
Towards an Engineering Approach for Groupware
Development: Learning from the AulaNet LMS

Development

Marco Aurélio Gerosa, Mariano Pimentel, Alberto Barbosa Raposo,
Hugo Fuks, Carlos José Pereira de Lucena

Catholic University of Rio
gerosa@inf.puc-rio.br

Abstract
This paper presents the AulaNet learning management
system, its architecture and the collaboration model that
guided its development and that was refined during this
process. A case study of an online course indicates the
necessity to have an architectural support for
collaboration aspects and a collaboration-based
engineering approach to groupware development. This
approach, Groupware Engineering, is based on Software
Engineering and on concepts originated in the field of
CSCW.

Keywords
Collaboration model, groupware engineering, groupware
architecture, component framework.

1. Introduction
Although the Internet offers advantages and facilities

for teaching/learning, there are also many difficulties
associated with its use. To create interactive Web-based
content, for instance, teachers must deal with technologies
that sometimes they don’t master. To reduce these
difficulties the LMS may separate content from
navigation, allowing teachers to concentrate on the
production of content using their preferred tools such as
commercial text editors or slide presentation software,
while leaving learner navigation support to the system.
Additionally, integrated communication, coordination and
cooperation services may be made available by the LMS
to be available to courses, and reports may also be made
available to facilitate learner participation follow up.

The AulaNet was created based on the above
mentioned features. It is a freeware web-based LMS.
Besides Portuguese, it is also available for download
(http://www.eduweb.com.br) in English and Spanish
versions. The AulaNet interface is presented in Figure 1.

Figure 1. AulaNet learner interface

In its first versions, AulaNet resources were

subdivided into administrative, assessment and didactic
services, which is a common approach in educational
tools. Unfortunately, this approach led teachers who were
using the system to teach in the traditional way:
broadcasting information with no interaction among
learners. Hence, services were reorganized based on the
3C collaboration model, which seems to be suitable to a
collaborative learning approach. The AulaNet services are
currently subdivided into communication, coordination
and cooperation services, as can be seen in Figure 2 (The
3C triangle appears in [3]).

abraposo
Text Box
Proc. of the 9th International Conference on Computer Supported Cooperative Work in Design (CSCWiD), p. 329-333. Coventry, U.K., May 2005.

Communication

conferencing
systems

message
systems

workflow

CoordinationCooperation

Message to Participant
Contact with Teachers

Lesson Plan
Follow-Up Reports

Bibliography
Webliography

Documentation
Tasks

Discussion List
Conference

Debate

Exams

electronic
meeting rooms

shared information
space

group editors

inetlligent
agents

Co-authorship
Notices

Figure 2. Classification of AulaNet services

The AulaNet has been developed through

prototyping. Its developers are doctorate and masters
degree candidates and undergraduate students at the
Catholic University of Rio, who, besides maintaining it,
use it in their theses, dissertations and monographs,
implementing and testing concepts for their work. The
AulaNet has grown and its features have been
implemented on demand, making it hard to make any
extension to the code and in need of a code restructuring.

Developing environments to support collaborative
work is a complex job that requires an understanding of a
number of fields of knowledge, such as information
technology, psychology, sociology, cognition, etc.
Environments are quite susceptible to breakdowns, in
view of the fact that work processes between individuals
are quite specific and evolve over time, and on the top of
that, the adoption of groupware requires changes in
attitudes and work habits [7]. Although there is no way to
foresee all of the future demands, different groupware
products share a number of characteristics.

This paper presents the groupware engineering
approach used to re-structure AulaNet. This approach is
based on component based development and on the 3C
collaboration model.

2. The 3C Collaboration Model

The diagram shown in Figure 3 summarizes the main
concepts of the 3C Collaboration Model. This diagram is
an extension of models found in the literature, such as the
model proposed by Ellis et al. [4] and the Clover design
model [9].

arranges

that are managed by

demands

mediates

Communication Coordination

Cooperation

Group
Awareness

generates commitments

fosters

mediates

mediates

fosters fosters

tasks for

Figure 3. Overview of the 3C collaboration model

The communicational apparatus transmits and
registers the information. Then, the group interprets the
message, forcing an update their commitments and
knowledge. Then, the group moves into an argumentation
phase where they negotiate commitments and, therefore,
their knowledge.

