Getting Started with
the Java 3D" API

A Tutorial for Beginners

Chapter 0
Overview and Appendices

Getting Started with
Getting Started with Getting Started with the Java 3D API
the Java 3D" API the Java 3D" API
Chapter 1 Chapter 2 | Chapter3
Creating Geometl"y Easier Content Creation
@ Sun
Getting Started with Getting Started with . . Getting Started with
the Java 3D™API the Java 3D™ API Getting Started with the Java 3D™ API
the Java 3D™ API Chapter 7
o f.}.'.a,itﬁr.i Chapter 6 Texl:n::s
Interaction Lights
seeea o=
frarapay ﬁ i ?‘“*?‘fﬂz_-,a
oo A - i
m = i
®sum @ Sun e @ Sun S5 e

Dennis J Bouvier

< Sun.

micrasystems

tutorial v1.6.2 (Java 3D API v1.2)

Getting Started with Java 3D Tutorial Preface

© 1999-2001 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A
All Rights Reserved.

The information contained in this document is subject to change without notice.

SUN MICROSYSTEMS PROVIDES THIS MATERIAL "AS IS" AND MAKES NO WARRANTY OF ANY KIND,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SUN MICROSYSTEMS SHALL NOT BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL,
WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES
IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Some states do not allow the exclusion of implied warranties or the limitations or exclusion of liability for incidental or
consequential damages, so the above limitations and exclusion may not apply to you. This warranty gives you specific legal

rights, and you also may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and without fee is hereby
granted provided that this copyright notice appears in all copies.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun
Microsystems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

The Java 3D Tutorial

Getting Started with Java 3D Tutorial Preface

Table of Contents

OVERVIEW AND APPENDICES 0-1
0.1 NAVIGATING THE TUTORIALcucoviiiiiiiiiiiiiiiiictiiteietcetes ettt ea e a et ea e en e ens 0-1
0.1.1 TULOFIAL CONLERLS ..ottt ettt a ettt et ateese e st et e ens e enseenseeneeeneenseenns 0-1
0.1.2 How Can T Use the TUIOFIAL...................coccooiieiieiieieeeeee ettt ene s 0-5
0.1.3 Preface t0 the TUIOFIALcccccociiiiiiiiiiit ettt ettt 0-6
0.1.4 DISCIAIMEFS ...ttt ettt ekttt et he e eae e et et e et e st e st e bt e st e e beenseenteeneeeneenseenns 0-7
0.2 (APPENDIX A) SUMMARY OF EXAMPLE PROGRAMSooctiiiiiiiiiiiiinienienitenieenieenet et eieesaneseeesieenieennesnnesnnes 0-8
0.2.1 HeIIOJAVA3Dccuooiieiieeee ettt ettt et a ettt ettt ettt eeae et et eaeenne s 0-8
0.2.2 GEOMIEITY ...ttt ettt ettt 0-8
0.2.3 EGSYCONIERL ...ttt ettt ettt et et 0-10
0.2.4 LOGAEE ...ttt ettt a ettt et ena e it eaeeenae e 0-10
0.2.5 IHECFACEIOMN ...t ettt et et et ettt et ettt et e et e et e ettt e e tb e e nte e e 0-10
0.2.6 ATEIQEIIOM ...ttt ettt et ettt ettt ekttt et e et at e et e nte e e 0-12
0.2.7 LIGRE oottt ettt 0-13
0.2.8 TEOXIUFC .ottt ettt et ettt ettt ettt ettt ettt et ettt et e e st e e ebeeenne 0-13
0.3 (APPENDIX B) REFERENCE MATERIAL........cccuteitieteetiastieteeseesessesssesssesseanseessesssesssessesssesssesssesssesssesseessesnes 0-16
0.3.1 BOOKS ..ottt a ettt ettt eneens 0-16
0.3.2 The Java 3D API can be downloaded from the Java 3D Home Page:ccccoccvcevceevcnenicncnne. 0-16
0.3.3 SUN JAVA WED PUZES ...ttt 0-16
0.3.4 OthEr Webh PAZES..........ccooeeiiiiiiiii ittt ettt ettt ettt ebe et 0-17
0.4 (APPENDIX C) SOLUTIONS TO SELECTED SELF TEST QUESTIONSctiriieriiieriieerieesireesieesreesreesneesveesnnees 0-18
0.4.1 Answers to QUeStions i CRAPIET 1ccccccueririiiiiiiiiiiiieet ettt 0-18
0.4.2 Answers to QUeStions i CRAPIET 2c.ccccouiririiiiiiiieee ettt 0-20
0.4.3 Answers to QUeStIONS i CRAPIET 3ccccuiiiiuiriiiiii ittt 0-21
0.4.4 Answers to QUeStioNS i CRAPIET 4ccocueiuiriiiiiiiieeeee ettt 0-22
0.4.5 Answers to QUeStions i CRAPIET 5c..ccccueiuiriiiiiiiiieeeeee ettt 0-23
0.4.6 Answers to QUEStIONS T CHAPIET 6cccoeeuiriiiiiiiieieee ettt 0-24
0.4.7 Answers to QUESHIONS T CHAPIET 7ccceeieeiiieiiiiiit ettt 0-24
0.5 (APPENDIX D) GEOMETRY AND MATHctiiuiiiiiiieiieeiieenittesteeniteesiteesiteesiteesiteesiseessteesaseessseesaseesaseesasessnseas 0-26
0.5.1 DEfINING @ PIANE ...ttt ettt 0-26
0.6 GLOSSARY ..ouiitiiiietcee ettt ettt a e a bbbt nns 0-27

The Java 3D Tutorial 0-1

Getting Started with Java 3D Tutorial Preface

Module 0
Overview and Appendices

Welcome to version 1.6 of The Java 3D API Tutorial. This tutorial contains seven chapters explaining
the most commonly used features of the Java 3D API. The tutorial actually contains eight chapter, but
chapter 0 supports the other chapters with material such as appendices and glossary.

Since the tutorial has been developed and released incrementally, several versions of the tutorial exist.
For this reason the revision history may be important to readers of earlier versions. The following table
presents the revision history for each chapter of the tutorial.

Table 0-1 Revision History of the Tutorial.

Chapter latest tutorial | release date reflects API
version version
0 — Overview and Appendices 1.6.2 June 2001 1.2
1 — Getting Started 1.5.1 October 2000 1.2
2 — Creating Content 1.6 December 2000 1.2
3 — Easier Content Creation 1.6.1 March 2001 1.2
4 — Interaction 1.6 June 2001 1.2
5 — Animation 1.6 June 2001 1.2
6 — Lights 1.5 April 1999 1.1
7 — Textures 1.6 June 2001 1.2

0.1 Navigating the Tutorial

The tutorial is a collection of modules. Each Module is a collection of chapters (except this one, Module
0 has only one chapter, Chapter 0). The chapters in a Module are related. See section 0.1.2 for more
information on module and chapter dependencies.

With each chapter of the tutorial being published as separate documents, the following features have
been employed:

e Appendices: To allow easy updates to the Appendices while keeping them centrally located,
including the Glossary, are published with Chapter 0 (this chapter). As a consequence, they
appear as numbered sections in this document. However, the letter names used in version 1.0 of
the tutorial ('A', 'B', and 'C') are retained for compatibility with the older chapters.

e Page numbering: To allow easy reference to pages in specific chapters, each document's page
numbering is prepended with the chapter number. For example, this is page 0-1, which is page
one of chapter zero.

0.1.1 Tutorial Contents

The tutorial is organized as a collection of four modules; each is outlined in the following sections.
Beginning on page 0-3 the section titled "Chapter Contents" presents the contents of each chapter.

