
Coordinating Activities in Collaborative Environments: A High Level Petri Nets
Based Approach

Alberto B. Raposo, Léo P. Magalhães and Ivan L. M. Ricarte
State University of Campinas (UNICAMP)

School of Electrical and Computer Engineering (FEEC)
Department of Computer Engineering and Industrial Automation (DCA)

CP 6101 – 13083-970 – Campinas, SP, Brazil
{alberto, leopini, ricarte}@dca.fee.unicamp.br

ABSTRACT

The coordination of interdependencies among activities
in collaborative environments is a very important and
difficult task. In this paper we present a set of
coordination mechanisms for the specification and
control of interaction among collaborative activities. To
model these mechanisms, we use high level Petri nets,
which have proven to be an adequate approach to
evaluate the behavior of a computer supported
collaborative system before its implementation.

Keywords: Coordination, Collaborative Environments,
Petri Nets, Computer Supported Cooperative Work,
Multiuser Interaction.

1. INTRODUCTION

Some activities involving multiple individuals do not
require a formal planning. Activities associated to the
social relations are generally well coordinated by the
“social protocol”, which is characterized by the absence
of any coordination mechanism among activities,
trusting the participants’ abilities to mediate interactions.
Examples of computer supported activities of this kind
are the chats and videoconferences.

On the other hand, activities related to cooperative work
(not social relations) require sophisticated coordination
mechanisms to avoid that participants get involved in
conflicting or repetitive tasks.

This paper focuses on the coordination of activities in
computer supported collaborative environments,
defining a set of interdependencies that frequently occur
among collaborative tasks and presenting coordination
mechanisms for these dependencies. The idea is to
separate activities (tasks) from dependencies (controlled
by the coordination mechanisms), enabling the use of
different coordination policies in the same collaborative
environment, by changing only the coordination
mechanisms. Moreover, the coordination mechanisms
can be reused in other collaborative environments.

This paper is organized as follows. In the next section
we introduce high level Petri nets, which is the tool we
use to model the coordination mechanisms. Then, in
Section 3, we make a brief overview of works related to
coordination in Computer Supported Cooperative Work.
In Section 4 the dependencies and coordination
mechanisms are presented, and in Section 5 an example
of use of the mechanisms is shown. The conclusions and
future work are discussed in Section 6.

2. HIGH LEVEL PETRI NETS

Petri nets (PNs) are a modeling tool applicable to a
variety of fields and systems, specially suitable for
systems with concurrent events. Murata [11] presents a
very good introduction to the theme. Formally, a PN is
defined as a 5-tuple (P, T, F, w, M0), where:
P = {P1, ..., Pm} is a finite set of places; T = {t1, ..., tn} is
a finite set of transitions; F ⊆ (P × T) ∪ (P × T) is a set
of arcs; w: F → {1, 2, ...} is a weight function;
M0: P → {0, 1, 2, ...} is the initial marking; with
(P ∩ T) = ∅ and (P ∪ T) ≠ ∅ .

In a PN model, states are associated to places and tokens,
and events to transitions. A transition t is said to be
enabled if each input place Pi ∈ •t is marked with at
least w(Pi, t) tokens, where w(Pi, t) is the weight of the
arc between Pi and t. Once enabled, a transition will fire
when its associated event occurs. Firing transition t,
w(Pi, t) tokens are removed from each input place Pi and
w(t, Po) tokens are added to each output place Po ∈ t•.
Here, •t and t• means, respectively, the set of input and
output places of transition t.

A useful notation for PNs is the graphical notation,
where circles represent places, rectangles represent
transitions, dots represent tokens and arrows represent
the arcs, with weights above. By definition, an unlabeled
arc has weight 1.

In addition to the basic PN model, several extensions
appears in the literature. In this paper we use three of
them: inhibitor arcs, nets with time and high level nets.

abraposo
SCI 2000 - 4th World Muticonference on Systemics, Cybernetics and Informatics Proceedings, Vol.1. p.195 - 200. Orlando, USA. International Institute of Informatics and Sytemics (IIIS), 2000.

An inhibitor arc connects a place P with a transition t
and enables t only if P has no tokens. In the graphical
notation, inhibitor arcs are represented with a circle on
the edge. One way to include the notion of time in PNs is
to associate it with transitions firing. In this case, tokens
are removed from input places of a transition and some
time later (firing time) are added to the output places.
This kind of non-instantaneous firing is called firing with
token reservation.

