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Abstract—The generation of triangular meshes typically in-
troduces undesired noise which comes from different sources.
Mesh denoising is a geometry processing task to remove this
kind of distortion. To preserve the geometric fidelity of the
desired mesh, a mesh denoising algorithm must maintain the
object details while removing artificial high-frequencies from the
surface. In this work, we propose a two-step algorithm which
uses adaptive patches and bilateral filtering to denoise the normal
vector field, and then update vertex positions fitting the faces to
the denoised normals. The computation of the adaptive patches
is our main contribution. We formulate this computation as local
quadratic optimization problems that can be controlled by a set
of parameters to obtain the desired behavior. We compared our
proposal with several algorithms proposed in the literature using
synthetic and real data. Our algorithm yields better results in
general and is based on a formal mathematical formulation.

I. INTRODUCTION

Nowadays 3D surface models are used in several fields

and industries such as medicine, engineering, entertainment,

geo-exploration, architecture and cultural heritage. Processes,

such as multi-view stereo reconstruction, 3D scanning, 3D

imaging, and CAD modeling usually yield triangular meshes.

The data generated by these techniques should be processed

to be available for production, visualization, simulation, or

animation. This processing step is called digital geometry

processing which is a field of computer science that uses

mathematical models and algorithms [1].
3D surface models obtained from real-world data usually

present undesired noise, that can result in problematic effects

on later applications. For example, depth-sensing cameras

reconstruct noisy surfaces due to the physical limitations of

the sensors. As another example, surfaces reconstructed from

medical data can present different noise introduced in different

steps of the reconstruction process [2].
These models are treated using denoising techniques that

seeks to remove high-frequency noise while preserving high-

frequency features, such as edges and other details. The

denoising step is essential in a typical geometry processing

pipeline. Denoising is still a challenging problem because it

is difficult to distinguish features from noise.
In a discrete setting, 3D surface models are commonly

represented as triangle meshes due to its simplicity and easy

processing. The denoising task over meshes is called mesh
denoising, and it is related to the modification of the geometric

properties of the mesh.
In this work, we propose a new algorithm for detail-

preserving mesh denoising following a conventional two-step

scheme. The first step filters the normal field, and the second

one updates vertex positions to adapt them to the filtered

normals. The normal field filtering is performed using adaptive

patches that represent the neighborhood of a given sample

point. The final result of the filtering algorithm strongly

depends on the computation of the patches. The main contri-

bution of this work is the determination of these patches. We

formulate this determination as a local quadratic optimization

problem controlled by parameters that yield flexibility for the

proposed algorithm.

We performed several experiments to compare it with other

denoising algorithms, using synthetic and real data. The results

that we obtained show that our proposal successfully removes

the noise while preserving-details, and in most test cases it

works better than other methods.

This document is structured as follows. In Section II we

present some previous work relevant to our problem. In

Section III we explain how we compute the adaptive patches,

and how to discretize and implement them. In Section IV we

explain how our denoising algorithm works. In Section V we

describe experiments and results. Finally, in Section VI we

present the conclusions and future work.

II. PREVIOUS WORK

Based on a diffusion process, numerous anisotropic filters

were proposed [3]–[7] extending the idea of anisotropic diffu-

sion of 2D grids to 3D surfaces. Hildebrant and Polthier used

a prescribed mean curvature flow simplifying the diffusion

process [8]. He and Schaefer proposed a method for sharp

features preservation [9] using L0 minimization.

The bilateral filter for images was an important inspiration

for many anisotropic mesh filters. The adaptation of this

filter was introduced by Fleishman et al. [10] and Jones et

al. [11], and then generalized by Solomon et al. [12]. Two

step methods, consisting in normal field filtering followed

by vertex updating, were proposed adopting an anisotropic

behavior [13]–[15]. Using a bilateral filter for normal field

filtering, Zheng et al. proposed an iterative and global scheme

for mesh denoising [16]. Wei et al. introduced a bilateral

normal filtering using face normals and vertex normals to reach

more robustness [17]. Using a guidance signal generated by

computing an average normal from consistent patches, Zhang

et al. proposed an extension of the joint bilateral filter [18].

