
Autotag:  
Applying Tags to Virtual Objects in Real-Time Visualization Systems 

Renato D. Prado, Alberto Raposo, Luciano P. Soares 
Tecgraf, DI (Departamento de Informática) 

PUC-Rio (Pontifícia Universidade Católica do Rio de Janeiro) 
Rio de Janeiro, Brazil 

e-mail: {rdprado,abraposo,lpsoares}@tecgraf.puc-rio.br 
 

 
Abstract—A main objective of large industrial-engineering 
departments is implementing integrated information systems 
to manage their projects’ life cycles.  Particularly, most 
industrial engineers in the oil and gas industry use 3D 
geometric models, which they create using CAD systems to 
interact with the information systems.  This is possible because 
modern CAD systems have evolved from drawing programs to 
collaborative design tools that combine geometric modelers 
with specialized tools for tasks such as engineering-document 
management, physical-plant documentation, and computer-
aided visualization.  Important information that needs to be 
associated with CAD objects in these scenarios is the name of 
the objects, essential for tasks such as operation management, 
for instance. Despite its importance, there is not yet a well-
established solution for the presentation of objects’ names in 
CAD real-time visualization. This paper presents a solution to 
generate textures for CAD objects with their main 
identification, keeping interactive visualization rates in massive 
CAD models. The main challenges are discussed and solutions 
are proposed and tested. 

Keywords- autotag; CAD;texturing 

I.  INTRODUCTION 
A major objective of the engineering departments of 

large companies, such as automotive and oil & gas, is the 
availability of engineering software systems easily adopted 
by their employees to manage their projects’ life cycles. 
They seek computational systems that, in addition to simple 
access of databases with project information, provide 
resources for 3D visualization of their models with enough 
realism to be used in many interactive applications. 

The engineering models are based on CAD (Computer-
Aided Design) files that represent the objects of the building, 
vehicle, among others. When the CAD files are very 
complex, like an oil platform, these models are called 
massive models [1]. One of the challenges to build these 
systems in real-time 3D visualization is to develop 
applications using techniques that increase graphics quality 
and realism, while may be used with an acceptable 
performance in conventional computers, supplying all 
information needed by the engineers using the system. 

 

 
Figure 1.  3D model of oil refinery. 

CAD models are usually not conceived to be visualized 
in real-time [2] In regions of high concentration of objects 
there is a high computational cost that can compromise the 
possibility to use in a virtual reality environment. Figure 1 
shows a small portion of an oil refinery where it is possible 
to visualize the complexity of objects (there are thousands of 
cylinders, cubes, pyramids, and other primitives for the 
representation of real objects). Even to render a small part of 
a refinery, the computational cost is already high even for 
high-end machines.  

Identification of objects is possibly achieved through an 
additional window that presents information of clicked 
objects, or even hovering the cursor, but this does not allow 
the user to visualize the identification of several objects at 
the same time. Other possibility was the use of billboards [3], 
but this solution can occludes areas of the virtual models that 
compromise the interaction, then this solution is only applied 
in annotations that need more space for a complete text as 
presented in the Figure 2 and not only few letters. Since there 
is a demand of the engineers responsible for projecting 
complex sites, on visualizing the name of the objects without 
need to interact with them since group of people can look at 
the scene at the same time, the autotag was proposed. 

  



 
Figure 2.  Anottation in CAD model. 

Autotag is a technique that helps users of CAD software 
to display the additional information of objects in the scene 
with their references. This textual information is a texture 
applied in geometric shapes, which have the name or other 
relevant information written on it. Thus, their identification 
is facilitated and can be quickly noticed when a user look at 
the objects. Since the objects in the CAD models usually use 
colors only for identification, the tags are applied with 
maximum transparence in the region without the letters, not 
changing the original color of the object being analyzed.  

Section 2 will present a related work that was used as 
reference and motivation. Section 3 presents the technologies 
involved and section 4 presents how the autotag was 
developed, conclusions are discussed in the section 5.  