The Java 3D Tutorial 0-1

Getting Started with Java 3D Tutorial Preface

Module Overview

Module 0: Navigation and Appendices

The document you are reading is Module 0. In addition to the navigational material, it contains the
appendix material and the glossary. This document will be updated with each new chapter.

Module 1: Getting Started with the Java 3D API

The introductory module presents the basics of Java 3D

programming. Chapter 1 begins at the level of a Java programmer

who has never used Java 3D. By the end of the Chapter 2, the

novice Java 3D programmer understands the Java 3D scene graph,

how to create a virtual universe by specifying a scene graph, how

to create geometry, appearances, and program custom visual
objects for use in simple virtual universes

Chapter 1: Getting Started...........ceecevevuerrueessnecsannee 33 pages, October 2000
Chapter 2: Creating Content 73 pages, December 2000
Chapter 3: Easier Content Creation cessseesssnnsressssnnnane 37 pages, March 2001

Module 2: Interaction and Animation

Chapter 4 covers behavior basics, along with topics related to

making interactive virtual worlds. Chapter 4 includes material
on virtual universe navigation with the mouse and keyboard
and picking. Chapter 5 continues with Morph, C

OrientedShape3D, and specialized behavior classes such as
interpolators and level of detail to create animated visual objects.

Chapter 4: INteractionc.cceceecsceecssnnccssnncssnrcssssscsanns 56 pages, June 2001
Chapter 5: AnimMAationcoueeevveccisnrccssnncsssnncssnscssssscsanns 48 pages, June 2001

The Java 3D Tutorial 0-2

Getting Started with Java 3D

Module 3: Lights and Textures

Tutorial Preface

Visual richness is added to the virtual universe in this module.
Using lights, material properties, and textures, a Java 3D
programmer can create visually rich objects without creating
complex geometry.

Chapter 6: Lights
Chapter 7: TeXTUIES ..ccceiecesrnreccsssansecsssssssssssssssessssssssssssses

Chapter Contents

34 pages, April 1999
43 pages, June 2001

Here is a listing of the table of contents for each of the most recently published chapters.

Module 1: Getting Started with the Java 3D API

Chapter 1: Getting Started

LT Whatis Java 3D ..ottt 1-1
1.2 The Java 3D API ..ottt 1-2
1.3 Building a Scene Graph.......cc.cccooeeiiiiieniiiiieieeeee et 1-2
1.4 A Basic Recipe for Writing Java 3D Programs...........ccceceeeveeneenennnicennenn. 1-8
1.5 Some Java 3D Terminologyccocevieriiiiiieiieiiesieee e 1-12
1.6 Simple Recipe Example: HelloJava3Da...........cccceeviieecieenciieeieecieeee 1-13
1.7 Rotating the CUbe.........ccceeiiiiiiiiiieie s 1-19
1.8 Capabilities and Performance............c.ccocoveeeeieieriieeiiieciee e 1-22
1.9 Adding Animation Behaviorccccoociiiiiiiiiiiinienieee e 1-25
1.10 Chapter SUMMATYc.coitiiiieieeieeree ettt ettt ettt et eeeeeeas 1-33
LI SeIE TSttt 1-33
Chapter 2: Creating Content

2.1 Virtual World Coordinate SyStem.........ccceevueeriienieriieeiieniienieeeeeeee e 2-1
2.2 Visual Object Definition Basics.......cccceevueeiiriienieiiiesieeieeeeeeeeeee 2-2
2.3 Geometric Utility Classes........coveeriiriieniienieiiieieeieesite et 2-6
2.4 Mathematical ClasSes.......c.cceoereerinieriinieienienteneeeene ettt 2-15
2.5 GEOMELIY ClaSSESeeruiiriiieiieieestieeiie ettt ettt ettt s 2-22
2.6 Appearance and AtriDULESc.ccoviieiiieeiiiecie e 2-35
2.7 Bounds and SCOPEeeeviiiiiieeiieeieeetee ettt et e re e eaa e eaaeas 2-48
2.8 Advanced GEOMELIYccevierieriirieeieeteestee ettt ettt et saee e 2-56
2.9 ClIPPINE -ttt ettt et et ettt ettt et ettt e bt st eaee s 2-67
2.10 Chapter SUMMATYcoeiiieriiertierie ettt ettt sb et e st eaeeeeeeeeas 2-73
211 S TSt ettt 2-73

The Java 3D Tutorial 0-3

Getting Started with Java 3D Tutorial Preface

Chapter 3: Easier Content Creation

3.1 What is in This Chapter.........cceviverieriiiniieiieierre st seesreeseeseee 3-1

R T € 170 10T 74 1) 1 TSP 3-2

3.3 LOAAETS -ttt ettt 3-8

3.4 Writing @ LOAAETeoviiieiieieeiieciee ettt 3-13
3.5 TEXI2ZD ittt 3-24
3.6 TeXIBD ..ttt ettt 3-26
3.7 BacKgroundccocvevieiiieiieiieiietesee ettt snae s 3-33
3.8 USEI Datal....ceiiiiiiiiiiiee e 3-37
3.9 Chapter SUMMATYccceveriieiieriierieeneeereeieeseesresresseeseesseesssesssessseeses 3-37
310 SEIE TSt ettt ettt ettt ettt st st 3-37

Module 2: Interaction and Animation

Chapter 4: Interaction

4.1 Behavior: The Base for Interaction and Animation.........ccccceceeveeveereneenenneee 4-1

4.2 Behavior BasiCs.......coceevuiririeniiniiienieeteic ettt 4-3

4.3 Wakeup Conditions: How Behaviors are Triggered.........ccoccoeveeninniieneeneene 4-12
4.4 Behavior Utility Classes for Keyboard Navigationc.ccceeceveieiieniennenne. 4-25
4.5 Utility Classes for Mouse INteractionccceeveerieeiieenienieesieeniee e 4-29
4.6 PICKING. ..ottt 4-36
4.7 Chapter SUMIMATYceeitierieiieeieeie et e stte ettt et et tesetesteeteeseeesatesaeesaeeens 4-57
A8 SEIETESE ..ttt ettt st 4-58

Chapter 5: Animation

5.1 ANIMALIONS ..utietieiieeiieeie ettt ettt et e st e st e ettt be e b e bt e saeeenees 5-1

5.2 Interpolators and Alpha Object Provide Time-based Animations............... 5-2

5.3 Billb0ard Classcoceeriiiiiiiieieeeesite ettt 5-24
5.4 OrientedShape3D <new in 1.2>cccoiiiiiiiiiiice e 5-29
5.5 Level of Detail (LOD) ANIMAtiONScceeevieeiiieriieenieeeieeeeieeeieeesvee e 5-31
5.6 MOTPR oot et e e e areesaaeenes 5-36
5.7 GeometryUpdater Interface <new in 1.2>........ccccooviiiiiniiiiinnienieeeeeee 5-41
5.8 Chapter SUMMATYc.ceiiiitiiiieieee ettt 5-48
5.9 S TOST. ettt ettt 5-48

The Java 3D Tutorial 0-4

Getting Started with Java 3D Tutorial Preface

Module 3: Lights and Textures

Chapter 6: Lights

6.1 Shading in Java 3Dcooiiiiiiii e 6-1
6.2 Recipe for Lit Visual Objects.......cccevriieiiieriiiniiiiieieeeeeeeeeee e 6-4
6.3 Liht ClaSSES ..eeoueiiuiieiieiieitie ettt ettt ettt ettt sttt et sbt e st as 6-9
6.4 Material ObJECT....ccueeiuiiiiiiiieie ettt st 6-20
6.5 Surface NOrmalS.......ccooeiiiiiiiiiiiiiei et 6-24
6.6 Specifying the Influence of Lightsccccoooieiiiiiiiiiiiiieeeee e 6-25
6.7 Creating Glow-in-the-Dark Objects, Shadows and Other Lighting Issues 6-29
6.9 Chapter SUMMATYccoiiiiiiiiieeece ettt 6-34
0.10 SEIf-TEST ..ueuiriiirirtirieieee ettt 6-34
Chapter 7: Textures