Later, Li et al. tried to improve the consistent patch definition

proposing a new metric [19].
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Recently, using binary optimizations, Yadav et al. proposed

a normal voting tensor to denoise the normal field and then

update vertices [20]. Then, the same authors proposed an

edge-weighted Laplace operator to avoid face normal flip and

to be more robust to high-intensity noise [21]. They use a

bilateral normal filtering with a Tukey’s bi-weight function as

bilateral weighting. Wei et al. proposed the usage of consistent

neighborhoods, generated from a tensor voting analysis, to

compute new vertex positions [22].

Our adaptive patch computation follows the idea of com-

puting consistent patches as shown in [18], [19], and [22],

performing a new optimization procedure proposed here. Our

denoising algorithm uses these patches to filter the normal field

in an iterative manner, including an optional step that performs

a bilateral filtering [16] over the new normals to obtain even

smoother results.

III. ADAPTIVE PATCHES COMPUTATION AS AN

OPTIMIZATION PROBLEM

This section presents the mathematical formulation of our

proposed algorithm. Here the patch computation is written as a

quadratic minimization problem. We first describe the problem

as a continuous surface and then we deal with triangular

meshes, the discrete form of the surface.

A. Continuous setting

Let X be a 2-manifold embedded in R
3, and a patch X ′ a

subset of X that represents the neighborhood of a reference

point x′ ∈ X . The patch we seek should adapt to the desired

shape to preserve sharp features while denoising flat regions.

Using the normal vector field as shape descriptor, we expect

that flat regions have low normal variation, and sharp feature or

curved regions have higher normal variation. In order to reach

adaptation, the patch should be piecewise constant regarding

the shape descriptor, so the normal difference between any

points within it should be minimum.

Finding the solution X ′ can be formulated as a quadratic

optimization problem, penalizing the error between two points

xi ∈ X ′ and xj ∈ X ′ as qij = ||ni − nj ||, where ni and nj

are the normals of xi and xj respectively. Unfortunately, in a

discrete setting, finding a crisp subset X ′ results in an NP-Hard

combinatorial problem. Based on fuzzy set theory [23], we

can relax the problem defining a fuzzy membership function

u : X → [0, 1] over the entire domain X . This function defines

which is the degree of inclusion of a point xi ∈ X to the patch

X ′. Instead of finding the subset X ′, now we have to find the

function u. The solution u = 0 minimizes the problem for all

cases using the latter formulation, resulting in a patch with

area zero. To avoid this, we add a constraint for u, such that

the sum of the area of X weighted by the membership function

u should be equal to a fixed value a0.

To obtain a desired solution for our mesh denoising algo-

rithm we propose the following functional to find a member-

ship function u that:

min
u

α

∫
xi∈X

∫
xj∈X

qijuiujdada+ β

∫
xi∈X

||x′ − xi||uida

+γ

∫
X

||∇u||2da+ δ

∫
xi∈X

||n′ − ni||uida

s.t. u ∈ [0, 1] ∧
∫
xi∈X

uda = a0,

(1)

where uk = u(xk), and n′ is the normal of the reference point

x′.
The first term in eq. 1 penalizes the difference between

the normals of any two points contained in the domain X .

The second seeks to enforce compact solutions by penalizing

the distance between any point of the patch and the reference

point x′. The third term penalizes the squared gradient norm

of u to obtain smoother solutions. The fourth term is a little

more complicated. Depending on the influence of each of the

previous terms we can obtain a solution that does not include

the reference point. This solution may have no coherence with

the desired reference point normal. For example, if we have

a noisy cube and we are computing a patch with a reference

point close to an edge, the solution can lie in the wrong face if

there the region is flatter. This fourth term allows us to mitigate

this problem. The parameters (α, β, γ, δ) in this equation

control the importance of each term relative to the others.