II. RELATED WORK 
AvevaReview [4] is a CAD software used to produce 

complex 3D models. This software has a support for 
presenting information on some objects in a semiautomatic 
way. Figure 3 illustrates the use of these identifiers. 

 

 
Figure 3.  AvevaReview image of a model with autotags. 

It is unclear how is the implementation of these tags in 
the AvevaReview, since this commercial software company 
does not provide information about implementations, but this 
solution was used as an idea to study ways to achieve the 
autotags and improve it. The main problem lies in how to 
display the tags in a large number of objects without 
extrapolating computer resources, especially the video card 
memory. The cost to display the tags compromises the 
performance and the proposed solution can present several 
tags, maintaining the interactive rate of the application. 

III. BASIC CONCEPTS 
In this section there will be an explanation of massive 

models, and also a discussion of some techniques for 
texturing. 

A. Massive Models 
Massive models in computer graphics, refers to high 

detailed geometric models [1]. Among their main 
characteristics, it is possible to highlight: 

• They have a high level of detail that can not be seen 
by the human eye without magnification. 

• They have data that consume hundreds of GB or TB 
for storage, billions of geometric primitives 
(cylinders, cubes, cones, etc.), and units of 
measurement ranging from angstroms to light years. 

• They have data that exceeds the conventional 
capacity of processing and storage. 

Massive models are getting bigger each day, models of 1 
billion polygons are common, and these models have about 
26GB of raw data, and user still want to render these models 
in real-time. 

There are already several virtual reality software for 3D 
visualization and interaction with CAD models. Some 
examples are: WalkInside[5], Aveva Review [4], 
Navisworks [6], among others [2] 

The AvevaReview can apply some tags with 
identifications over objects in CAD models, which greatly 
facilitates their identification, but this program only supports 
cubes (boxes) and cylinders. 

TABLE I.  PRIMITIVES IN A MODEL. 

pyramid 71462 

box 32350 

rectTorus 4696 

circTorus 27388 

slopedCone 69547 

cylinder 118346 

sphere 441 

dish 10807 

sphereSect 0 

mesh 34839 

Total 369876 



The AVEVA "Review" files (RVM) were used as a 
reference for this research, mainly due to the fact that it is a 
format commonly used in the industry, and then larger files 
were available for evaluation. An example of an RVM model 
that is only part of an oil refinery, containing a total of 
369,876 different objects, is presented in Table 1 showing 
the quantity of each primitive. The information of this model 
will be used during the text to show how complex is to apply 
the tags on it. 

B. Textures 
In computer graphics, texturing is a process that applies 

over a surface of an object an image, expression, or other 
data source. Figure 4 shows a brick wall example, this image 
can be applied several times on a surface creating the effect 
of larger wall geometry. Other solution could consist of a 
procedural texture, in this case a regular equations or 
functions can creates the colors as a real brick. It is a way to 
directly fill the colors of an object, programming in the video 
card. 

Each texel of the texture is referenced by a pair of values 
(u, v) and u and v in general vary in the interval [0,1]. This 
coordinate system represents the texture space. Figure 4 
shows two examples with their coordinate orientation. 

 
Figure 4.  Image texture of bricks, texture image of letters. 

It is necessary to define how to map the coordinates to 
apply a texture onto an object, indicating the correspondence 
between the points of the geometry and the texels of the 
texture image. Usually the vertices of the object are 
associated to the texture coordinates. One of the challenges 
of this project is how to correctly position the autotags on top 
of each geometry type. Depending on the way the texture is 
applied the text could appear up-side down or even mirrored, 
then the correct information of how the mapping is defined 
in the objects is fundamental. 

The size of texture images used on the GPU (Graphics 
Processing Unit) is typically 2m x 2n texels. However, 
modern GPUs can handle textures of arbitrary size, which 
allows any image generated to be treated like texture [7]. The 
difference between the texture size and the surface where it 
is applied can be a problem. If the texture has a low 
resolution compared to the resolution of the geometry on the 
display, the texture will be magnified to cover the entire 
surface, so that the result might show an image without 
definition and aliasing.  

