

Coordination in Collaborative Environments – A Global Approach

Adailton J. A. da Cruz
1DCA – FEEC

Univ. of Campinas - Brazil
2CEUD – UFMS - Brazil

ajcruz@dca.fee.unicamp.br

Alberto B. Raposo
Tecgraf

Computer Science Dept.
PUC-Rio - Brazil

abraposo@tecgraf.puc-rio.br

Léo P. Magalhães
DCA – FEEC

Univ. of Campinas - Brazil
leopini@dca.fee.unicamp.br

Abstract

In this work we present a methodology to express both
analytically and graphically the interdependencies among
tasks realized in a collaborative environment. For each
interdependency expression, a coordination mechanism is
built, modeling the global behavior of the environment,
i.e., the structure that ensures the realization of the tasks
according to the established interdependencies.

1. Introduction

An important aspect of collaborative work is the
notion of tasks interdependencies [5]. These
interdependencies are normally positive, in the sense that
each participant wants the works of others to succeed.
However, they are not always harmonious. It is necessary
for coordination between tasks to exist in order to
guarantee the efficiency of the collaboration. Without
coordination, there is the risk that participants would get
involved in conflicting or repetitive tasks. Coordination,
in this context, is defined as “the act of managing
interdependencies between activities performed to
achieve a goal” [3].

In this sense, coordination in collaborative
environments is managed by coordination mechanisms,
defined as a “coordinative protocol with an
accompanying artifact, such as, for instance, a standard
operating procedure supported by a certain form” [7].

One of the main challenges related to the coordination
of collaborative activities is to develop coordination
mechanisms that are, at the same time, global and
localized. The global part of the coordination mechanism
should be able to collect, from the complex relationships
among tasks in the collaborative environment, all the
conditions that enable or not the beginning of the tasks.
The localized part should be responsible to coordinate the
pre-authorized execution of tasks, following the kind of
relationship established for these tasks.

This paper introduces a methodology called RG

(Relationships Graph) that describes, analytically and
graphically, the relationships among collaborative tasks
and constitutes the basis upon which global coordination
mechanisms can be assembled from localized ones. The
next section discusses some general issues regarding
coordination mechanisms. The RG methodology is
presented in Section 3 and a set of coordination
mechanisms built using this methodology is presented in
Section 4. Section 5 presents the conclusions of this work.

2. Temporal Coordination Mechanisms

The nature of the coordination (i.e., temporal, causal,
etc.) is established by the set of relationships allowed
among tasks. For example, if those relationships are
temporal, then the tasks’ behaviors are coordinated in
relation to their execution times (e.g., task A must be
executed before task B and at the same time of task C).
On the other hand, if the relationships are causal, then
tasks are coordinated based on events (e.g., if task A
occurs, then task B and task C must also occur).

The execution of an activity occurs in a time interval
and may be considered as the result of a set of tasks
(atomic actions). Consequently, these tasks are related by
the time parameter. The non-execution of one or more
tasks may harm the execution of the whole activity,
depending on the degree of interdependency of the
involved tasks.

The coordination of the realization of interdependent
tasks in collaborative environments requires mechanisms
that should be able to model those interdependencies and
ensure that they will not be violated, enabling that the
collaborative activity be fully, partially, or not executed.
If all the tasks that compose the activity are authorized to
execute, then the activity is fully executed. The
coordination mechanism authorizes a task only when its
realization does not violate any defined interdependency.

In the following sections we are going to present a
methodology to describe activities and to procedurally
obtain the coordination mechanisms from these
descriptions.

1

abraposo
The 7th International Conference on Computer Supported Cooperative Work in Design - CSCWD 2002, p.25 - 30. Rio de Janeiro, Brazil. September 25-27, 2002. W. Shen, J. M. de Souza, Z. Lin, J.P. Barthès (Eds.). ISBN: 85-285-0050-0.

3. The RG Methodology

The RG methodology consists in obtaining a set E of
expressions that describes, from a set of relations
(primitives) R, the interdependencies in a group of tasks.
These tasks are related to each other composing a
collaborative activity. This approach does not restrict the
number of relations a task may have with another.