High level PNs include, among other types,
predicate/transition nets and colored PNs [4]. The most
important characteristic of a high level PN is the
distinction of tokens (called colored tokens). The arcs
have labels defining variables (or constants) that dictate
how many and which kind of tokens will be removed
from or added to the places. The same variable appearing
in the incoming and outgoing arcs of a transition denotes
the same token type. A transition is enabled if there is at
least one possibility of consistent substitution of
variables into typed tokens. In the example of Figure 1,
transition t1 is enabled because there are two tokens of
type a in P1, being possible to substitute variable <x>
for type a. After the firing of t1, P1 remains with token b
and P2 receives a token of type a.

Figure 1: Example of a high level PN.

Besides their modeling capabilities, PNs have also a
strong theoretical support for analysis and a number of
simulation techniques. There are three kinds of analysis
applicable to a PN model; verification, validation and
performance analysis [2]. The verification analysis is
used to guarantee that the net is correctly defined. It is
verified whether the net has deadlocks, whether there are
dead transitions, whether it reaches any undesired state,
among others. In the validation analysis, it is checked
whether the model works as expected. Tests are made
via iterative simulations of fictitious cases to ensure that
the model treats them correctly. Finally, the performance
analysis evaluates the capacity of the system to achieve
requisites such as average waiting time, throughput
times, resource use, and so on.

3. RELATED WORK

In spite of their recognized importance, coordination
mechanisms have not been included in the first
collaborative systems. Only in the second half of the
80’s the first systems with some kind of coordination

mechanism were developed. One of the most
representative system of that generation was the
Coordinator [13], which has been developed based on
linguistic theories and whose goal was to help email
communication. Since that time, there has been
examples of the use of PNs to coordinate activities in
collaborative environments [6], [9].

In the 90’s, systems have been constructed with more
flexible and accessible coordination mechanisms.
Inspired by coordination languages [8], which proposed
the separation of computation from coordination for
multi-threaded applications, some collaborative systems
separates the implementation of coordination
components from their other parts. This allows more
flexibility in the use of coordination policies. COCA
(Collaborative Objects Coordination Architecture) [10]
and Trellis [7] are examples of systems of this kind. The
Trellis, in particular, uses a variation of PNs in a server
to specify interaction protocols for a group of
collaborative clients.

Our work is more generic than those presented above.
We define a set of interdependencies among tasks and
associated coordination mechanisms (modeled by high
level PNs) that can be used in workflows, multiuser
interaction, virtual environments, etc. The main goal is
not to implement a closed system, but to provide a set of
mechanisms to enable the collaborative system designer
to preview and test its behavior before implementing it,
detecting possible problems.

4. COORDINATION MODELS

This work intends to provide mechanisms to manage
interdependencies among collaborative tasks and
guarantee that these dependencies will not be violated.
The idea is that the designer of a collaborative
environment be concerned only with the definition of
tasks and their interdependencies, and not with the
management of those dependencies.

In the proposed schema, an environment is modeled in
two distinct levels, workflow and coordination. In the
workflow level, the tasks and their interdependencies are
defined. In the coordination level, interdependent tasks
are expanded and the adequate coordination mechanisms
are inserted among them.

During the passage from the workflow to the
coordination level, each task which has an
interdependency with another is expanded according to
the model of Figure 2 [1]. The five places associated to
the expanded tasks represent the interface with the
resource manager and the agent that executes the tasks.
Place request_resources indicates to the resource
manager that the task needs a resource. After the
assignment of the resource, the manager puts a token in
place assigned_resources to continue the task. Places

aab

P1 P2t1

2<x > <x>

start_tasks and finish_tasks indicates, respectively, the
beginning and the end of the task. Finally,
release_resources indicates to the resource manager that
the task has finished and the resource is available again.

Figure 2: An expanded task in the coordination level.

The main goal of our work is to construct the
coordination level from the workflow level, because
once the interdependencies are defined, the expansion of
tasks according to the model of Figure 2 and the
insertion of coordination mechanisms can be automated.

The interdependencies presented below are divided into
two classes: temporal and resource management.