7.1 WHhat 1S TeXtUIING....cc.eiiiiiiiiiieitie ettt st 7-1
7.2 BaSIC TEXIUIIIE -.eeveeutienieeiieieestte ettt ettt ettt ettt st emee e b e sbee s 7-2
7.3 Some Texturing ApPliCations........ceeveeriieriienienieeie et 7-15
7.4 TeXture AtIIDULES ...cc.eertiiiiiiiieieestie ettt 7-17
7.5 Automatic Texture Coordinate Generation..........cccceeveeeceeerieeneereeeneeneenne 7-22
7.6 Multiple Levels of Texture (IMipmaps).......c.cceceveeeviveercieeesiveesieeesveeeneneenns 7-26
7.7 Texture, Texture2D, and Texture3D APL.......ccccccovvviiiiiiiiiiiiiieeeeeee, 7-31
7.8 Multitexture <NEW 1N 12> i 7-35
7.9 TextureLoader and NewTextureLoader APL..........ccocooeiieiiiiiiiiiniienenne 7-41
7.10 Chapter SUMMATYc.coiiiiiiiiieieete sttt ettt ettt s eeeas 7-43
TIT S TEST ittt et ettt sttt ae e 7-44

What is Not in the Tutorial

This tutorial is on the use of the Java 3D API. The most commonly used features of the Java 3D API are
covered. Java 3D API features not covered include collisions, sensors, geometry compression, spatial
sound, and multiple views. While many of the Java 3D utilities distributed with the core API are covered
in the tutorial, not all are. In addition, non-API issues such as artistic considerations, specific application
suggestions, and unusual display devices are also not covered.

0.1.2 How Can I Use the Tutorial

Modules are collections of related chapters. However, you may pick and choose the chapters that suit
your needs. In general, chapters in the same module are dependent on the earlier chapters in the same
module. For example, Chapter 2 depends on knowing the material in Chapter 1. Likewise, the reader of
Chapter 5 is expected to be familiar with the topics in Chapter 4.

Module dependencies are represented in the following figure. If you have no experience with Java 3D,
start with Module 1 and proceed to either Module 2 or Module 3.

The Java 3D Tutorial 0-5

Getting Started with Java 3D Tutorial Preface

Module 2:
Interaction
and
Animation

Module 1:
Getting Started
with the Java 3D
API

Module 3:
Lights
and
Textures

Figure 0-1 Paths Through The Java 3D Tutorial

Throughout the tutorial are reference blocks - summaries of the API for certain classes. The reference
blocks are provided in the tutorial to make reading easier, not to replace the Java 3D API Specification
Guide or any other reference.

The reference blocks were checked for accuracy when this document was published, but the Java 3D API
may have changed. If you are having trouble with a program, be sure to check a current edition of the
Java 3D API Specification. Also, refer to section 2.2 (page 2-4) for more information on reference
blocks.

0.1.3 Preface to the Tutorial
What’s Inside

This is a tutorial for the Java 3D API version 1.1.2. It is composed of the text (this document), several
other text documents and a number of example applications. The text of the tutorial is available in the
Acrobat (PDF) file format. The PDF files include thumbnails, links, and bookmarks making them easier
to use online. The files are also readable in hardcopy form. However, several of the images are in color
and details are lost when printed monochromatically.

How to download this document

The tutorial documents are available online with the source for the example programs, all of which can
be downloaded from http://java.sun.com/products/java-media/3D/collateral/

Audience

This tutorial is meant for the Java programmer with some graphics experience, with little or no
knowledge of Java 3D. If in addition to being familiar with Java you are familiar with the terms pixel,
image plane, RGB, and render, then you have the background to proceed. You don’t need to know about
z-buffer, 3D transforms, or any other 3D graphics API to understand this tutorial, but it may help. In any
case, this tutorial is written to be very accessible.

Feedback
As with all of our products, we strive for excellence in quality. If you have any questions, comments, or
have an error to report, please consult the Java 3D Home Page,

http://www.java.sun.com/products/java-media/3D, for contact information.

The Java 3D Tutorial 0-6

Getting Started with Java 3D Tutorial Preface

Typographic Conventions

e Courier type isused to represent computer code and names of files and directories.
e [talic type is used for emphasis.

e Bold is used in the text to indicate program elements

e Gray background represents Reference Blocks

Double outline sections are advanced sections

Single outline sections are document meta-information sections

What software is required

Consult the Java 3D Home Page for the most current information.

Cover Image

The cover image is of a twisted strip rendered by Java 3D. The program is discussed in Section 2.6. The
code is available with the examples distributed with this tutorial.

0.1.4 Disclaimers

All software associated with this tutorial is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR
ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This software included with this tutorial is not designed or intended for use in on-line control of aircraft, air traffic,

aircraft navigation or aircraft communications; or in the design, construction, operation or maintenance of any
nuclear facility. Licensee represents and warrants that it will not use or redistribute the Software for such purposes.

The Java 3D Tutorial 0-7

Getting Started with the Java 3D API A. Summary of Example Programs

0.2 (Appendix A) Summary of Example Programs

This tutorial is distributed with a set of example programs. Each example program included in the
distribution is described here. If you do not have the example programs, refer to the preface for
download instructions.

0.2.1 HelloJava3D

HelloJava3D is a series of programs used in the first chapter of the tutorial. The complexity of these
examples begins at the extreme end of simplicity and builds slightly.
examples/HelloJava3D/HelloJava3Da

This program displays a single color cube object that is static, and is neither transformed nor rotated from
the origin. Consequently, it appears as a single rectangle. This program is only intended to demonstrate
the basic construction of a Java 3D program. It is also used as the basis for the subsequent examples.

examples/HelloJava3D/HelloJava3Db

This program displays a single color cube object that is static but rotated from the original orientation.
Consequently, more than one face of the cube is visible when rendered. This program is only intended to
demonstrate the basic construction of a Java 3D program. It is also used as the basis for the subsequent
examples.

examples/HelloJava3D/HelloJava3Dc

This program displays a single color cube object that is animated. The cube spins in place at the origin.
Consequently, more than one face of the cube is visible as the animation takes place. This program is
intended to demonstrate the basic construction of an animated Java 3D program.

examples/HelloJava3D/HelloJava3Dd

This program displays a single color cube object that is transformed and animated. The cube spins in
place at the origin. Consequently, more than one face of the cube is visible as the animation takes place.
This program is intended to demonstrate the basic construction of an animated Java 3D program.

0.2.2 Geometry

The examples/Geometry subdirectory contains the program examples for the second chapter of the
tutorial. Each of these programs demonstrates something about specifying geometry for visual objects.

examples/Geometry/Axis.java

Axis.java defines a visual object class using an IndexedLineArray object used to visualize the axis.
This code of this program does not appear in the text of the tutorial, it is intended as a class available for
your use. The program AxisClassDemoApp . java uses this Axis class (see below).

examples/Geometry/AxisApp.java

This program displays the axis to demonstrate using LineArray object.

