have two buttons for controlling audio and
video receiving (on the left), and two others for sending
(on the right). In the figure, the left side represents the
toolbar associated with the external participant B, from
the A’s perspective, and the right side, the opposite.
Once A is sending video to B, both the A’s send video
button and the B’s receive video button are active (label
1 in Figure 4). Since B can’t send video, A can’t receive
it (disabled buttons, labeled 2). Regarding audio, B
doesn’t want either to send or receive (dashed audio
buttons in B’s perspective and hachured buttons in A’s
perspective, labeled 3 and 4). On the other side, A
wants to send, what puts B’s receive audio button in the
external state (dashed, but not hachured button,
indicating A’s intention, labeled 4).

Figure 4. Relation among buttons between two

participants

When any button is pressed (status change), the local
intention matrix is sent to the server. After compilation,
when the new connection and external intention
matrices return from the server, buttons are updated, as
well the streams being sent and received by the local
participant.

4.3. Selecting video source

In many situations, like a presentation or software

demonstration, it may be useful to send more than one
video stream from a single participant. For example,
one stream focusing the speaker and other the
presentation or content. In most common cases, the
audience attention is directed to only one stream, which
may continuously switch during the presentation.

Our approach to tackle content transmission is to
create a resource that allows the user to select the
information being sent. We consider that there is the
option to transmit the video stream or the desktop
content (Figure 3), which is done by a module that runs
in the same machine. To the interface, the data being
presented is transparent. Since both data types share the
same data channel, the sender can switch between them
whenever necessary.

5. Real world scenario analysis

Petrobras is a large Brazilian governmental oil & gas

company. Since it is present in many regions, including
administrative offices and production fields, strategies
for communication among these places become
necessary. CSVTool has been conceived in cooperation
to Petrobras Research Center (CENPES) to comply with
their necessities.

Most of the interface and usability features resulted
from real experiments in Petrobras, by observing and
collecting opinions from the users and administrators
about technical requirements, adaptability, and mainly
the problems present in the company that this kind of
tool could solve. Many different scenarios were
analyzed and tested [9], including sessions on
heterogeneous networks.

A pilot version of CSVTool ran integrated to a
distributed host application, NetGocad [10, 11], a multi-
platform tool designed for the collaborative
construction of earth-models for application in
geosciences.

Applications with some collaboration resources can
also be easily coupled to the CSVTool as a means to
add or extend audiovisual communication. The coupling
process requires that the host application implements
only the CSVTool CORBA integration API (Figure 5),
which is required for the videoconference session
initialization. After the establishment of the distributed
group, the host application is in charge of the
management of the session.

The target audience is another important issue for the
tool’s acceptance. Initially, the tool was aimed at
technical people, interested in consultancy sessions with
experts or distributed operational meetings, such as for
accompanying a well-drilling. When a demand for
administrative use appeared, it became essential to
change the access interface, avoiding IP numbers,
transmission configuration parameters, and so on. Since
the tool doesn’t work with a directory service yet, the
solution was to create fixed group servers and configure
specific clients to automatically connect to their group
server when the user logs on.

Figure 5. CSVTool integration schema

The process of adopting collaboration tools in
organizations is very sensitive; “if sold off the shelf in
the usual fashion, it (the tool) can be doomed” [12].
This process is sometimes considered as a “dual process
of both adapting the organization of work to the
conditions of the tool, and adapting the tool to meet this

1

2

3

4

Host
Application

CSVTool

collaborative
sessions

CORBA API

Host
Application

CSVTool

CORBA API

organization of work” [13]. Although we do not
disagree with this consideration, it is our belief that the
chances of success are immensely higher if we adopt
collaboration solutions that meets the actual
organization of work in the company. Therefore, the
CSVTool project has a dynamic and somehow
unforeseeable nature, being guided according to its use
in the target real world scenario.