Examples of activities adequate for this methodology
are the construction of a multimedia presentation, and the
assembly of a product composed of several pieces that
become available during the assembly process. In the first
case, tasks may be the presentation of texts, the
reproduction of audios, videos, images, among others,
which need to be synchronized. In the second example,
tasks are the connections of the different pieces.

Once the relations among tasks are described by the
set E, it is necessary to define the coordination
mechanism for each expression ei∈E. The elements of E
have both an analytical and a graphical representation. In
the following sections it will be shown how an expression
ei may be mapped onto a connex graph.

3.1. The Set of Relationships in RG

The set of relations R adopted in this work is based on
the temporal logic proposed by Allen [1]. He proved that
there is a set of primitive and mutually exclusive relations
that could be applied over time intervals (i.e., any pair of
time intervals are necessarily related by one and only one
of Allen’s relations). From Allen’s first order predicate
logic, we have chosen the 7 primitives that constitutes R
(Fig. 1).

Figure 1. Set R of the 7 relations presented in [1].

The fact of being applied over time intervals (and not
over time instants) made the relations of Fig. 1 suited for
task coordination purposes, because tasks, although being
the atomic actions of collaborative activities, are non-
instantaneous operations.

3.2. The Expressions in RG

The primitives of R are binary relations, i.e., they
relate only two tasks. However, it is possible to overcome

this limitation, allowing that a single task be related to k
other tasks by means of those primitives.

In order to describe an expression formed by n tasks t1,
t2, …, tn in the RG methodology we adopt the notation of
the Graph Theory used by [8] as described below.

Definition 1: An expression e(T,R) is composed of a
finite non-empty set T of tasks and a set R of labeled
ordered pairs with distinct elements of T. The labels of
the elements of R are defined by associating them to one
of the following unitary sets, which respectively indicates
the relations before, during, equal, finishes, meets,
overlaps and starts: {b}, {d}, {e}, {f}, {m}, {o} and {s}.

The expression e(T,R) has a graphical representation
where tasks ti∈T, i = 1, 2, …, n, correspond to distinct
points of the plane located in arbitrary positions. The
elements of R correspond to labeled arcs that connect two
distinct points of the plane given by the ordered pair. Fig.
2 illustrates an example for n=12.

Figure 2. (a) An expression e(T,R). (b) Its graphical
representation

In an expression e(T,R) a task ti has a degree k if it is
related with k other tasks. For instance, in Fig. 2,
degree(t3) = 3.

The expression e(T,R) is called cyclic if there exists a
sequence of k tasks, 1≤ k < n, where we start in a task ti
and return to it following that sequence in the graph. In
this paper we are investigating acyclic expressions.

An expression e(T,R) does not generates an
inconsistency if it is acyclic, i.e., the n-1 primitives do not
generate an unrealizable configuration. This fact is
guaranteed by the mutual exclusion and exhaustiveness
properties of the primitives of R [9]:

Property 1: Given two tasks, X and Y, there is an ri∈R
such that X ri Y or Y ri X is true (exhaustiveness).

Property 2: If X ri Y, where ri∈R, then there is no rj ≠
ri, rj∈R, such that X rj Y is true (mutual exclusion).

4. Coordination Mechanisms for Expressions

The coordination mechanism for an expression in E is
constructed in two phases. In the first one, called Global
Coordination Mechanism (GCM), the conditions that
must be satisfied to authorize the beginning of the tasks
are modeled. These conditions are established by the

2

primitives that define the expression. In the second phase,
called Local Control Mechanism (LCM), it is modeled the
mechanism that guarantees the execution of the temporal
relation established for two tasks.

Analyzing the example in Fig. 2, we can see that, for
example, task t12 is related only to t11 (degree(t12)=1) and,
therefore, does not need to satisfy any global condition.
However, degree(t11)=5, which means that this task must
satisfy some global conditions. For example, the
beginning of t11 must be authorized simultaneously to the
beginning of t10 (since t11 equal t10), t6 (t11 starts t6) and t7
(t7 starts t6). Another global condition for t11 is that it must
start some time after the end of t8 (since t8 before t7, and
the beginning of t7 must be simultaneous to that of t11, as
shown above). This is enough to give an idea that the
determination of global conditions may not be easily
accomplished only by looking at the graph of e(T,R).
The following sections will present a procedural approach
to find the global conditions.