B. Discretization

As our denoising algorithm works over triangular meshes,

we have two candidates to use as sampled points to represent

the manifold: vertex positions and face centroids. We opted

to use face centroids because our algorithm uses the normal

field generated by face normals. A triangular mesh M can

be represented as a set of m vertices V = {v1, . . . , vm}
and a set of n faces F = {f1, . . . , fn}. Each face (trian-

gle) is described by the three indices of its vertices. The

position of the mesh vertices can be represented as X =
{x1, . . . ,xm} where xi = x(vi) = (x(vi), y(vi), z(vi))

T .

Face centroids can be represented as C = {c1, . . . , cn} where

ci = c(fi) = (x(fi), y(fi), z(fi))
T . In a similar way, we

can represent face normals as N = {n1, . . . ,nn} where

ni = n(fi) = (nx(fi), ny(fi), nz(fi))
T . Given a face f

defined by the vertices v1, v2 and v3, its corresponding normal

can be obtained by n = (x2−x1)×(x3−x1). The direction of

the normal depends on the face orientation. In order to obtain

a coherent normal field, faces must share the same orientation.

If we define the patch as a crisp subset, i.e., u is either 0 or 1,

we can represent it as a subset of faces F ′ ⊆ F . In our formu-

lation we define a membership function over this domain (F ),

so we can represent it as a vector u = {u1, . . . , un}T where

ui represents the membership value of face fi. Given that our

sampled points are the face centroids and we want to integrate

over the entire domain we need the area correspondent to each

point. We assume that the area for each centroid ci is the area

of the corresponding face, fi. These areas can be represented
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as a vector a = {a1, . . . , an}T or as a diagonal matrix A such

that (aii) = ai.
The first term of the optimization problem has a quadratic

form and in a discrete setting can be rewritten as fol-

lows:
∑n

i=1

∑n
j=1 qijuiaiujaj . Using a matrix form we have:

uTATQAu, where A is the diagonal matrix containing

face areas and Q is an error matrix containing all normal

differences between two faces (or centroids). Each entry of Q
is defined by qij = ‖ni − nj‖.

For the term that penalizes the distance between any point to

the reference point, we use the distance between centroids and

the corresponding face areas. We can consider a n×n matrix

D containing all distances between two pair of points: dij =
‖ci−cj‖. The distance term is linear, so if the reference point

index is k we can use the kth column of D in the optimization

problem. For convenience we will call this vector as d. Also,

we have to integrate this penalization over the involved area.

Let us denote the area of the reference point as a′ (area of the

reference face) and the ith entry of d as di. This term can be

described by a′
∑n

i diaiui, and in a matrix form by dTa′Au.

For the third term we have to define a gradient norm opera-

tor in a matrix form. To simplify the operator, we approximate

it with the following formulation. We assume that u is constant

over all the face (triangle), so the gradient norm is zero within

it. For this reason, we only need to integrate the gradient norm

over the face edges. Adopting this scheme, for each point

over an edge sharing faces fi and fj , the gradient should be

orthogonal to the edge, and has only two possible directions

depending on u values. We can think about it as a 1D gradient,

such that the norm of the gradient over an edge point is equal

to |ui−uj |. Following this idea, integrating the gradient norm

over all points of the edge, results in the following expression:

‖eij‖|ui − uj |, where ‖eij‖ is the corresponding edge length.

With this formulation we can define the gradient norm

operator as the following matrix:

G = (gij) =

⎧⎨
⎩

∑
fk∈Nf (fi)

‖eik‖ i = j

−‖eij‖ fj ∈ Nf (fi)
0 otherwise

(2)

where Nf (fi) is a set containing edge based neighboring faces

of fi, and ‖eij‖ is the lenght of the edge that shares faces fi
and fj . So, the squared gradient norm of u can be calculated

as follows: ‖∇u‖2 ≈ (Gu)2 = uTGTGu.