Temporal Dependencies
Temporal dependencies establish the execution order of
tasks. Coordination mechanisms associated to this kind
of dependency have start_tasks as input place and
finish_tasks as output place (Figure 2).

The proposed mechanisms are based on temporal
relations defined in a classic paper of temporal logic [3].
In this paper, a set of primitive and mutually exclusive
relations between time intervals is defined. We adapted
these relations for the definition of temporal
dependencies between tasks in collaborative
environments, adding a couple of new relations and a
few variations of those originally proposed. The
following temporal dependencies are defined.

à task 1 equals task 2: both tasks must be executed
simultaneously.

à task 1 starts task 2: Allen’s original definition
establishes that both tasks must start together and
task 1 must finish before task 2 (we called this
relation startsA). We also relaxed the second part of
the definition, creating a variation of the relation in
which it does not matter which task finishes before
(startsB).

à task 1 finishes task 2: the original definition
establishes that both tasks must finish together, but
task 1 has to start after task2 (finishesA). As in the
previous case, we created a new dependency
relaxing the restriction on which task must start
before (finishesB).

à task 2 after task 1: task 2 may only be executed after
the execution of task 1. Two variations are possible
for this relation. In the first one (afterA) each
execution of task 1 enables a single execution of

task 2. In the second variation, several executions of
task 2 are enabled after a single execution of task 1.

à task 1 before task 2: from the temporal logic point
of view, this dependency can be seen as the opposite
of the previous one, but it generates a totally
different coordination mechanism. Essentially, the
difference is because in this case, the restriction
occurs in the execution of task 1, which may not be
executed anymore if task 2 has already been
executed. Here, task 2 does not wait for the
execution of task 1, which was the case for task 2
after task 1.

à task 1 meets task 2: task 2 starts immediately after
the end of task 1.

à task 1 overlaps task 2: the original definition
establishes that task 2 must start before the end of
task 1, which must finish before task 2 (overlapsA).
Relaxing the restriction that task 1 must finish first,
we defined a variation of this relation (overlapsB).

à task 2 during task 1: two variations are possible. In
the first one (duringA), task 2 can be executed only
once during the execution of task 1. In the second
one (duringB), task 2 can be executed several times.

Since the goal of the coordination mechanisms is to deal
with relations that sometimes belongs to complex
procedures, it is interesting to add mechanisms to avoid
frequent deadlocks. One of such mechanisms is the use
of timeouts. We defined two kinds of timeouts. In the
first one (timeoutA), an alternative task is defined if the
original one does not start after a certain waiting time.
The other kind of timeout (timeoutB) returns the tokens
to the input places of the task after a waiting time,
enabling the following of alternative paths that do not
execute the blocked task.

Resource Management Dependencies
Coordination mechanisms for resource management are
complementary to those presented in the previous
section and can be used in parallel to them. This kind of
coordination mechanism deals with the distribution of
resources among the tasks, and have request_resources
and release_resources as input places and assigned_
resources as output place (Figure 2). We define three
basic mechanisms for resource management:

à Sharing: a limited number of resources needs to
be shared among several tasks.

à Simultaneity: a resource is available only if a
certain number of tasks requests it simultaneously.

à Volatility: indicates whether, after the use, the
resource is available again.

We have also defined composite mechanisms from the
basic ones discussed above. For example, sharing M +
volatility N indicates that up to M tasks may share the
resource, which can be used N times only.

Differently from temporal dependencies, resource
management dependencies are not binary relations. It is

input_

plac es P1 P2 P4P3
output_

plac es

request_

res ourc es

as s igned_

res ourc es
s tart_tas ks

releas e_

res ourc es
f inis h_tas ks

ta tb ti tctf

Tas k

possible, for instance, that more than two tasks share a
resource. Moreover, each of the above mechanisms
requires a parameter indicating the number of resources
to be shared, the number of tasks that must request a
resource simultaneously, or the number of times a
resource can be used (volatility).

A Language for the Definition of Interdependencies
In order to define the interdependencies among tasks, we
have created a language that describes, one at each line,
all the dependencies of a collaborative environment. The
interdependencies are defined according to the following
syntax <dependency name> [parameters]
“<task1 name>” “<task2 name>” [“<taskn
name>”] [timeouts] , where parameters are needed
for resource management dependencies and the list of
timeouts is optional.