4.1. GCM – Global Coordination Mechanism

The process of a GCM construction adopts an
“outside-in” approach, i.e., it starts with the most external
tasks (degree=1), going to the most internal ones (higher
degrees). This approach is justified because tasks with
degree=1 do not need to satisfy global conditions and
generally represent the majority of tasks in an expression.

Hence, given an expression e1, we obtain a new
expression e2 by eliminating all tasks with degree=1. The
derived expression e2 also has a set of tasks with
degree=1. Geometrically, we have a star of k legs, where
the center is a task with degree=k and the legs are the arcs
connecting it with its k related tasks. A star is defined as a
sub-expression of E corresponding to a task t related to k
other tasks (degree(t)=k) – see Fig. 3.

Figure 3. (a) First iteration, indicating tasks with
degree=1 that will be removed from the expression. (b)
and (c) following iterations.

The next step is to determine the global conditions for
the tasks of degree=1 in e2 regarding the k tasks related to
them. In the example of Fig. 3, these tasks are t3 and t8.

The next iteration repeats the same steps, i.e., from e2
we obtain an expression e3 eliminating all tasks with
degree=1 in e2. Then we determine the global conditions

for the tasks with degree=1 in e3 regarding the k’ tasks
related to them, excepting those representing the center of
the stars analyzed in the previous iteration. For example,
in Fig. 3 (c), which corresponds to the expression e3, the
tasks with degree=1 are t11 and t7. From the k’ tasks
related to t11, task t3 is the center of the star analyzed in
the previous iteration.

In the second iteration two levels of stars appear; a
more external one, generated in the first iteration and a
more internal star, generated in the second iteration. In
Fig. 3, the first iteration generates stars with centers t3 and
t8, while the second iteration generates stars with centers
t11 and t7. Continuing with the process, we need to
connect the stars of these both levels, by considering the
relation with the centers of two adjacent stars.

The iterations are executed until the expression ei, i<n,
has one or two tasks. It can be demonstrated that this
process is consistent and always finishes with one or two
tasks. The algorithm for this process is described below:
Given an expression e(T,R) with n tasks;
Determine the degree of all tasks;
While there is a task t with degree(t)=1
 Eliminate tasks t with degree(t)=1;
 Generate stars for tasks t’ with degree(t’)=1;
 Connect these stars with stars of the previous iterations;

4.1.1. Global Conditions. Global conditions (GCs) are
conditions imposed to a task in order to guarantee the
logic of the primitives that compose the expression. For
example, the beginning of t11 in the expression of Fig. 3
(a) must be authorized simultaneously with the beginning
of t6, t7 and t10.

The determination of GCs follows the algorithm
presented in the previous section, i.e., it is established the
global conditions for the stars generated in iterations i and
i+1, and then the conditions corresponding to the
connections of adjacent stars.

The adopted strategy for the determination of GCs is
to construct a map M with all possible global conditions.
This way, based on M, it is possible to determine the
conditions that are pertinent to any relation in a star.

The map M is elaborated evaluating 14 forms of
relationships possible for a task a. These possibilities
corresponds to the 7 primitives of R and their respective
inverse relationships. This occurs because r(a,b) ≠ r(b,a).
For example, a before b is different from b before a. The
only exception is when r=equal. Fig. 4 describes these
forms of relationships, where the order in which the tasks
are related are indicated by the arrow.

The GCs related to task a are more easily identified if
the tasks related to it are positioned, according to their
respective interdependencies, over a timeline. This
process generates a consistency graph, as shown in Fig. 5.

3

Figure 4. All possible relations involving a task.

Figure 5. Consistency graph for a task.

Based on the consistency graph for task a, as shown in
Fig. 5, the list of GCs used in the specification of the map
M is described below:

c1) a must start simultaneously to a2;
c2) a must start simultaneously to a9;
c3) a3 may start if a has already started;
c4) a may start if a10 has already started;
c5) a may start if a4 has already started;
c6) a11 may start if a has already started;
c7) a must start simultaneously to a5;
c8) a12 must start simultaneously to a;
c9) a may start if a6 has already started;
c10) a13 may start if a has already started;
c11) a may start if a7 is ready to begin, but a7 may
 only start at the end of a;
c12) a14 may start if a is ready to begin, but a may
 only start at the end of a14;
c13) a8 may start only after the end of a;
c14) a may start only after the end of a15;
c15) the end of a must be simultaneous to that of a4,
 a5, a11, and a12;
c16) the conditions to the end of the other tasks are
 controlled by their LCMs.