Next step is to coordinate the ensuing activities
designed to enforce the fulfillment of the commitments.
Coordination organizes the group to avoid the loss of
communication and cooperation efforts and to ensure that
the tasks are carried out in the correct order, at the right
time and in compliance with the restrictions and
objectives [12].

Coordination involves the pre-articulation of tasks,
their management and post-articulation. Pre-articulation
involves actions that are necessary to prepare
collaboration, normally concluded before cooperation
begins, such as the identification of the objectives and the
mapping out of these objectives into tasks. The post-
articulation phase occurs after the end of the tasks and
involves the evaluation and analysis of the tasks that were
carried out and the documentation of the collaborative
process. The management of the carrying out of the tasks
is the act of managing interdependencies between tasks
that are carried out to achieve an objective [10].

Cooperation is the joint operation within the shared
workspace. Group members cooperate by producing,
manipulating and organizing information and building
and refining cooperation objects. Expression elements are
the means for acting upon cooperation objects, while
awareness elements display the results of a participant
action (feedback) and the action of their colleagues
(feedthrough).

The designer of a digital environment must identify
what awareness information is relevant, how it will be
obtained, where awareness elements are needed and how
to display and give individuals control over them.
Excessive information can cause overload and disrupt the
collaboration flow. The shared space must be conceived
in a way that group members could seamlessly move from
awareness to work.

3. The AulaNet Architecture

The evolving nature of groupware make it suitable
for the application of component-based development
techniques, which provides the flexibility needed in
projects with changing requirements [15]. In this
situation, groupware services could be plugged and
unplugged from the system.

The system architecture comprises component
frameworks, which define overall invariants and protocols
for plugging components.

Figure 4. AulaNet system architecture

In the AulaNet architecture (Figure 4), the AulaNet

Component Framework defines the general functionalities
common to all services, like the management of services
and data sharing. There are three different families of
services: collaboration, administrative and guest services,
which corresponds to components frameworks that deal
with characteristics specific to each service.

Moreover, AulaNet services are also developed using
a component framework-based architecture. There is a
common structure implemented by the collaboration
framework, which defines the skeleton of the service, and
plugged into this framework, there are the
communication, the coordination and the cooperation
component frameworks, each one giving support to each
C. Class frameworks are used to implement components,
that are plugged into the corresponding C-framework that
implement the specific functionalities of the service.

For example, in a previous version of the AulaNet
LMS, the Debate service was a plain chat tool, holding an
expression element, where learners could type their
messages; and awareness elements, where learners
participating at the chat session were presented, as can be
seen in Figure 5.

Figure 5. Debate Interface

This version of the Debate was implemented using a

communication component, which implements
synchronous communication protocols, and a cooperation
component, which implements the shared space, as can be
seen in Figure 6.

Framework

Communication
Component
Framework

Coordination
Component
Framework

Cooperation
Component
Framework

Synchronous
Communication

Channel
Component

Shared Space
Component

Collaboration

Figure 6. Expanded view of the Debate component
plugged into the Collaboration Service Component

Framework show in Figure 3

This version of the Debate service gives no computer

support to coordination, leaving it to the standing social
protocol. However, this is not always the case, because
some courses use a well defined procedure to the debate
activity, like the one shown in Figure 7, which represents
the procedure adopted in a course [5].

Select
debate moderator

Post a summary
 of the conference

Present
a question

Make a comment
on the question

Declare
debate session

init iated

Mediator Debate Moderator Learner

enables
forces forces forces

Vote on
a contribution

Free discussion
on the selected
 contribution

Draw
conclusions

Declare
debate session

finalized

Evaluation

blocks enables

forces

forces

forces

forces

enables

Figure 7. Expanded workflow of a debate

In this procedure, for each debate, the course
mediator selects a learner to be the session moderator. It is
also up to the mediator to declare the session initiated and
finalized and to evaluate learners’ participation. The
debate moderator posts a summary of the discussion that
took place during the week’s conference and then poses
three questions. For each question, each learner posts a
comment, and after every learner has posted its comment,
they vote and decide which one will be discussed. Then, a
free discussion takes place. Before the moderator poses a
new question, learners have to draw their conclusions.