When giving more importance to this term, we obtain

more regular solutions, i.e., with a lower variation of u. It

is essential to balance the importance of this term to obtain

regular solutions and be careful about too smooth solutions

which are not helpful for our denoising algorithm, once these

solutions tend to be not adapted to the object shape.

The coherence term which penalizes the difference between

the normal of a point and the normal of the reference point is

linear. So we can discretize it in the same manner as in the

distance to the reference point discretization. Let us denote the

area of the reference point as a′ (area of the reference face)

and the normal of the reference point as n′. We can write this

term as a′
∑n

i ‖ni−n′‖aiui, and in a matrix form as fTa′Au,

where f is a n dimensional vector containing in ith position

the normal difference between the reference face and the face

fi.
The lowerbound and upperbound constraints can be repre-

sented by the vectors 0 and 1, which are n-dimensional vectors

containing in all their entries zeros and ones respectively. The

area constraint results in a single linear constraint
∑n

i aiui =
a0, whose matrix representation is: aTu = a0. In practice, we

restrict the domain of the optimization problem to a regular

neighborhood limited by a given radius and by a maximum

number of faces or variables for the optimization problem (the

nearest ones to the reference point). So the mentioned mesh

M , represents a subset of the entire mesh we want to denoise.

Considering the parameters that controls the optimization

behavior we have the following quadratic optimization prob-

lem for each face centroid of the mesh:

min
u

αuTATQAu+ βdTa′Au+ γuTGTGu+ δfTa′Au

s.t. 0 ≤ u ≤ 1 ∧ aTu = a0.
(3)

Factorizing, it leads to a typical quadratic optimization

problem with bound constraints and a single linear equal-

ity constraint. Unfortunately, this formulation can result in

non-convex optimization problems. Non-convex optimization

algorithms have a high computational cost. For this reason,

we use a local minima solution. The flexibility provided by

the parameters allows the formulation to obtain the desired

solution.

IV. DENOISING ALGORITHM

Our algorithm deals simultaneously with unit normals and

vertex positions. The parameters that weight these contribu-

tions are dependent on the size of the object. To simplify

matters and establish a feeling for the optimal value of these

parameters we apply a uniform scale to the object to transform

the average length of the edges to the value one. After the

denoising process, we retrieve the original scale. These scale

steps are the pre and post-processor, respectively, of our

algorithm.

The proposed algorithm consists of four main steps. The

first is the computation of all information used to compute the

adaptive patches. At first, we compute areas, centroids and

normals for all faces. Then, we define the regular neighbor-

hoods used to reduce the domain of optimization problems.

These neighborhoods depend on two additional parameters:

the maximum Euclidean radius, ρ and a maximum number of

variables for the optimization problems, nvar. Once we have

the regular neighborhoods, we can compute the matrices d, a,

f , A, Q, and G for all faces, as explained in the discretization.

The second step is the computation of the adaptive patches

corresponding to each face. We set up the optimization prob-

lem terms using the matrices computed in the previous step.

To simplify matters, the parameters α, β, γ, and δ are the same

to all patches, and the area constraint a0 is fixed to 20% of

the total regular neighborhood area. Then, we use a quadratic
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programming solver to find a solution. The result of this step

are the membership functions, u.

The third step consists of two normal field filtering substeps,

with the second being optional. The first filtering substep uses

the membership values of u as weights to filter normals, so

the new normal of a face fi is computed as follows:

n′
i =

∑
fj∈F ′

njujaj , (4)

where F ′ is the subset of faces representing the regular

neighborhood, uj is the membership value of face fj , aj is the

area of face fj , and n′
i the new normal. After this computation

n′
i is normalized. We update the normals performing a number

of iterations (np).

The second optional substep filters the new normals n′
i,

following a bilateral scheme introduced by [16]. The main dif-

ference here is that this substep uses neighborhoods based on

a Euclidean radius instead of topology based neighborhoods.