4.2. LCM – Local Coordination Mechanism

The LCM connects two related tasks, guaranteeing that
a single interdependency between them will not be
violated. The LCM is responsible for telling each task
when it may or must start and finish its execution. It is

called “local” because it coordinates only one relation
between two tasks, without knowledge of GCs related to
each of them. In order to implement the LCMs we use a
set of Petri net-based coordination mechanisms proposed
in [4].

A detailed explanation of the LCMs is out of the scope
of this paper. What is important here is that LCMs may be
viewed as black boxes connecting two tasks in map M. In
the Petri net-based map, each of the possible forms of
relationship of a task may be modeled according to the
schema presented in Fig. 6.

Figure 6. Schema to connect two related tasks.

In the schema of Fig. 6, task a is the center of the star
and has a temporal relation r(a,b) or r(b,a) with task b. In
this schema, task b is associated to two places, one
transition and a box representing the LCM for this
relation. Place stb indicates that b is ready to start and
place ftb indicates the end of its execution. Transition tb
receives all the conditions that b must satisfy and, when
fired, indicates to the LCM that the global conditions for
b are satisfied and it is authorized to begin. The LCM
then assumes the coordination of the relation between b
and the center of the star (task a).

4.3. The Coordination Map

The map M is the Petri net representation of all
possible relationships involving a task a (as in Fig. 4). Its
main goal is to show the “worst case” situation, from
which other situations may derived. The map (Fig. 7) is
constructed by applying the schema of Fig. 6 and the list
of GCs (Section 4.1.1) to each of the 14 tasks related to
task a.

In M, places sai indicate that task ai is ready to start,
and places fai indicate the end of ai. The firing of
transition tsai authorizes the beginning of ai.

Transition t1sa models conditions c1, c2, c7, and c8
(Section 4.1.1). The arc (sa7,t1sa) indicates that a7 is
ready to start (part of condition c11). The arc (t1sa, Pa14)
ensures that a14 will start only when a is ready to start
(part of c12). Transitions tsa10, tsa4 and tsa6 respectively
indicate to a that a10, a4 and a6 have already started
(conditions c4, c5 and c9).

4

Figure 7. The map M.

Transition t2sa implements condition c14, and
transition t3sa implements the second part of c12. The
firing of t2sa must occur before the firing of t3sa because
task a15 finishes before a14, as may be visualized in the
consistency graph (Fig. 5). Tansition t4sa authorizes
simultaneously the beginning of task a at all LCM
involved with it.

Transitions tsa3, tsa11 and tsa13 respectively control the
global conditions necessary for the beginning of a3, a11,
and a13 (conditions c3, c6 and c10, respectively).

Transition tsa7 authorizes the beginning of a7 as soon
as a finishes. (second part of condition c11). Transition
tsa8 authorizes the beginning of a8 if a has already
finished (condition c13). Finally, transition tfa1
synchronizes the end of a with the end of a4, a5, a11, and
a12.

The map M considers one instance of each possible
relation to task a. However, two situations may occur: i) a
does not have all of the 14 relations, ii) a is related with
different tasks, but with the same kind of relation. In the
first situation, the GCM is obtained by reproducing map
M only with the existent relations. In the second situation,
it is necessary to repeat the implementation of the
conditions pertinent to the primitive that appears more
than once. Fig. 8 (a) and (b) shows the GCMs of the stars
t3 and t11 of the expression presented in Fig. 2.

Finally, it is necessary to consider the connection two
adjacent stars. Suppose that a star a is generated in
iteration i and a star b is generated in iteration i+1.
Therefore, the relation connecting both stars (i.e., r(a,b)
or r(b,a)) is modeled in the GCM of a and, following the
schema of Fig. 6, there is a transition tb that models the
GC of b in relation to the tasks of star a. Similarly, there
is in the GCM of b another transition tb that models the
GCs of b in relation to the tasks of star b. These
transitions tb, when fired, authorize the execution of b.