As the texture size increases in order to achieve a better 
quality, more video memory will be spent to store that, and 
the memory usage grow quadratically. The texture 

coordinates for the mapping also uses video memory. For 
small and simple models it does not pose a significant 
problem, but for large models, the use of memory can be 
excessive. 

The RVM model mentioned earlier (Table 1) has a total 
of 369,876 objects. Whereas an individual texture for 
geometry occupies 8KB of texture memory, the use of video 
memory only to store all the textures on the graphic card 
would be 369,876 x 8KB or approximately 3GB. Moreover, 
there is the cost of each object having to save the texture 
coordinates needed to map coordinates. The total number of 
triangles of this model is 11,288,337 and each vertex needs a 
pair of texture coordinates, totaling a use of hundreds of 
megabytes. The problem is that each object has a name and 
needs a specific texturization. 

C. Procedural Texture 
Another way of texturing objects, is the use of procedural 

texture with the implementation of algorithms in 
programmable shader [8]. This means that effects to simulate 
textures are created by the video card, which fills the colors 
of the pixels of the object to display a desired texture. Thus, 
the consumption of video memory is much lower, since there 
is no need to store previously created different textures on 
the graphic card memory and neither do the mapping 
coordinates. Each pixel is individually filled with the help of 
mathematical functions each time the shader program is 
executed. The processing cost to run the shaders is low since 
this is done with a high degree of parallelism in the graphics 
card. 

IV. AUTOTAG 
The project of autotag was developed on C++ with 

OpenGL and GLUT[9]. Using object orientation, the 
resources implemented during this research are going to be 
organized in the form of a library to be reused in several 
different projects. 

Two main possibilities were considered to create the 
autotags: 2D textures and procedural textures. The first idea 
(two-dimensional textures applied to objects) was chosen as 
the initial test to see if indeed the bottleneck of the program 
would be the consumption of video memory or the 
processing resources that are not enough.  

The option of developing a procedural texture was not 
implemented in the moment due to the fact that it is 
necessary a routine to draw each letter, and the 
implementation of such routine is very complex and the main 
idea right now is to discover the limitations of the GPU.  

The first step to create the autotags, is the creation of a 
repository of characters where it is possible to store the 
letters, and after this letter will be assemble in an organized 
way in order to form a word of phrase to a specific textures 
when needed. 

In order to evaluate the effect of the autotags in different 
situations, it was also created a simple scene graph algorithm 
to simulate real effects of a 3D visualization software in real-
time and also allowing the creation of complex scenes for 
testing. The cubes and cylinders geometry produced for the 



tests were done so that they were simple and did not have a 
number of vertices larger than necessary. 

The cylinders constructor method has parameter values 
given by radius, height and how many times the texture 
should be repeated on it. This creates three arrays containing 
the position of its vertices, normals and texture coordinates 
of each vertex. These three arrays are passed to OpenGL to 
create a display list. The display list, use the function 
glDrawArrays receiving GL_TRIANGLE_STRIP. The caps 
of the cylinder, or discs, are designed using the parameter 
GL_TRIANGLE_FAN in the glDrawArrays. 

In the case of the cube, its constructor method takes the 
dimensions of height, width and depth and how many times 
the texture should be repeated in each of their faces. Then the 
arrays are configured to return the vertices, normals and 
texture coordinates for each face. Display lists were used to 
improve application performance. The display lists are 
created by side and use the function glDrawArrays using 
GL_QUADS, to render the faces of the cube. 

Colors are also applied in the geometries in order to 
evaluate the effect of the textures over the surfaces. It is 
desired that the text appears over the object not affecting the 
understanding of the shape of the geometry.  

A. Dinamic Texture 
In order to build a different texture for each object, 

methods were developed organizing words vertically or 
horizontally. Depending on the geometry of the target object, 
it might be better to place the texture in the horizontal than in 
the vertical. These functions extract characters from the 
repository and rearrange them to form the desired new 
image, which can be used as texture. The repository is a 
PNG image that contains all ASCII characters, plus the 
LATIN-1 characters. In the future, new character, for 
different languages for instance, can be easily incorporated.  
Figure 5 presents the texture used. 