For a face fi the new normal can be computed as follows:

n′
i =

1

W (fi)

∑
fj∈F

ajKc(dj)Ks(||nj − ni||)nj , (5)

where F ′ is the subset of faces representing the regular

neighborhood, W (fi) is the normalization factor, and Kc and

Ks are Gaussian kernel functions. We can execute this step in

an iterative manner like in the previous case (nb).

In the last step we fit faces to the filtered normals by

adapting vertex positions. Taubin proposed in [13] to use

orthogonality between the new normal and the edges of the

corresponding face. There are different ways to approximate

a solution to this formulation. In this work we adopt the

approach of [15], which defines the new vertex position as:

x′
i = xi +

1

|Fv(vi)|
∑

fk∈Fv(vi)

n′
k(n

′
k · (ck − xi)) (6)

where Fv(vi) represents the set of faces shared by the vertex

vi, n
′
k the new normal of face fk and ck the centroid of fk. We

perform this update iteratively for a given number of iterations

(nv).

We summarize all of these steps in Algorithm 1 which re-

ceives as input a noisy mesh and the parameters for denoising,

and returns the new vertex positions of the denoised mesh.

We can temporarily store matrices in order to avoid excessive

space consumption. All normal and vertex updating loops

are simultaneously executed. This algorithm can be executed

iteratively to obtain smoother results (ne).

V. RESULTS

Denoising algorithms are usually evaluated by measuring

the similarity between the resulting output and the desired

output (ground truth). To test the algorithms we used irregular

meshes with sharp features, large flat areas and large rounded

areas.

To measure the distance between meshes we use four

different quantities: distance, normal, curvature and volume.

Algorithm 1 Denoising algorithm

1: procedure DENOISE(X ,F ,ρ,nvar ,α,β,γ,δ,np,nb,nv)
2: (A,C,N)←computeAreasCentroidsNormals(X,F)
3: computeNeighborhoods(F ,C,ρ,nvar)
4: for each fi ∈ F do
5: (F ′,u = ∅,d = ∅,a = ∅)← neighborhood(fi)
6: (d,a, f ,A,Q,G)← matrixComp(F ′, A, C,N )
7: H← αATQA+ γGTG
8: b← βdT a′A+ δfT a′A
9: a0 ← 0.2·sum(a)

10: u← argminu uTHu+ bu
s.t. 0 ≤ u ≤ 1 ∧ aTu = a0.

11: neighborhood(fi) ← (F ′,u,d,a)
12: for it← 1 to np do
13: for each fi ∈ F do
14: (F ′,u,d,a)← neighborhood(fi)

15: ni ← normalize
(∑

fj∈F ′ njujaj

)

16: for it← 1 to nb do � Optional Step
17: for each fi ∈ F do
18: (F ′,u,d,a)← neighborhood(fi)
19: ni ← 1

W (fi)

∑
fj∈F ′ ajKc(dj)Ks(||nj − ni||)nj

20: for it← 1 to nv do
21: for each vi ∈ V do
22: xi ← xi +

1
|Fv(vi)|

∑
fk∈Fv(vi)

n′
k(n

′
k · (ck − xi))

23: return X

Distance-based: L2 vertex-based mesh-to-mesh error metric

(L2VBE) [24], [25]. Normal based: L2 normal-based mesh-

to-mesh error metric (L2NBE) [24], [25]. Curvature based:

Discrete mean curvature error metric (DCE) [26]. Volume

based: volume error ratio (VE). We can also visually evaluate

the results of denoising algorithms rendering the resulting

meshes using flat shading.

We implemented the proposed algorithm in C++ program-

ming language, using the half-edge data structure contained

in OpenMesh library [27]. To solve the quadratic optimization

problems we used the CPLEX library1. All our experiments

were performed on an Intel (R) Core (TM) i7-4770 CPU @

3.40GHz processor with 16,0 GB RAM and Windows 8.1 64-

bit operating system.