Hence, to connect both stars, it is necessary to merge
transitions tb. This is done by eliminating tb from the
GCM of a and redirecting the GCs to tb of the GCM of b,
creating a single tb that authorizes the LCM to execute b.
Fig. 8 (c) shows the GCM resulting from the connection
of stars t3 and t11, and (d) shows the whole GCM for the
expression of Fig. 2.

5. Conclusion

We present a methodology to describe and coordinate
interdependencies of sets of tasks in collaborative
environments. Based on the description, the algorithm to
obtain the coordination mechanisms is shown.

Among the contributions of this methodology, we can
cite the global treatment given to the coordination
process, i.e., a task is executed only if no relation of
interdependency is violated.

Another approach to group coordination based on
partial knowledge of the tasks structure of the
environment is presented in [2]. Its goal is to create a
framework for the coordination of a group (involving
human and software agents) to guarantee that the tasks
are completely solved in a timely and efficient manner.

The use of concepts from the graph theory allowed an
effective approach in the modeling of the global
conditions, generating a standard procedure that is
independent of the number of tasks taking part in the
collaborative activity. This is a further step in previous
approaches that limit the number of tasks to which a task
may be related (e.g., [5]).

The consistency graph used for the identification of
the global conditions may also be used to verify if a set of
tasks is realizable, i.e., if it does not generate an
inconsistent configuration.

The relations graph offers a map of the whole

5

(a) GCM of t3

(b) GCM of t11

(c) Connection of GCMs of t3 and t11

 (d) Compete GCM for the expression of Figure 2.

Figure 8. The construction of a GCM.

collaborative activity and this, in conjunction with
techniques from the graph theory, may be used for
analysis processes in order to decide for example what
will happen if a certain task is not executed.

Finally, it is important to reinforce that not all cycles in
the relations graph generate inconsistencies. One of the
next steps of this work is to investigate properties that
could enable the existence of cycles in the graph. Another
future work is to create software components that
implement the GCMs, based on the LCM implementation
presented in [6].

6. References

[1] J. F. Allen, “Towards a General Theory of Action and
Time”, Artificial Intelligence, 23, 1984, pp. 123-154.
[2] K. S. Decker, “Coordinating Human and Computer Agents”,
In W. Conen, and G. Neumann (eds.), Coordination Technology
for Collaborative Applications – Organizations, Processes, and
Agents, LNCS 1364, Springer-Verlag, 1998, pp. 77-98.
[3] T. W. Malone, and K. Crowston, “What is Coordination
Theory and How Can It Help Design Cooperative Work

Systems?”, Conf. on Computer-Supported Cooperative Work
(CSCW’90), 1990, pp. 357-370.
[4] A. B. Raposo, L. P. Magalhães, and I. L. M. Ricarte, “Petri
Nets Based Coordination Mechanisms for Multi-Workflow
Environments”, Int. J. Computer Systems Science &
Engineering, 15(5), .2000, pp. 315-326.
[5] A. B. Raposo, L. P. Magalhães, I. L. M. Ricarte, and H.
Fuks, “Coordination of Collaborative Activities: A Framework
for the Definition of Tasks Interdependencies”, 7th Intl.
Workshop on Groupware (CRIWG’2001), 2001, pp. 170-179.
[6] A. B. Raposo, A. J. Cruz, C. Adriano, and L. P. Magalhães,
“Coordination Components for Collaborative Virtual Environ-
ents”, Computers & Graphics, 25(6), 2001, pp. 1025-1039.
[7] C. Simone, and K. Schmidt, “Taking the distributed nature
of cooperative work seriously”, 6th Euromicro Workshop on
Parallel and Distributed Processing, 1998, pp. 295-301.
[8] J. L. Szwarcfiter, Grafos e algoritmos computacionais,
Editora Campus, Rio de Janeiro, 1986.
[9] A. K. Zaidi, “On Temporal Logic Programming Using Petri
Nets”, IEEE Trans. Systems, Man, and Cybernetics – Part A:
Systems and Humans, 29(3), 1999, pp. 245-254.

6