An example of the dynamic nature of the
development is the creation of VDTool (Virtual
Desktop Tool), an independent tool based on the
desktop content transmission allowed by CSVTool
(Section 4.3). This tool was created because some users
in the company noticed that in many situations (such as
training, on line help, among others) desktop
transmission is more important than audio/video
themselves (they prefer to use phone or chat to discuss
the data being presented). In order to comply with these
users, we created VDTool, which is simpler than
CSVTool and doesn’t need a server, since clients talk
directly.

6. Conclusion

This paper describes CSVTool, a video-based

collaboration tool designed mainly to be simple,
platform-independent, and to support multiple users
over unicast networks. The project of the tool is guided
by the necessities of a large company.

The paper stresses the user-centric participation
control strategy aiming to overcome CPU and
bandwidth limitations. By means of a graphical
interface, in conjunction with a mechanism that
manages the creation of RTP peer-to-peer connections
among them, participants can express their own
intentions on sending and receiving audio and video
streams to/from the others. Thus, participants are able to
add or remove connections depending on the system
performance and bandwidth availability.

An important issue in future CSVTool
implementation is the design of a session directory for
facilitating participants’ access (for example, using
LDAP - Lightweight Directory Access Protocol [14]).
Finally, it is also necessary to find solutions to avoid
bandwidth overflow when the use of the tool becomes
widespread at the company, for example, considering
priority levels and access restrictions.

Acknowledgments

The research in collaborative applications at

Tecgraf/PUC-Rio is mainly supported by Petrobras and
RNP (National Research Network) – GIGA project.
Special thanks to Prof. Marcelo Gattass, head of
Tecgraf. Alberto Raposo was financed by individual
grant awarded by the Brazilian National Research
Council (CNPq), process nr. 305015/02-8.

References

[1] Sun Microsystems. Java Media Framework, 2003.
Available at: http://java.sun.com/products/java-media/jmf/
[2] C.T. Pozzer, et al. “CSVTool – A Tool for Video-Based
Collaboration”, WebMidia 2003, Salvador, Bahia, November
2003, pp. 353-367.
[3] CUWorld, 2003. Available at: https://www.cuworld.com/
[4] Microsoft. Net Meeting, 2003. Available at:
http://www.microsoft.com/windows/netmeeting/
[5] Microsoft. Windows Messenger v4.0, 2003. Available at:
http://www.microsoft.com/windowsxp/pro/evaluation/overvie
ws/communication.asp
[6] Webex. Web Conferencing, Video Conferencing and
Online Meeting Services, 2004. Available at:
http://www.webex.com/
[7] VRVS: Virtual Rooms VideoConferencing System, 2003.
Available at: http://www.vrvs.org/
[8] IBM. Lotus Instant Messaging and Web Conferencing
(Sametime), 2004. Available at:
http://www.lotus.com/sametime
[9] I.H.F. Santos, A.B. Raposo and M. Gattass, “Finding
Solutions for Effective Collaboration in a Heterogeneous In-
dustrial Scenario”. 7th Int. Conf. on Computer Support-ed
Cooperative Work in Design, Rio de Janeiro, 2002, pp. 74-79.
[10] Gocad. Earth Modeling Solutions: Earth Decision
Sciences, 2003. Available at: http://www.earthdecision.com
[11] Gocad. Research Consortium, 2003. Available at:
http://www.ensg.inpl-nancy.fr/GOCAD
[12] J. Grudin, “Groupware and Social Dynamics: Eight
Challenges for Developers”, Communications of the ACM, 37
(1), January 1994, pp. 92-105.
[13] J.E. Bardram, “Organizational Prototyping: Adopting
CSCW Applications in Organisations”, In G. Mark et al.
(organizers), CSCW 96 Workshop “Introducing groupware in
organizations: What leads to successes and failures?”, 1996.
[14] Howes, T.A., et al, Understanding and Deploying LDAP
Directory Services, 2nd Ed, Addison-Wesley, 2003.