The meshes used in the experiments are from the

AIM@SHAPE Shape Repository [28], the SHREC15: Range

Scans based 3D Shape Retrieval [29] and The Stanford 3D

Scanning Repository2. The parameters of other algorithms

used in our test cases were provided in the corresponding

work. When the test case was not presented in the referenced

paper, we manually adjust the parameters following the au-

thors’ recommendations. The parameters used for our work

are shown in Table I. We fixed ρ = 2.0 and nvar = 100.

A. Evaluation of the proposed denoising algorithm

The first example is the sharpSphere mesh corrupted with

artificial Gaussian noise. We try to eliminate the noise using

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-
optimizer

2http://graphics.stanford.edu/data/3Dscanrep/
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TABLE I
PARAMETERS USED FOR OUR PROPOSAL.

mesh (α, β, γ, δ, ne, np, nb, nv)
SharpSphere (1.0, 2.0, 0.8, 8, 3, 3, 5, 10)
Dragon (1.0, 1.0, 0.2, 20, 1, 5, 3, 10)
Block (1.0, 1.0, 0.1, 30, 3, 5, 2, 10)
Fandisk (1.0, 1.0, 0.2, 10, 3, 5, 2, 10)
Joint (1.0, 2.0, 0.3, 30, 3, 6, 2, 10)

Balljoint (1.0, 1.0, 0.1, 5, 2, 3, 2, 10)
Gargoyle (1.0, 1.0, 0.2, 10, 2, 5, 1, 10)
Keyboard (1.0, 1.0, 0.2, 20, 2, 3, 1, 10)

Fig. 1. From left to right and top to bottom: original, noisy mesh, result of our
proposal without using bilateral normal filtering, and result of our proposal
using it.

our algorithm with and without the optional bilateral normal

filtering step. Figure 1 shows the corresponding results.

Table II shows the error between the original mesh, not

corrupted by noise, and the resulting from our algorithm with

and without the optional step. As we can see, our algorithm

successfully removes the noise while preserving details. The

optional bilateral normal filtering step generates a smoother

mesh but yields higher errors. These errors, however, are not

significant and, depending on the application, we may choose

to use the optional step.

TABLE II
ALGORITHM RESULTS FOR SHARPSPHERE MESH

L2VBE L2NBE DCE VE

With Bilateral 0.003932 0.036556 0.085570 0.001526

Without Bilateral 0.001673 0.012719 0.076498 0.000364

In [18] the authors proposed the computation of consistent

patches to obtain a guidance normal field that in principle is

similar to our weighted average normals. To compare both

approaches, we use our algorithm and the implementation

provided by [18] over the same corrupted mesh. Both normal

fields are compared them using the L2 Normal Based metric

Fig. 2. Results after 20 iterations of vertex updating using estimated normals.
Left: Guided normals using [18]. Right: Average normals weighted by patch
membership function.

where the guidance normal field error results in 0.01603 and

our weighted average normal filed in 0.00816. To show these

results visually, we performed 20 iterations of vertex updating

step using both normal fields. Figure 2 shows the resulting

meshes. Our estimated normal field have a lower error than the

guidance normal field of [18], i.e., our estimated normal field

is closer to the ground truth. Moreover, our approach generates

less flat regions when the triangulation is very irregular.

Table III presents the efficiency of each step of the proposed

algorithm based on the Dragon mesh of The Stanford 3D

Scanning Repository. The low-resolution meshes are obtained

by decimation and for comparison we use the same parameters

for all the meshes. We fixed nvar = 20 for this case.

TABLE III
EXECUTION TIME

Mesh Step 1 Step 2 Step 3 Step 4 Total
10K 0.724s 6.884s 0.070s 0.012s 7.690s
25K 1.744s 16.862s 0.161s 0.019s 18.786s
50K 3.298s 33.685s 0.283s 0.039s 37.305s
75K 4.703s 51.401s 0.434s 0.060s 56.598s
100K 9.287s 67.837s 0.573s 0.087s 77.784s

The computation of the adaptive patches is the step that

consumes more time in our algorithm. Also, the function that

describes the execution time of this step with respect to the

number of triangles, has a linear growth.