 

 
Figure 5.  Characters Table. 

Specific methods take care of reading the image and store 
it in a texture that can be accessed globally. Each pixel is 
represented by the channels R, G, B and A (red, green, blue 
and alpha). Therefore, if the repository has a resolution of 

256 x 256, the vector needs 256 x 256 x 4 bytes to store the 
texture. Since this is the original data, it is desired that it has 
a resolution good enough to be easily read by the users. 
Mipmap techniques although can be used in the textures used 
in the object to improve the performance of the application. 

Once the repository of characters is in memory, the 
following methods may be called: 

 
chImage*	
  createStringImageV(const	
  std::string	
  &	
  str)	
  

chImage*	
  createStringImageH(const	
  std::string	
  &	
  str)	
  

Both receive a string that is used to create the texture and 
returns a pointer to a struct chImage. This struct contains the 
width, height, and an texture array, which stores the new 
image created. The image stored in the vector has the same 
format in which the repository is stored. The functions load 
the file and organize the characters one at a time in a new 
vector, depending on the character optimizations were done 
in order to reduce the space between letters. For instance an 
"i" needs less horizontal space than a letter "m". Usually 
these textures are written vertically for the cylinders and 
horizontally for the cubes. Figure 6 illustrates this. The 
algorithm was also optimized to make letters clipped to 
decrease the space between the letters, thus optimizing 
memory. 

 
Figure 6.  Tags in Cube and Cylinder. 

All strings created are stored in a chImage struct in the 
CPU memory. So when it is decided they are no longer 
needed, the method freeStringImage(chImage* stringImage) 
should be called to release the vector from memory. An 
example of this case is when the texture has been submitted 
to the video card and is no longer needed in RAM. 

The images created use the OpenGL function: 
glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_M
ODE,GL_DECAL). 

This function defines the color of the primitive as the 
texture. As the illumination values are computed before the 
texture mapping, the texture color replaces the color 
calculated by lighting. 

B. Tagging and scene construction 
The user has control of the camera position of the 

evaluation software using the mouse. It is possible to 
perform translations and rotations in relation to the central 
point of the scene. This was very used to analyze the result 
and make sure the tags are not compromising the quality of 
the objects. 



Two text files (Cylinder.txt and Boxes.txt) were created 
containing names of each cylinders and cubes. At the 
beginning of the program, these files are loaded and the 
names are stored within each object. Random numbers 
algorithms were developed to produce the primitives 
sparsely on the 3D world (more specifically cylinders and 
cubes). The geometries have different translations and 
rotations applied to them, creating a homogeneous scene for 
the tests. 

The scene was set in order to see how many objects could 
be rendered without textures while maintaining an acceptable 
frame rate. In order to compare the results, all optimizations 
were turned off. With 60,000 objects, half of each 
type(cylinders and boxes), the frame rate was around four 
frames per second. Since the main idea of this project is the 
use in real-time, a frame rate of 30 frames per second was 
the target. For that the maximum number of objects was 
5,000 cubes and 5,000 cylinders. Figure 7 shows these 
scenes, the cylinders are blue, and the cubes are red. 

 
Figure 7.  On the left a cube containing sixty thousand objects and the 

right side of the same cube, containing ten thousand objects. 

The next step was to apply textures to objects and 
measure the consumption of video memory to see how many 
objects at a time could have the tags. The program GPU-Z 
[10] was used to analyze the results. On a machine with 
Windows 7 whose graphics card is a GeForce 9600GT 
512MB, the resource of video memory used was 110MB 
without any geometry. The first test was done with 40,000 
objects very close to each other and without textures, the 
memory used was 148Mb, which means that the memory 
spent on the geometries, considering vertices and normals is 
only 38MB. The frame rate was ~8 fps. After applying the 
textures in the 40,000 objects at the same time, the use of 
memory was 508Mb and the frame rate went to zero fps. 