The Java 3D Tutorial 0-8

Getting Started with the Java 3D API A. Summary of Example Programs

examples/Geometry/AxisClassDemoApp.java ||Ei it wEE T

A ColorCube orbits around the origin in this program. The
code of this program does not appear in the text of the
tutorial. It simply demonstrates a use of the Axis.java
class (see above).

examples/Geometry/ColorConstants.java

This code is an example of a class that defines a number of
color constants. The application spins the yo-yo about the y-
axis to show the geometry.

examples/Geometry/ColorYoyoApp.java

This program displays a yo-yo using four TriangleFanArray
geometry objects with colors. The application spins the yo-yo
about the y-axis to show the geometry.

examples/Geometry/ConeYoyoApp.java

This program displays a yo-yo created with two Cone objects. ||EzRa LGRS
A default Appearance object is used. The application spins
the yo-yo about the y-axis to show the geometry.

examples/Geometry/ModelClipApp.java

This program displays the twisted strip geometry (on the
cover of this chapter) clipped by a ModelClip object. The
ModelClip class is new to v1.2 of the APL

examples/Geometry/MultiGeomApp.java

This program displays the three axis arrows created as three
Geometry objects that are all referenced by a single Shape3D
object. This capability is new in the Shape3D class of API
v1.2.

examples/Geometry/TwistByRefApp.java

This program displays the twisted strip geometry (on the
cover of this chapter) constructed wusing the
BY REFERENCE feature of Geometry objects. This feature
is new in API v1.2.

examples/Geometry/TwistStripApp.java

This program displays a twisted strip as an example of using
the TriangleStripArray. The twist strip program also
demonstrates culling.

examples/Geometry/YoyoApp.java

This program displays a yo-yo visual object created with four
TriangleFanArray objects. A default Appearance object is
used. The application spins the yo-yo about the y-axis to show
the geometry.

The Java 3D Tutorial 0-9

Getting Started with the Java 3D API A. Summary of Example Programs

examples/Geometry/YoyoLineApp.java

This program displays the TriangleFanArray object with the Appearance set to display lines only. The
application spins the yo-yo about the y-axis to show the geometry.
examples/Geometry/YoyoPointApp.java

This program displays the TriangleFanArray object with the Appearance set to points lines only. The
application spins the yo-yo about the y-axis to show the geometry.

0.2.3 EasyContent

examples/easyContent/BackgroundApp.java

This application demonstrates defining geometry for the background of a virtual world. The scene is of a
grid of lines to represent the ground, a PointArray for stars, and a LineArray for a constellation. The
stars and constellation are in the background. The viewer can move around in the scene and experience
the relative motion between the ground and the stars in the background.

The interaction (motion) is provided through the KeyNavigator class (documented in Chapter 4) and a
BoundingLeaf application bounds, which provides interaction in the virtual world without bounds. The
BoundingLeaf is added to the view branch graph in this application.

examples/easyContent/GeomInfoApp.java

This application demonstrates the use of the GeometryInfo class to create Java 3D geometry specified by
arbitrary polygons. This application creates the surface of a car using polygons. The Triangulator,
Stripifier, and NormalGenerator classes are used to convert the polygons into triangle strips with normals
so the specified geometry can be shaded. A wire frame view of the geometry can be viewed by providing
any command line argument when invoking the program. For example: java GeomInfolApp -
lines will show the wire frame instead of the shaded surfaces.

examples/easyContent/Text2Dapp.java

A simple example of using the Text2D object to add text to a Java 3D virtual world. The Text2D object
rotates in the virtual world.

examples/easyContent/Text3Dapp.java

A simple example of using the Text3D object to add text to a Java 3D virtual world. The Text3D object
rotates in the virtual world.

0.2.4 Loader
examples/Loader/SimpleQuadLoader/SimpleQuadLoad.java

An example application that utilizes the SimpleQuadFileLoader implemented in the same directory. The
loader loads QUAD files of the OOGL file family. See Chapter 2 for more information on the loader and

QUAD file format. After compiling the contents of the directory, an example can be run:
java SimpleQuadlLoad -s ../QuadFile/dodec.quad

0.2.5 Interaction

The programs collected in the examples/Interaction subdirectory correspond to the topics presented in
Chapter 4. Creating and using behaviors to provide user interaction is the subject of the chapter.

The Java 3D Tutorial 0-10

Getting Started with the Java 3D API A. Summary of Example Programs

examples/Interaction/DoorApp.java

This program demonstrates using the postld() method and WakeupOnBehaviorPost WakeupCriterion
objects to coordinate behavior objects. In this program two behavior classes are defined: OpenBehavior
and CloseBehavior. Then one instance of each behavior class are used to open and close a door.
Actually, a ColorCube is used as a stand-in for the door.

examples/Interaction/KeyNavigatorApp.java

This program demonstrates using a KeyNavigatorBehavior object to provide keyboard based viewer
navigation in the virtual world. The user is able to press keys to move forward, back, left, right, up and
down as well as rotate left, right, up and down.

examples/Interaction/MouseBehaviorApp.java

This program shows how all three MouseBehavior classes (MouseRotate, MouseTranslate, and
MouseZoom) can be combined to provide a variety of interactions using the mouse. MouseRotateApp is
a simpler version of this program as it only uses the MouseRotate class.

examples/Interaction/MouseNavigatorApp.java

This program demonstrates how the MouseBehavior classes (MouseRotate, MouseTranslate, and
MouseZoom) can be used to provide mouse-based viewer navigation in the virtual world. The user is
able to move and rotate in response to combinations of mouse button presses and movements.

examples/Interaction/MousePickApp.java

This program demonstrates the picking interaction possible using the PickRotateBehavior class. The
user is able to pick a visual object and rotate it with mouse movements. This is in contrast to
MouseRotate2 App where the program demonstrates that without picking, the user is constrained as to
which objects are available for interaction.

examples/Interaction/MouseRotateApp.java

A demonstration of using the MouseRotate class to provide interaction with specific visual objects. The
user is able to rotate the programmer-specified visual object with the mouse. MouseBehaviorApp is a
more complex version of this program providing translation and zoom interactive capabilities in addition
to rotation. MouseRotate2App demonstrates a limitation of this class.

examples/Interaction/MouseRotate2App.java

A demonstration of using the MouseRotate class to provide interaction with specific visual objects. Two
cubes rotate in response to user actions. There is no way to interact with just one of the cubes in this
program. This program intentionally demonstrates the limitation of interaction with this class.
MouseRotateApp is a one cube version of this program.

examples/Interaction/PickCallbackApp.java

This is MousePickApp modified to include a callback from the picking behavior. The user is able to pick
a visual object and rotate it with mouse movements. The simple callback behavior displays a message to
the console. This is the answer to question 6 in the self test section.

examples/Interaction/SimpleBehaviorApp.java

A simple behavior class is created and then used in this program. The simple behavior changes a
TransformGroup object in response to key presses. The effect is to rotate a visual object using key
strokes. The program demonstrates behavior usage basics and how to write custom behavior classes.