Modeling Coordination Mechanisms using High
Level Petri Nets
Initially, we have modeled coordination mechanisms for
all dependencies discussed above using ordinary PNs
[12]. However, a typical problem in the use of ordinary
PNs is the state explosion, which can occur in our
context when the number of interdependencies increases.
High level PNs reduce this problem because they
generate simpler models, with less places and transitions.
Therefore, we remodeled them using high level PNs.

To illustrate one of the coordination mechanisms, Figure
3 shows the mechanism for simultaneity 2 (a resource is
available only if two tasks request it simultaneously). In
the figure, the arcs with expression <x>+<y> ensure
that two different tasks (tokens of different colors) which
are requesting the resources (tokens r) are going to
receive them if they are available in place Pn.

Figure 3: Coordination mechanism for simultaneity 2.

5. EXAMPLE

To illustrate the use of the coordination mechanisms, we
present an example describing a typical situation in
multiuser interaction. In our hypothetical environment,
two users interact by means of a whiteboard. The
workflow level of this environment is shown in Figure 4.
As can be seen in the model, each user can “enter” the
whiteboard, then write on it several times before
“leaving” it. The following interdependencies appears in
the model. The whiteboard is available only if both uses
request it simultaneously (simultaneity 2); only one user
may write on the whiteboard at each time (sharing a
resource, e.g., a pen); and when user A leaves the
whiteboard, user B must follow him/her (meets).

Using the language for the definition of
interdependencies, the following file is written for the
example above:

sim 2 “enterA” “enterB” time_outB
 time_outB

div 1 “writeA” “writeB” time_outB
 time_outB

meets “leaveA” “leaveB”

The model of the coordination level for this example is
shown in Figure 5. At first glance, this model may seem
complicate, but it is highly modular and easily built from
the model of Figure 4, by expanding interdependent
tasks (open rectangles in Figure 4) and inserting the
predefined coordination mechanisms.

request_

resources
ass igned_

resources
released_

resources

O1P3_1 P4_1P2_1P1_1

a

i1

b

i2

P1_2 P2_2 P4_2P3_2

O2

2r

Pn

tf_1 tc_1ti_1tb_1ta_1

ta_2 tb_2 ti_2 tc_2tf_2

t1

t2

a a a a a a a a a a

bb bbbbbbb

a

<x> + <y> <x> + <y>

b

a

<x> + <y>

2r

2r

b
b b

a

Task 1

Task 2

Figure4: Workflow level of the example.

Figure 5: Coordination level of the example.

It is necessary to observe that interdependent tasks of
Figure 5 are not expanded exactly according to the
model of Figure 2. The reason is that in the case of
temporal dependencies, only places start_tasks and
finish_tasks are used, and in the case of resource

management dependencies, only request_resources,
assigned_resources and release_resources are used.
Therefore, we used simplified versions of the model.

aiA oA

oBbiB

release_

resources

assigned_

resources

reques t_

resources

2r

Pn

reques t_

resources

assigned_

resources

r

Pn

release_

resources

s tart_

tasks
f inish_

tasks

timeout

timeout

timeout

timeout

t2

t1

t1

t2

taskA

R

taskB

R

b

a a

bb

a

a

b

b

<x>+<y>

2r

<x>+<y>
<x>+<y>

2r

a
a

a

a

b

b

b

a

r

r

b

a

<x><x>

<x>

b

a

b

a+b a

a

b

b

b

b

U ser A

U ser B

enterA w riteA leaveA

enterB

w riteB

leaveB

Simultaneity 2

Mutual
Exc lus ion

Meets

iA oA

oBiB

enterA w riteA leav eA

leav eBw riteBenterB

U ser A

U ser B

S imultaneity 2
M utual
exc lus ion

M eets

The coordination level model of the environment can be
simulated and analyzed with any tool that supports high
level PNs (see [5] for a list of PN simulation tools).

Verification and validation analysis indicated that our
examples has eight final states. Seven of them can be
eliminated by the correct use of timeouts (i.e., with
adequate waiting times). The eightieth final state is the
correct one (tokens in oA and oB). Performance analysis
could be realized, for instance, to measure average
waiting times of an user, given the rates with which the
other requests the resources.