In order to better support tightly integrated activities,
like the one exemplified above, in the following version
of the Debate service (presented in Figure 8), coordination
mechanisms were implemented. Floor control,
participation order and shared space blocking ability were
added to the service. The shared space was also enhanced
by new awareness elements, like session title, message
timestamp and the identification of mediators.

Figure 8. Debate service mediator interface

In this new Debate version, the same communication
component was used, as the synchronous communication
protocols and the characteristics of the messages did not
change. The cooperation component, which implements
the shared space, however, was enhanced by the new
awareness elements mentioned above. The main
difference is the insertion of a coordination component,
which implements the floor control coordination
mechanisms, as can be seen in Figure 9.

Framework

Communication
Component
Framework

Coordination
Component
Framework

Cooperation
Component
Framework

Synchronous
Communication

Channel
Component

New
Shared Space
Component

Collaboration

Floor Control
Component

Figure 9. Implementation of the new Debate service

This example illustrates the benefits of having a

component-based architecture that deals with the three Cs
of the collaboration model, namely, communication,
coordination and cooperation. Groupware Engineering
combines the systematic development approach provided
by Software Engineering together with the domain
analysis given by the 3C model originated from the
CSCW field.

4. Groupware Engineering

Collaborative systems are especially prone to failure
[7]; hence demand iterative evaluation during their
development. Ideally, groupware should be prototyped
[14], but given the excessive cost of throwing code away,
as demanded by “pure” prototyping, an incremental model
is more adequate. The groupware engineering cycle is
based on the spiral software development model [2],
which combines the classical sequential model and the
iterative behavior of incremental prototyping. The
Groupware Engineering cycle is presented in Figure 10.

Domain
Analysis

Requirement
Analysis

Testing

Implementation

Design

General groupware
requirements

3C
 C

ol
la

bo
ra

tio
n

M
od

el
(C

om
m

un
ic

at
io

n,
C

oo
rd

in
at

io
n,

C
oo

pe
ra

tio
n)

Extended
U

M
L,

D
esign Patterns,

G
roupw

are A
rchitectures,

C
ollaboration fram

ew
orks

Groupware Components
Toolkits

H
eu

ris
tic

 E
va

lu
at

io
n

Figure 10. Groupware development cycle

The domain analysis of Groupware Engineering is

supported by the 3C collaboration model, which is based
upon the concepts of communication, coordination and
cooperation.

General groupware requirements that are elicited in
the requirement analysis phase seldom are clear enough to
enable a precise specification of system behavior. This is
due to the fact that “we have only a sketchy knowledge of
how people collaborate, and translating what we know
into effective designs is difficult” [8]. Incremental
prototyping makes it possible to constantly evaluate and
validate the design and implementation, thus
counterbalancing the necessity of having a complete set of
requirements to start of the design.

There are different techniques suitable for the design
phase, namely, groupware design patterns [6] for reusing
common approaches of design; UML extensions for
representing groupware specific aspects of the software;
groupware architectures [16] and groupware-related
frameworks [11] for reusing code and infrastructure. For
the implementation phase, toolkits [13] and groupware
components [16] are alternatives for building
collaborative systems. Groupware heuristics [1] guide
experiments to test the system.

5. Conclusion

Based on the 3C model, in order to collaborate,
individuals must debate ideas (communicate), be in tune
with other participants of the group (coordinate) and
operate together in a shared space (cooperate). Successful
communication results in commitments assumed by the
group. Coordination enforces the group tasks to avoid that
communication efforts are lost. Cooperation is the joint
operation of members of the group in a shared space,
seeking to accomplish the tasks that are needed to fulfill
the commitments.