The Java 3D Tutorial 0-11

Getting Started with the Java 3D API A. Summary of Example Programs

0.2.6 Animation

examples/Animation/AlphaApp.java

This program illustrates the smoothing possible for the waveform produced by an Alpha object. Three
visual objects are translated using three PositionInterpolators and three Alpha objects. Only the
IncreasingAlphaRampDuration parameter of the Alpha objects differ among the three car-interpolator-
alpha sets. Refer to Section 5.2 and Figure 5-7 for more information.

examples/Animation/BillboardApp.java

This program illustrates the billboard behavior provided by Billboard Class objects. A Billboard object
orients a visual object such that it always faces the viewer. The user of this program is free to navigate
the virtual world using the arrow keys. Refer to Section 5.3 for more information on applications and
API of the Billboard Class.

examples/Animation/ClockApp.java

This program uses one Alpha object and one RotationInterpolator to rotate an analog clock face once per
minute. The clock face, defined in Clock.java, is constructed from one Alpha object and two
RotationInterplotors. The main program, in ClockApp.java, is a simple example of using a
RotationInterpolator. The construction of the clock is somewhat more complex.

examples/Animation/InterpolatorApp.java

This program illustrates six different interpolator classes in one scene to illustrate the variety of
interpolator classes available.

examples/Animation/LODApp.java

This program uses a DistanceLOD object to represent a visual object as one of several different
geometric representations of varying levels of detail. The DistanceLOD object picks one of the
geometric representations based on the distance between the visual object and the viewer.

examples/Animation/MorphApp.java
In this program, a custom behavior classes animates a stick figure walking based on four GeometryArray
object key frames. Of course, to truly appreciate the animations, you have to run the program.

examples/Animation/Morph3App.java

In this program, three other behavior classes create animations based on some, or all, of the
GeometryArray objects of MorphApp. They are called (left to right in the figure) "In Place", "Tango",
and "Broken". Not all of the animations are good. Of course, to truly appreciate the animations, you
have to run the program.

examples/Animation/OrientedShape3DApp.java

A forest of 2D trees demonstrates the use of OrientedShape3D objects. Each tree faces the viewer even
as the viewer moves and changes view direction. In the application, there is one tree that does not
reorient (intentionally not a child of OrientedShape3D) — see if you can find it.

examples/Animation/ParticleApp.java

Demonstrates the use of a GeometryUpdater in creating a particle system to animate a water fountain.
The core of the code is explained in some detail within the text of Chapter 6. An image of the fountain
appears on the cover of the chapter.

The Java 3D Tutorial 0-12

Getting Started with the Java 3D API A. Summary of Example Programs

0.2.7 Light
examples/light/LightsNPlanes.java

This program renders a scene where three planes are lit by three different lights. One light is directional,
one is a point light, and one is a spot light. See Figure 6-16.

examples/light/LitPlane.java

This program is a basic example of using lights. It renders a scene with a plane and a sphere. See Figure
6-2.

examples/light/LitSphere.java

This program is a basic example of using lights. It renders a scene with a single sphere. See Figure 6-15,
among others.

examples/light/LitTwist.java

This program demonstrates the lighting of a two sided object (setBackFaceNormalsFlip ()).See
Figure 6-21.

examples/light/LightScope.java

This program demonstrates the use of scoping to limit the influence of light sources. See Figure 6-25.

examples/light/LocalEyeApp.java

This program illustrates the difference between local eye lighting and infinite eye lighting. See Figure 6-
29.

examples/light/ShadowApp.java

This program demonstates SimpleShadow class. SimpleShadow creates shadow polygons for simple
visual objects in certain scenes. See Figure 6-28.

examples/light/ShininessApp.java

This program renders a static scene of nine spheres with different material properties. The only
difference among the material properties of the spheres is the shininess value. See Figure 6-20.
examples/light/SpotLightApp.java

This program illustrates the difference various values for the spot light parameters make in rendering.
See Figure 6-18.

0.2.8 Texture

examples/texture/BoundaryColorApp

This program loads a single texture image into four Texture2D objects for use with four visual objects.
Each of the four textures are configured with a Boundary Color and different Boundary Mode settings.
The resulting image illustrates the interaction between the Boundary Mode setting in the presence of a
Boundary Color.

examples/texture/BoundaryModeApp

This program loads a single texture image into four Texture2D objects for use with four visual objects.
Each of the four textures are configured with a different set of Boundary Mode settings (CLAMP or

The Java 3D Tutorial 0-13

Getting Started with the Java 3D API A. Summary of Example Programs

WRAP). The resulting image illustrates the possible combinations of Boundary Mode setting for a 2D
texture.
examples/texture/MIPmapApp

This program loads a single texture image into a Texture2D object with the MIPmap Mode set to
MULTI _LEVEL. The images for each level (other than the base level) are created at runtime from the
loaded base image by the TextureLoader utility. Compare this program to MIPmapApp2.

examples/texture/MIPmapApp2

This program loads multiple texture images into a Texture2D object with the MIPmap Mode set to
MULTI LEVEL. Each image is loaded by the TextureLoader utility. Compare this program to
MIPmapApp.

examples/texture/MIPmapDemo

This program loads multiple texture images into a Texture2D object with the MIPmap Mode set to
MULTI LEVEL. Each image is loaded by the TextureLoader utility. The texture images used
distinguish this application from the typical MIPmap application. The textures are solid color and
alternate between red and green on each level. The resulting image shows how textures from a variety of
levels can be used for a single visual object.

examples/texture/SimpleTextureApp

This is a very simple example using a texture for a single plane. This application is the result of the
straightforward application of the simple texture recipe presented in Section 7.2. See also the
TexturedPlaneApp.

examples/texture/SimpleTextureSpinApp

This application takes the SimpleTextureApp one step further and animates the textured plane. It
illustrates the single sided nature of textured objects.

examples/texture/Text2DTextureApp

A Text2D object (see chapter 3)creates its image using a Texture2D object. This program applies the
texture created by texture Text2D object to another object.
examples/texture/TextureCoordApp

Each of the four planes in this application is textured with the same texture, but each plane is different.
This program demonstrates some of the alternate orientations a texture may have when applied to a
plane. More texture orientations are demonstrated in TextureRequestApp.

examples/texture/TextureCoordGenApp

In this program a TexCoordGeneration object is used to create the texture coordinates at runtime. This
allows the programmer to ignore this detail. It is especially useful for adding textures to visual objects
loaded from files. Also, the TexCoordGeneration object is capable of creating varying texture
coordinates (in EYE LINEAR mode) which would hardly be possible otherwise.

examples/texture/TexturedLineApp

This program uses a 1D texture to texture the lines (not the filled polygons) of some geometry. It is an
example of a less common application of textures.

The Java 3D Tutorial 0-14

Getting Started with the Java 3D API A. Summary of Example Programs

examples/texture/TexturedPlaneApp

This application is a demonstration of the TexturedPlane class, which is separately compiled. The
difficulty in having a separately compiled class that loads textures lies in using a TextureLoader object
outside of an applet. This simple example shows one way to solve the problem.

examples/texture/TexturedPrimitiveApp
This program demonstrates the use of the texture coordinates created by a primitive geometric object (see
Chapter 2 for a discussion of geometric primitives).

examples/texture/TexturedSceneApp

This application generates the image on the cover of this chapter.

examples/texture/TextureRequestApp

This program shows some of the possible renderings for a plane using the same texture. The scene is of
four planes that differ only in the assignment of texture coordinate values. One plane is solid blue when
rendered, the others are striped, but none look like the others nor the texture image. The texture
assignments made in this program are examples of possible mistakes while all are legitimate applications.
This is the illustration of the phrase "In texturing, you get what you ask for." Other texture orientations
are illustrated in TextureCoordApp.

The Java 3D Tutorial 0-15

Getting Started with the Java 3D API B. Reference Material

0.3 (Appendix B) Reference Material

0.3.1 Books

Henry Sowizral, Kevin Rushforth, and Michael Deering, The Java 3D API Specification, Addison-
Wesley, Reading, Mass., December 1997. ISBN 0-201-32576-4

This book describes version 1.0 of the Java 3D API. There are some differences between this
specification and the current release of the product. It is comprehensive in coverage, but not intended as
a programmer’s guide.

It is also available online at http://java.sun.com/products/java-media/3D

It is also available in Japanese: translated by Yukio Andoh, Rika Takeuchi; ISBN 4-7561-3017-8

Ken Arnold and James Gosling, The Java Programming Language, Addison-Wesley, Reading, Mass.
The Java reference.

David M. Geary, graphic JAVA Mastering the AWT, Sunsoft Press, 1997
Complete coverage of the AWT.

Foley, vanDam, Feiner, and Hughes, Computer Graphics, Addison-Wesley

This book is widely considered the “bible of computer graphics”. Comprehensive coverage of general
computer graphics concepts including representation of points, lines, surfaces, and transformations.
Other topics include projection, texturing, z-buffer, and many, many others.