B. Comparison with other algorithms

The meshes used here are “Block”, “Fandisk” and “Joint”

whose vertex positions are corrupted with artificial Gaussian

noise. In order to simulate an arbitrary noise source, the

displacement direction is defined by the vertex normal or by

a random direction. Block: noise intensity using σ = 0.1l and

following vertex normal directions. Fandisk: noise intensity

using σ = 0.3l and following random directions. Joint:

noise intensity using σ = 0.35l and following vertex normal

directions. In all cases l is equal to the average edge length.

Our algorithm is focused on denoising of meshes with a

reasonable amount of noise. If, however, the noise is too

high, the normal field which is the base of our computation

can vary substantially and the optimization procedure may

yield bad results. Therefore, for data with a small signal to
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noise ratio, we preprocess the mesh using a few iterations of

bilateral normal filtering [16]. In the case of artificial noise,

we recommend using this pre-filtering step when the noise

intensity is based on σ > 0.2l. We used three iterations of

the bilateral normal filtering to initialize the Fandisk and Joint

meshes.

Figure 3 and Table IV show the results for Block. Figure 4

and Table V show the results for Fandisk. Finally, Figure 5

and Table VI show the results for Joint.

The algorithms proposed by [15] and [16] generate smooth

meshes while preserving sharp features. They do not preserve

small flat regions when the data has round areas. The method

presented by [9] tries to preserve these small flat regions,

but it introduces larger ones, as undesired artifacts. The

paper [18] introduces wrong normals in the presence of mesh

irregularities in the regions of sharp features. The algorithms

proposed by [20] and [21] blur the edges with a low dihedral

angle. Our method preserves the details while removing noise,

resulting in low errors.

TABLE IV
RESULTS FOR BLOCK MESH

L2VBE L2NBE DCE VE

[15] 0.011088 0.004683 0.029590 0.000300
[16] 0.010192 0.004298 0.029038 0.000210
[9] 0.020213 0.024389 0.109556 0.024038
[18] 0.004180 0.002676 0.028262 0.000849

Ours 0.001280 0.002001 0.029958 0.000433

TABLE V
RESULTS FOR FANDISK MESH

L2VBE L2NBE DCE VE

[15] 0.000364 0.014546 0.138360 0.000733
[16] 0.000213 0.008664 0.131381 0.001007
[9] 0.000630 0.028042 0.197488 0.017092
[18] 0.000117 0.007719 0.113402 0.000049
[20] 0.000191 0.009118 0.122689 0.001656
[21] 0.000185 0.006311 0.097299 0.000840

Ours 0.000156 0.005791 0.116578 0.000813

TABLE VI
RESULTS FOR JOINT MESH

L2VBE L2NBE DCE VE

[15] 2.43e-6 0.002508 0.227227 0.000115
[16] 1.11e-6 0.001493 0.201129 0.000152
[9] 1.34e-5 0.005773 0.218453 0.002809
[18] 1.48e-6 0.001645 0.154981 0.000215
[20] 1.29e-6 0.000756 0.113735 0.000223
[21] 1.06e-6 0.000882 0.160960 0.000583

Ours 1.04e-6 0.000601 0.180188 0.000066

C. Denoising of real objets

This section studies the denoising of the “Gargoyle”,

“BallJoint” and “Keyboard” meshes. Figures 6, 7 and 8 show

the corresponding results. In general, [9] removes the noise but

also removes small details and generates undesired flat regions.

[15], [16] and [18] smooth too much the shape removing some

sharp features, yielding blurred results. [20] does not preserve

the continuity of sharp features and introduces round edges.

Our results better preserve these details and generate thinner

regions with high curvature yielding in a well-defined mesh.