If the textures have a resolution of 128 x 16, or 2048 
texels, each texel represented by RGBA (four unsigned 
chars), the use of video memory for texture is 2048 * 4 bytes 
or about 8Kb. With 40,000 objects with texture, the 
theoretical use of memory would be 320Mb. Knowing that 
only the geometry uses 148Mb, 148 + 320 is equal to 
468Mb, which is close to 508Mb that has been achieved in 
practice. 

A second test was executed with 10,000 objects less to 
check the difference in fps. With 30,000 objects and texture 
off the frame rate was ~10 fps and memory use was 122Mb. 

With the application of textures on all objects the frame rate 
dropped to 2 fps and memory use was 500Mb. 

With the previous result, we decided to examine the 
scene graph to see what was making the frame rate drop. It 
was seen that the function glBindTexture could be 
responsible for the drop in performance. Thus a test was 
done with 40,000 objects with textures but not making the 
"binds" before drawing the objects. The frame rate remained 
at ~8 fps, which was the same rate obtained when we did not 
apply the textures. This shows that glBindTexture was 
responsible for the fps drop, and not the high memory 
consumption. GlBindTexture function is not simply a void 
pointer, but it invalidates the cache and in the worst case, 
change all the state associated with that texture mode (clamp, 
mipmap generation, filters, etc.). The behavior of the 
function in reality will strongly depend on each hardware 
optimizations, but either way it is not efficient to call it 
40,000 times per frame, as the loss of performance showed 
before. The number of "binds" that could be done by frame 
in very large models has become a major limitation. 

An optimization for the autotag was then developed in 
order to reduce the number of binds. The solution chosen 
was to apply the tags only to objects closer to the screen. 
Indeed, if the objects are not too close to the screen the user 
can not read what is written in the tags. Moreover, when the 
user of the program is examining objects, he does not need to 
see the names of all objects in the scene at the same time, 
because the resolution of the display will limit that at certain 
moment. 

To implement the culling due the distance from the 
viewer, adjustments were made to the scene graph algorithm. 
Before rendering a frame, it is calculated the camera 
position, the position of each object, and the distance 
between them. Now when the camera changes its position a 
method is called to evaluate whether the bind should be done 
or not. This method takes the current OpenGL modelview 
matrix and passes to each transform matrix that, in turn, 
calculates the distance of the entity from the camera. The 
distance is transmitted to the renderer, before calling the 
method to draw the cylinder or cube, checking whether the 
object is up to a maximum distance from the camera or not. 
If so the tag is applied, if beyond that distance it does not get 
the tag. The limit distance was calculated based on the 
resolution of the display and the visual acuity of a regular 
user. Figure 8 shows some results achieved in a complex 
scene. 

As an additional resource to keep the frame rate high, 
there are also a limited number of objects that can receive 
textures at the same time. It is not expected that the user will 
visualize more than a certain number of objects without 
getting closer to the group of objects, the limit was 
configured to 500 for the tests, but in a regular use of the 
software this number can be smaller.  

 



 
Figure 8.  Closer objects with tags and farther without them. 

The application performance has improved considerably, 
although there is still a drop in fps depending on the 
configuration parameters (maximum distance from the object 
to the camera and the maximum number of objects that may 
have tags). With a scene quite crowded with 10,000 objects 
that ran at 30 fps without the tags, there was a fall of up to 10 
fps when it was used only as camera distance restriction. 
Also limiting the number of objects tagged in 500, the drop 
was only 3 fps, resulting in 27 fps for this simulation. 

Since the problem of 'bind' was reduced, the video 
memory becomes a point of focus again. Even though only 
some objects receive tags, it is still mandatory to keep on 
board a different texture per each object. Optimizations were 
developed trying to compress the images on the graphic card, 
but this kind of operation did not really work as expected, the 
better way to use less memory is the use of programmable 
shaders that is the focus of the future work. 