OpenGL ARB, OpenGL Programming Guide, Addison-Wesley

While not directly related, this book provides a good foundation in graphics programming via the
OpenGL APIL Java 3D resembles OpenGL in many ways and some implementations of Java 3D are built
on an OpenGL implementation.

0.3.2 The Java 3D API can be downloaded from the Java 3D Home Page:

http://java.sun.com/products/java-media/3D/

Follow the "Java 3D Implementation” link to the download.html page. Also from this page, you can
download documentation for Java 3D API classes.

0.3.3 Sun Java Web Pages

For additional information, refer to these Sun Microsystems pages on the World Wide Web:

http://java.sun.com/products/java-media/3D

The Java 3D marketing homepage, this links to many related pages.

http://java.sun.com/

The Java Software web site, with the latest information on Java technology, product information, news,
and features.

The Java 3D Tutorial 0-16

Getting Started with the Java 3D API B. Reference Material
http://java.sun.com/products/jdk/1.2/
JDK 1.2 Product and Download Page

http://java.sun.com/docs
Java Platform Documentation provides access to white papers, the Java Tutorial and other documents.

http://developer.java.sun.com/
The Java Developer Connection web site. (Free registration required.) Additional technical information,
news, and features; user forums; support information, and much more.

http://java.sun.com/products/
Java Technology Products & API

http://www.sun.com/solaris/java/
Java Development Kit for Solaris - Production Release

0.3.4 Other Web Pages

For additional information, refer to the Java 3D web page for links to related resources.

The Java 3D Tutorial 0-17

Getting Started with the Java 3D API C. Solutions to Selected Questions

0.4 (Appendix C) Solutions To Selected Self Test Questions

Each chapter concludes with a Self Test section containing questions designed to test and increase the
reader’s understanding of the material in that chapter. This section presents answers to some of those
questions.

Note for questions relating to programming. As in any programming task, there are many answers
possible to the programming questions. This section only provides one possible programming solution.

0.4.1 Answers to Questions in Chapter 1

1. In the HelloJava3Db program, which combines two rotations in one TransformGroup, what would be
the difference if you reverse the order of the multiplication in the specification of the rotation? Alter
the program to see if your answer is correct. There are only two lines of code to change to make this
change.

Answer:

In general, the final orientation of an object depends on
the order of rotations applied. There are cases when the
order of rotations will not change the final orientation.

=3 Hellod ava3Dbalt

To effect the change in the order of application of the
rotations make the following two edits to
HelloJava3Db.java. Then compile and run the changed
program. Note, if you change the name of the file, you
also need to change the name of the high level class in the
file. For example, if you change the file to
HelloJava3Dbalt.java, then class HelloJava3Db must be
changed to HelloJava3Dbalt, along with the name of the
constructor and the call to the constructor. Of course, the
comments should change to reflect programming changes.
Change:
rotate.mul (tempRotate) ;

to:

tempRotate.mul (rotate) ;
Change:

TransformGroup objRotate = new TransformGroup (rotate) ;
to:

TransformGroup objRotate new TransformGroup (tempRotate) ;

After making these changes, compiling, and running the program, the above image at the is produced. If

you compare this image to Figure 1-12 in Chapter 1, you can see the difference changing the order of
rotations made in this program.

The Java 3D Tutorial 0-18

Getting Started with the Java 3D API C. Solutions to Selected Questions

2. In the HelloJava3Dd program, what would be the difference if you reverse the order of the Transform
Nodes above the ColorCube in the content branch graph? Alter the program to see if your answer is
correct.

Answer:
As in the previous program, the change in order does make a difference. Also as in the first question,
only two lines of code need be edited to test the results of the change the question asks about.

3. In search of performance improvements, a programmer might want to make the scene graph smaller.
Can you combine the rotation and the spin target transform of HelloJava3Dd into one
TransformGroup object?

Answer:
It can be done; however, it is not worth the effort. Unless a change in the scene graph results in fewer
Shape3D objects, it does not make sense to make the program harder to write, read, and maintain.

4. Translate the ColorCube 1 unit in the Y dimension and rotate the cube. You can use HelloJava3Db
as a starting point. The code that follows the question shows the specification of a translation
transformation. Try the transformation in the opposite order. Do you expect to see a difference in
the results? If so, why? If not, why not? Try it and compare your expectations to the actual results.

Transform3D translate = new Transform3D() ;
Vector3f vector = new Vector3f(0.0f, 1.0f, 0.0f);
translate.setTranslation (vector) ;

Answer:
The order of transformations does make a difference.

5. In HelloJava3Dc, the bounding sphere has a radius of 1 meter. Is this value larger or smaller than it
needs to be? What is the smallest value that would guarantees the cube be rotating if it is in view?
Experiment with the program to verify your answers. The following line of code can be used to
specify a bounding sphere. In this line, the center is specified using the Point3D object followed by
the radius.

BoundingSphere bounds =
new BoundingSphere (new Point3d(0.0,0.0,0.0), 100.0);

Answer:

The BoundingSphere only needs a radius of 0.8 (0.4 * 2.0). The center should be (0, 0, 0). The location
of the BoundingSphere will be transformed by any TransformGroup objects above it in its scene graph
path.

The Java 3D Tutorial 0-19

Getting Started with the Java 3D API C. Solutions to Selected Questions

6. The example programs give sufficient information for assembling a virtual universe with multiple
color cubes. How do you construct such a scene graph? In what part of the code would this be
accomplished?

Answer:
There are many ways to add a new visible object to a virtual universe. Some possibilities include:
e Add a ColorCube object as a child of the existing BranchGroup.

e Add a ColorCube object as a child of a new BranchGroup and adding this BranchGroup to the Locale
of the SimpleUniverse.

¢ Add a ColorCube object as a child of the existing TransformGroup. Note that since two ColorCube
objects will coincide, only one will be visible.

e Add a ColorCube object as a child of a new TransformGroup object and making the new
TransformGroup a child of the Locale of the SimpleUniverse.

e Combinations of the above possibilities.

A ColorCube object can not be added as the child of the Locale object.

0.4.2 Answers to Questions in Chapter 2

1. Try your hand at creating a new yo-yo using two cylinders instead of two cones. Using
ConeYoyoApp.java as a starting point, what changes are needed?

Answer:
All that is needed is to replace the Cone objects with Cylinder objects.

2. A two-cylinder yo-yo can be created with two quad-strip objects and four triangle-fan objects.
Another way is to reuse one quad-strip and one triangle fan. What objects would form this yo-yo
visual object? The same approach can be used to create the cone yo-yo. What object would form
this yo-yo visual object?

Answer:

In each of the solutions, the visual object can be defined by one Group with two TransformGroup
objects, each with a Shape3D child. Each of the Shape3D objects refers to the same Geometry
NodeComponent.

The Java 3D Tutorial 0-20

Getting Started with the Java 3D API C. Solutions to Selected Questions

3. The default culling mode is used in YoyoLineApp.java and YoyoPointApp.java. Change either, or
both, of these programs to cull nothing, then compile and run the modified program. What difference
do you see?

Answer:
With the default, the lines (or points) are culled from back faces. Turning culling off allows all lines
(points) to be rendered in all orientations. If you haven't already, try culling front faces.

0.4.3 Answers to Questions in Chapter 3

1. Using the GeomInfoApp.java example program as a starting point, try the various settings for
ear clipping (see the Triangulator reference block in Chapter 3). Using the wire frame view in the
program, you can see the effect of the triangulation. For more experience, change the specification
of the polygons to use three polygons (one for each side, and one for the roof, hood, trunk lid and
other surfaces. How does the Triangulator do with this surface?