D. Denoising meshes generated from ultrasound exams

Here we present the result of our denoising algorithm over

two meshes generated from medical ultrasound data. The

meshes were obtained from fetal ultrasound exams using a

two-step methodology. The first step uses an active contour-

based segmentation to capture the shape of the fetus. The

second reconstructs the mesh using the Marching Cubes al-

gorithm [30]. Both meshes present the staircase artifact which

is a common mesh distortion when reconstructing isosurfaces

of slice-based volumes.

We perform the denoising of these meshes in two steps. First

we remove the staircase artifact using our algorithm with the

following parameters: (α = 1.0, β = 1.0, γ = 0.2, δ = 0,

ne = 1, np = 2, nb = 0, nv = 10). Then we remove the noise

using our algorithm with the following parameters: (α = 1.0,

β = 1.0, γ = 0.2, δ = 15, ne = 2, np = 3, nb = 5, nv = 10).

Figure 9 shows our results. Staircase artifacts and noise are

removed while most of the details that can be distinguished

in the noisy meshes are preserved.

VI. CONCLUSION AND FUTURE WORK

The numerical results presented here indicate that the pro-

posed algorithm removes the noise while preserving the details

better than the algorithms we analyze in this work. When the

ground truth is available, the error of our algorithm is the

lowest one in most cases. Our results with real data, also

present a better definition of the details while removing the

noise.

The result of our method is dependent on the choice of the

optimization parameters, this presents some complexity but

also allows for great flexibility. The denoising algorithm can

have multiple behaviors when tuning them. For example, if

we want to denoise a smooth object like a human shape, we

can increase the value of the parameter γ to obtain smoother

patches that result in a near anisotropic Gaussian filter, which

is a good choice for this kind of objects. In the case an object

has large flat regions, we can decrease the value of γ and

increase the values of α and β to obtain more compact patches

with low normal variation.

The proportion between a parameter of a quadratic term

and a parameter of a linear term strongly depends on the

scale of the mesh. The normalization step, however, solves

this problem.

The computational time of our algorithm has a near-linear

cost but with high constant time for the number of triangles

in the local neighborhood. The limitation of the number of

variables allows us to define our algorithm in this way. The

quadratic optimization problems are the heaviest operations in

the pipeline, but we were able to solve common problems in

a reasonable time.
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Fig. 3. Results obtained for Block mesh. From left to right: original, noisy, [15], [16], [9], [18] and our method.

Fig. 4. Results obtained for Fandisk mesh. From left to right: original, noisy, [15], [16], [9], [18], [20], [21] and our method.

Fig. 5. Results obtained for Joint mesh. From left to right: original, noisy, [15], [16], [9], [18], [20], [21] and our method.

Fig. 6. Results obtained for Gargoyle model. From left to right: noisy, [15], [16], [9], [18], [20] and our method.

Fig. 7. Results obtained for Ball Joint model. From left to right: noisy, [15], [16], [9], [18], [20] and our method.

Fig. 8. Results obtained for Keyboard model. From left to right: noisy, [10], [15], [16], [9], [18], and our method.

Our approach was focused on denoising of triangular

meshes, using face centroids as sampled points of the rep-

resented 2-manifold. As future work, we can use the vertex

position as sampled points and perform the optimization

problems on this domain instead of the face based domain. The

vertex based domain was better studied in the literature and has

more accurate approximations (e.g., gradient norm operator).

If we work on this domain, we can extend our proposal to 3D

point clouds.

We found that our adaptive patches based on normal fields

can be used in other applications like mesh segmentation,

remeshing or feature detection. Also, instead of using normal

fields to describe the data, we can use other descriptors like

curvature, saliency or heat kernels. We hope to address other

applications in later work.
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Fig. 9. Denoising of fetus meshes with staircase artifact using our method.
First column: noisy mesh. Second column: resulting mesh after staircase
removal. Third column: denoised mesh.
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