The groupware component system architecture used
in the AulaNet environment mirrors the 3C collaboration
model. Communication, coordination and cooperation
functionalities are directly mapped into the
implementation of AulaNet collaboration services. The
redesign of the AulaNet Debate service illustrates this
mapping and the modularity achieved using the
component system architecture.

The example shown in this paper illustrates the
benefits of having a component-based architecture that
deals with the three Cs of the collaboration model.
Groupware Engineering combines the systematic
development approach provided by Software Engineering
together with the domain analysis given by the 3C model
originated from the CSCW field. Using a groupware
system architecture and component frameworks facilitates
the task of programmers, who can reuse and extend data
structures provided by frameworks, leaving to the
infrastructure provided by the groupware architecture the
support of some specific multi-user aspects, such as data
synchronization, distributed resources sharing, etc.

The use of component-based techniques is a way of
facilitating the development of groupware so that it
becomes more flexible. These techniques seek to develop
modular systems composed of software components that
can be adapted and combined as needed, always having
maintenance in mind.

6. References
[1] Baker, K., Greenberg, S. & Gutwin, C. (2001):

Heuristic Evaluation of Groupware Based on the
Mechanics of Collaboration. 8th IFIP International
Conference, EHCI 2001, LNCS V. 2254, p123-139,
Springer-Verlag.

[2] Boehm, B.W. (1988): A Spiral Model of Software
Development and Enhancement, IEEE Computer, V.
21, N. 5, p. 61-72

[3] Borghoff, U.M. and Schlichter, J.H. (2000):
Computer-Supported Cooperative Work: Introduction
to Distributed Applications. Springer, USA.

[4] Ellis, C.A., Gibbs, S.J. & Rein, G.L. (1991):
Groupware - Some Issues and Experiences.
Communications of The ACM, vol. 34, no. 1, pp. 38-
58.

[5] Fuks, H., Gerosa, M.A. & Lucena, C.J.P. (2002),
“The Development and Application of Distance
Learning on the Internet”, Open Learning Journal, V.
17, No. 1, pp. 23-38.

[6] Groupware Patterns Swiki (2003),
http://swiki.darmstadt.gmd.de/gw-patterns

[7] Grudin, J. (1989): Why Groupware Applications Fail:
Problems in Design and Evaluation. Office:
Technology and People, vol. 4, no. 3, pp. 245-264.

[8] Gutwin, C. & Greenberg, S. (2000): The Mechanics
of Collaboration: Developing Low Cost Usability
Evaluation Methods for Shared Workspaces. IEEE
9th .Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises -
WETICE (2000), p. 98-103.

[9] Laurillau, Y. & Nigay, L. (2002): Clover architecture
for groupware, CSCW 2002, Louisiana, USA, p. 236
- 245

[10] Malone, T.W. & Crowston, K. (1990): What is
Coordination Theory and How Can It Help Design
Cooperative Work Systems? Proceedings of the
Conference on Computer Supported Cooperative
Work, Los Angeles, USA, October 1990, ACM Press,
USA, pp. 357-370.

[11] Marsic, I. & Dorohonceanu, B. (1999): An
Application Framework for Synchronous

Collaboration using Java Beans, Proceedings of the
HICSS, 1999, Maui, Hawaii.

[12] Raposo, A.B. & Fuks, H. (2002): Defining Task
Interdependencies and Coordination Mechanisms For
Collaborative Systems. Cooperative Systems Design,
IOS Press, Amsterdam, pp. 88-103.

[13] Roseman, M. & Greenberg, S. (1997): Building
Groupware with GroupKit, Tcl/Tk Tools, Cap.15, pp
535-564.

[14] Schrage, M. (1996): Cultures of Prototyping:
Bringing Design To Software, ACM Press, USA, pp.
191-205.

[15] Szyperski, C. (1999): Component Software: Beyond
Object-Oriented Programming. Addison-Wesley.

[16] Tietze, D.A. (2001): A Framework For Developing
Component-Based Co-Operative Applications. Ph.D.
Dissertation, Technischen Universität Darmstadt,
Germany.