Finally, it is necessary to reinforce that the example
represents just a hypothetical situation. We did not stress
all details for the modeled scenario. Its main goal was to
show how the coordination mechanisms can be used in a
practical situation.

6. CONCLUSION

The coordination of interdependent activities in
collaborative environments is a problem that should be
addressed to ensure the effectiveness of the cooperation.
The separation between activities and dependencies, and
the utilization of reusable coordination mechanisms are
steps towards this goal.

Petri nets, due to their support for modeling, simulation
and analysis, have proven to be a powerful tool for
verifying the correctness and validating the effectiveness
of collaborative environments before their actual
implementation [2], [12]. Furthermore, the hierarchical
description of PNs showed an appropriate way to define
the coordination structure in different abstraction levels
(workflow and coordination levels). In particular, high
level PNs also reduces the problem of state explosion.

The set of interdependencies presented in this paper does
not claim to be complete. It would be very difficult to
establish a framework of all possible interdependencies.
For that reason, we opted for an extensible approach.
When a new kind of interdependency arises, a
corresponding coordination mechanism can be modeled
and easily inserted between corresponding tasks.

One of the next steps of this work is to automate the
passage from the workflow to the coordination level of
models in a high level PN simulation tool. We have
already done this for ordinary PN models [12].

Due to their generality, the presented coordination
mechanisms are adequate to a wide range of
collaborative systems, from interorganizational
workflows to virtual environments. Presently, we are
implementing the mechanisms to be used in the
development of collaborative virtual environments. The
coordination of activities will facilitate the use of this
kind of environment for the realization of tasks that
cannot be controlled by the social protocol.

7. REFERENCES

[1] W. M. P. van der Aalst. Modelling and analysing
workflow using a Petri-net based approach. Proc. 2nd

Workshop on Computer-Supported Cooperative
Work, Petri nets and related formalisms, pp. 31-50.
1994.

[2] W. M. P. van der Aalst. The Application of Petri
Nets to Workflow Management. The Journal of
Circuits, Systems and Computers, 8(1): 21-66. 1998.

[3] J. F. Allen. Towards a General Theory of Action and
Time. Artificial Intelligence, 23: 123-154. 1984.

[4] W. Brauer, W. Reisig and G. Rozenberg (Eds.). Petri
Nets: Central Models and Their Properties –
Advances in Petri Nets 1986. Lecture Notes in
Computer Science, 254. Springer-Verlag, 1986.

[5] CPN Group, Univ. of Aarhus, Denmark. The World
of Petri Nets – Tools on the Web. 2000.
<http://www.daimi.aau.dk/~petrinet/tools>

[6] F. De Cindio, G. De Michelis and C. Simone. The
Communication Disciplines of CHAOS. In
Concurrency and Nets, pp. 115-139. Springer-
Verlag, 1988.

[7] R. Furuta and P. D. Stotts. Interpreted Collaboration
Protocols and their use in Groupware Prototyping.
Proc. of the Conf. on Computer Supported
Cooperative Work (CSCW’94), pp. 121-131. 1994.

[8] D. Gelernter and N. Carriero. Coordination
Languages and their Significance. Communications
of the ACM, 35(2): 97-107. February 1992.

[9] A. W. Holt. Coordination Technology and Petri Nets.
In G. Rozenberg (Ed.). Advances in Petri Nets, pp.
278-296. Lecture Notes in Computer Science, 222.
Springer-Verlag, 1985.

[10] D. Li and R. Muntz. COCA: Collaborative Objects
Coordination Architecture. Proc. of the Conf. on
Computer Supported Cooperative Work (CSCW’98),
pp. 179-188. 1998.

[11] T. Murata. Petri Nets: properties, analysis and
applications. Proc. of the IEEE, 77(4): 541-580.
1989.

[12] A. B. Raposo, L. P. Magalhães and I. L. M. Ricarte.
Petri Nets Based Coordination Mechanisms for
Multi-Workflow Environments. To be published in
the Int. J. of Computer Systems Science &
Engineering, September 2000.

[13] T. Winograd and F. Flores. Understanding
Computers and Cognition: A New Foundation for
Design. Ablex, 1986.

Acknowledgements: The first author is sponsored by
FAPESP (Foundation for Research Support of the State
of São Paulo), process number 96/06288-9. We also
would like to thank DCA – FEEC – Unicamp for the
support granted to this research.