Answer:

The code for the single polygon description of the hood, roof, trunk, and front and rear glass is
embedded in the application code. See the source code for more details. However, there are three other
lines of code that must be changed to use this alternative polygon.

Unfortunately, the Triangulator does not triangulate this polygon correctly. You might try breaking the
one large polygon into smaller ones to see what works. The lesson here is you still have to give some
thought to how surfaces are described, even when using Geometrylnfo.

2. The code to make the Text2D object visible from both sides is included in Text2DApp.java.
You can uncomment the code, recompile and run it. Other experiments with this program include
using the texture from the Text2D object on other visual objects. For example, try adding a
geometric primitive and apply the texture to that object. Of course, you may want to wait until you
read Chapter 7 for this exercise.

Answer:
The code to make the Text2D object visible from both sides is embedded in the comments of the
Text2DApp.java example program. See the source code file for more information.

3. Using Text3DApp.java as a starting point, experiment with the various alignment and path
settings. Other experiments include changing the appearance of the Text3D object.

Answer:

Just try some difference settings and observe the results.

4. Playing with the BackgroundApp . java example program, if you move far enough away from the
origin of the virtual world the background disappears. Why does this happen? If you add another
Background object to the Background App, what will the effect be?

Answer:

The application of a background is controlled by the ApplicationBounds (or ApplicationBoundingLeaf)
for the background. In the example program, the background has an ApplicationBounds sphere centered
at the origin with a radius of 10,000.

If another background were added, the effect would depend on the ApplicationBounds specified for the

new background. In any case, only one background is rendered at a time for any scene. The selection of
the background depends on the ApplicationBounds and the position of the viewer in the virtual world.

The Java 3D Tutorial 0-21

Getting Started with the Java 3D API C. Solutions to Selected Questions

0.4.4 Answers to Questions in Chapter 4

1. Write a custom behavior application that moves visual objects to the left (and right) when a the left
(and right) arrow keys are pressed. @ Then wuse the class in an application similar to
SimpleBehaviorApp.java. Of course, you can use SimpleBehaviorApp.java as a starting point for
both the custom behavior class and the application. What happens as the ColorCube object moves out
of the view? How do you fix the problem?

Answer:

When the cube moves a sufficient distance, the behavior scheduling bounds no longer coincides with the
visual object. Since the bounds object is associated with the behavior, and the behavior is not moving
with the visual object, they will eventually be separated to the point where the behavior is only active
when the cube is not visible. Conversely, the behavior will be inactive when the cube is visible. So, if
you add navigational capabilities to the program, seeing the cube will not necessarily mean you can
interact with it.

There is more than one way to change the program so that the position of the cube and the scheduling
bounds of the behavior coincide. One way is to the make the behavior a child of the transform group
object that is moving the visual object. Another way involves using a BoundingLeaf object. See Chapter
3 for more information on the BoundingLeaf class.

2. In SimpleBehaviorApp, the rotation is computed using a angle variable of type double. The angle
variable is used to set the rotation of a Transform3D object which sets the transform of the
TransformGroup. An alternative would eliminate the angle variable using only a Transform3D object
to control the angle increment. There are two variations on this approach, one would read the current
transform of the TransformGroup and then multiply, another would store the transform in a local
Transform3D object. In either case, the new rotation is found by multiplying the previous
Transform3D with the Transform3D that holds the rotation increment. What problem may occur with
this alternative? What improvement can be made to this approach?

Answer:

Successive rotations (or transformations of any type) can be implemented using successive multiplication
of transforms. The problem lies in the loss of precision through the repeated multiplications. It takes
many iterations, but eventually the error will accumulate and result in strange effects in the renderings.

3. Change the trigger condition in the SimpleBehavior class to new ElapsedFrame (0). Compile and
run the modified program. Notice the result. Change the code to remove the memory burn problem
from the class. Then recompile and run the fixed program.

Answer:

The program will trigger on each frame (and therefore is now an animation application). As a result, a
new object is created on each frame. Since objects are being created at a fairly quick rate and not being
reused, this is a case of memory burn. The rendering will pause when the garbage collector activates to
clean up memory.

4. Change the scheduling bounds for the KeyNavigatorBehavior object to something smaller (e.g., a
bounding sphere with a radius of 10), then run the application again. What happens when you move
beyond the new bounds? Convert the scheduling bounds for KeyNavigatorApp to a universal
application so that you can't get stuck at the edge of the world. See Chapter 3 for more information on
BoudingLeaf nodes.

Answer:
When the viewer moves beyond the scheduling bounds, the navigation behavior becomes inactive and

The Java 3D Tutorial 0-22

Getting Started with the Java 3D API C. Solutions to Selected Questions

therefore can no longer respond to keystrokes (or any other trigger). The viewer becomes stuck and must
exit the program.

5. Use the KeyNavigatorBehavior with a TransformGroup above a visual object in the content branch
graph. What is the effect?

Answer:
The effect is to move the visual object, not the viewer. The action is backward from the normal
application of this behavior.

6. Extend the picking behavior in the MousePickApp by providing a callback. You can start by simply
producing a text string ("picking") to the console. You can also get more ambitious and read the user
data from the target transform group or report the translation and/or rotations of the target transform
group. With the proper capabilities, you can also access the children of the TransformGroup object.

Answer:
See examples/Interaction/PickingCallbackApp.java.

0.4.5 Answers to Questions in Chapter 5

1. The InterpolatorApp example program uses six different interpolator objects. Each of the interpolator
objects refers to the same Alpha object. The result is to coordinate all the interpolators. What would
be the result if each interpolator object had its own Alpha object? How could you change the timing?

Answer:

If each interpolator used a different Alpha object the interpolators would all be synchronized anyway.
Each Alpha object is assigned the same start time when it is created. If you wanted the Alpha objects to
be out of phase, either change the start time or assign a phase delay duration.

2. If the light in InterpolatorApp is changed to Vector3£f(-0.7£f£,-0.7£,0.0£f) what happens?
Why?

Answer:

The body of the car disappears; however, the wheels are still visible and are changing colors as before.
Why do the different parts of the car render differently? If you change the background to a different
color, you will see the body of the car is still there but it is solid white. This is the result of complete
specular reflection from the body of the car. The combination of the direction of the light and the
normals of the car body reflect the light source as a mirror does. This is truly a problem for chapter six,
but is a potential head-scratcher for readers of chapter five.

3. Why are there fewer distances than visual objects specified for a DistanceLOD object?

Answer:

By design the threshold to begin to use the first child of the target switch object(s) is zero. This threshold
is not specified by the user. The threshold distances specified by the user are the minimum distances at
which the remaining children are to be used. Therefore, there are one fewer distances specified than
there are children.

4. In MorphApp there are four frames of which two look like duplicates of the other two. Why are four
frames necessary? Asked another way, what would the animation look like with just two frames?

Answer:

Since Morph animates between frames based on vertex ordering, with just two frames the animation
would just move back and forth between the two frames. Since the 'feet' of the animation never appear
in the same place in one key frame, four frames are necessary. The difference between the frames that

The Java 3D Tutorial 0-23

Getting Started with the Java 3D API C. Solutions to Selected Questions

appear the same is the vertex ordering. It would be possible to animate walking with two frames if in one
of the frames one foot is behind the other (from the viewer's point of view). Of course, this would only
work with 2D models.

5. In using a morph object, the same number of vertices are used. How can you accommodate geometric
models of differing numbers of vertices?

Answer:
In the geometry with the smaller number of vertices the vertex count must be increased to match that of
the larger geometry. The new vertices can be redundant or internal to a surface.