V. CONCLUSIONS 
The display of the tags on the 3D objects is a resource 

desired by the people who work with CAD models, since the 
efficiency to identify objects that are being examined is very 
high. The user can already see the name of the structure in 
the object tree, but with tags applied directly in the geometric 
objects, the identification is much faster and precise. Of 
course this technique can visual overload the scene, but 
tuning the algorithm can produce adequate results. During 
the integration of the algorithm in the main software 
developed by the group of developers an additional option 
was implemented allowing the user to select which 
information is to be displayed, like the name of the object, 
the size, weight, manufacturer, among others. 

The solution presented here was implemented and tested 
with a massive model, but for the moment, only certain 
shapes that can receive tags. In the future the algorithm will 
support more irregular shapes, such as cones and torus. 

 Application performance is not completely compromised 
with the tags. In regular models the frame rate is higher than 
30fps. However, some configuration settings in the 
algorithms still need to be made so that the solution can be 
more adapted for different situations and styles of working. 
The textures can be created as objects need and a smart 
algorithm can manage when they are removed or stored on 
the memory of the graphic card, known as streaming texture 
data from disc. 

The current solution limits the number of objects with 
tags in order to achieve better performance of the 
application. The choice of which objects receive tags each 
frame depends only on their distance from the camera and 
the limit of objects that can receive these tags. In order to set 
these controls of the amount of tags to exhibit, it is important 
to allow the users of the program to configure and evaluate 
and see what they actually prefer. This idea is very similar of 
maps software that as you get closer to the streets you can 
see that name of them. 

As a future work the orientation of the text should be 
addressed. Currently, the texture is placed under the 
guidance of the object position. As in the case of randomly 
generated scene, objects can be upside down in relation to 
the camera inverting the text. It would be interesting to align 
the text according to the camera UP vector.  

Another optimization that is important regards the size of 
each geometry. The size of each object could be taken into 
account, so objects away from the camera, but that occupies 
a larger amount of pixels on the screen should also receive 
tags. The same would apply in reverse: very small objects 
near the camera would not receive tags. 

Procedural texture with programmable shaders is another 
area being developed right now. One single shader could be 
used for all the textures, but the current problem is to find a 
way to store each letter in the graphic card in the form that it 
can be reused. A problem here would be how to map the 
characters to objects of different types and sizes and not 
compromise the quality of the text being displayed. 

ACKNOWLEDGMENT 
This work has been partially supported by Petrobras. 

Alberto Raposo receives a grant from FAPERJ E-
26/102273/2009. 

REFERENCES 
[1] YOON, S., GOBBETTI, E., KASIK, D., MANOCHA, D. Real-Time 

Massive Model Rendering. Synthesis Lectures on Computer Graphics 
and Animation, Morgan & Claypool Pubs., 2008. 

[2] RAPOSO, A., SANTOS, I., SOARES, L., WAGNER, G., 
CORSEUIL, E. and GATTASS, M. 2009 . Environ: Integrating VR 
and CAD in Engineering Projects. In IEEE Computer Graphics and 
Applications 

[3] SOARES, L., CARVALHO, F., RAPOSO, A., SANTOS, I. 2009. 
Managing Information of CAD Projects in Virtual Environments . In 
Proceedings of the XI Symposium on Virtual and Augmented Reality 

[4] AVEVA REVIEW. Aveva Home Page. http://www.aveva.com/    
Accessed in: oct 2011. 

[5] WALKINSIDE. VRcontext Home Page. http://www.vrcontext.com/ 
Accessed in: oct 2011. 

[6] NAVISWORKS, http://usa.autodesk.com/navisworks/ 
[7] EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., 

WORLEY, S. Texture & Modeling: A Procedural Approach. 3rd Ed., 
Morgan Kaufmann, 2003. 

[8] AKENINE-MÖLLER, T., HAINES, E., HOFFMAN, N. Real-Time 
Rendering. 2008. 1027p.  

[9] THE OPENGL UTILITY TOOLKIT. GLUT 3.7 Home Page. 
www.opengl.org/resources/libraries/glut Accessed in: oct 2011. 

[10] TECHPOWERUP GPU-Z. GPU-Z Home Page. 
www.techpowerup.com/gp  Accessed in: oct 2011. 