0.4.6 Answers to Questions in Chapter 6

1. Add a green DirectionalLight pointing up to the LitSphereApp to illustrate additive color mixing
with all three primary colors. Don’t forget to add the light to the scene graph and set the influencing
bounds for the new light source object. Which two primary colors make yellow?

Answer:

In the positive color system, green and red combine (add) to yield yellow. This is not the result of

mixing green and red paint, but green and red light. Mixing red and green paint will likely result in some

shade of brown (depending on the characteristics of the paint).

2. To learn more about the interaction between material colors and light colors, create a scene with red,
green, and blue visual objects. Light the objects with one single color light. What did you see? You
may use LitSpereApp.java or Material App.java as a starting point.

Answer:

In monochromatic light (pure red, green, or blue) only visual objects with material color with some of the

color of the light are visible. By contrast, in monochromatic light, visual objects with material color

absent of the color of the light are invisible.

The results you get from your program will depend on your program. If you only set the diffuse color of
the visual objects, then the specular highlight will appear in the color of the light (which by default is
white).

3. Using LightScopeApp.java as a starting point (see Section 6.6.2), change the program to create the
shadow of the lit box through the use of scoping only.

Answer:

An additional group node is necessary. It is placed between the litBoxTG and the litBox object. They

the scope references that new group node. You also need to change the material diffuse color to white.

The image rendered from the scene is different since the shadow is lit by the other lights in the scene.

0.4.7 Answers to Questions in Chapter 7

1. What happens if a texture coordinate assignment is not made for a vertex in some geometry? Is there
an exception? A warning? Does it render? If it renders, what is the result?

Answer:

In the event a texture coordinate assignment is not made for one or more vertices, the texture coordinate
is the default value for texture coordinates (0,0), or (0,0,0) for 3D. There is no exception or warning.
The resulting render is the same as if the default value for a texture coordinate had been made for the
vertex (vertices).

The Java 3D Tutorial 0-24

Getting Started with the Java 3D API C. Solutions to Selected Questions

2. How can a single image of a texture (not repeated) be mapped onto a visual object and have the
image surrounded by a single solid color? Assume the texture image is the typical non-solid-color
image. How could the surrounding color be assigned or modified at runtime?

Answer:

The CLAMP Boundary Mode it used to apply a single image of a texture to a visual object. One way to

have the object appear with a solid color border is to create the texture image with a single texel border

with the desired border color. In REPLACE texture mode the border color will be used everywhere
beyond the texture application. When a linear filter is used and the Boundary Mode is CLAMP, the

Boundary Color (default: black) will be used. In this case you will probably need to set the boundary

color to white. Keep in mind that the entire texture image is still subject to the size constraints.

Another way to apply a single image of a texture with a solid color border is to create the texture image

with a single texel border that is transparent. In DECAL texture mode the visual object will provide the

color beyond the texture image.

Neither of these approaches allows for a changing border color — at least not easily changed. To have a

dynamic border color, or just one assigned at runtime, use the same technique as the first solution above:

Boundary Mode CLAMP, and linear texture filters. Make a one texel while border color around the

texture and apply a boundary color. If the boundary color is to change after the visual object is live,

make sure the appropriate capability is set.

3. How can multiple textures be applied to a single visual object? How can you apply different textures
to the opposite sides of the same visual object? How can you apply different textures to the lines and
the surfaces of a polygon?

Answer:

A visual object can have only one texture. So if you want to use more than one texture on what appears

as a single visual object, then it must be created of multiple visual object with the various textures.

4. How would you animate a shadow that moves across a stationary visual object as the shadow moves?
Answer:

A texture can be animated in certain limited ways (stretching, rotating, moving) by changing the texture
transform for the visual object. With the appropriate capability set such that the texture transform can be
changed at runtime, a texture that represents the shadow can be moved, made larger or smaller, or rotated
on a visual object.

5. How would you animate a shadow that moves across a visual object as the object passes through a
stationary shadow?

Answer:

The solution to question four can be used, however this would require coordination of the object's
movement with the movement of the texture. There is (at least) one other way. A TexCoordGeneration
object with EYE LINEAR generation mode assigns texture coordinates that are stationary in the virtual
space. Using a TexCoordGeneration object configured in this way would make the texture stationary
even as the object moved through the virtual space.

The Java 3D Tutorial 0-25

Getting Started with the Java 3D API Glossary

0.5 (Appendix D) Geometry and Math

0.5.1 Defining a Plane

Planes are infinite. As such, it is not possible to specify the vertices for a plane (as is done with other
geometry); instead, planes are typically defined by specifying four values: A, B, C, and D. The surface of

the plane is defined by the equation:
Ax + By + Cz + D =0

The plane is the set of all points (X, y, z) that satisfy the above equation. This is an infinite set of points.

An easier way to think of the plane is to think of the first three values (A, B, C) as the specification of the
surface normal for the plane. A vector only specifies the orientation of the plane, the fourth value, D,
fixes the plane in 3-space. If A, B, and C, specify a unit (normalized) vector, then one point of the plane
is D distance from the origin in the opposite direction of the surface normal vector.

The plane specified as 1, 0, 0, 0 is a plane with surface normal vector in the x direction and the point (0,
0, 0) is in the plane. Ax+By+ Cz+D = 1x+ 0y +0z + 0 =0 =» x = 0. In words, any point where the x
component is 0 is a point in the plane.

The plane specified as 1, 0, 0, -10 is a plane with surface normal vector in the x direction and the point
(10, 0, 0) is in the plane. Ax + By + Cz+D = Ix + Oy +0z -10 =0 =» x = 10. In words, any point where
the x component is 10 is a point in the plane.

A

The plane of the above figure is defined by the 4-tuple (.707, .707, 0, -1). The first three values is the
vector halfway between the X and Y axes. The plane is orthogonal to that vector and a distance of 1
away from the origin along that vector. The shadow is meant to give some perspective to the illustration.

Specification of half-space

Half spaces are infinite; they are all the points that lie on one side of a plane. Half spaces are typically
defined by specifying four values: A, B, C, and D. The half space is defined by the equation:

Ax + By + Cz + D < O
Notice that this equation is the same as the equation for a plane except for the relational operator. The
half space is the set of all points (X, y, z) that satisfy the above equation. This is an infinite set of points.
In the above figure, the half space is the back side of the plane (the shadow side).

Half spaces are used in defining BoundingPolytope and ModelClip objects. Both of these classes are
described in chapter 2 of this tutorial.

The Java 3D Tutorial 0-26

Getting Started with the Java 3D API Glossary

0.6 Glossary

A

activation volume

active

aliasing

alpha

Alpha class

alpha value

ambient (material) color

ambient light

ambient reflection

ancestors (of an object)

animation

The Java 3D Tutorial

A volume associated with a ViewPlatform Node. When the activation
volume intersects application regions or scheduling regions, the objects
associated with the intersecting regions affect rendering. The affected
objects include backgrounds, behaviors, clip, fog, and light. See also
ViewPlatform, application bounds, and scheduling bounds.

Said of a behavior object that is able to receive a wakeup stimulus and
therefore execute. A behavior object is active when it's scheduling bounds
intersects a ViewPlatform's activation volume. When a behavior is not
active, Java 3D will ignore the wakeup criteria for that behavior. See also
activation volume and behavior.

The appearance of jaggies in lines and curves. The result of sampling the
a continuous function. See also jaggies and antialiasing.

In computer graphics, the term ‘alpha’ normally refers to transparency. In
Java 3D alpha also refers to transparency, but may also refer to the Alpha
class, or an alpha value. This may be a source of confusion for
experienced graphics programmers. See also Alpha class, alpha value,
RGBA, and transparency.

An Alpha class object creates a time-varying function of alpha values.
Normally, and Alpha object is used with Interpolator objects to create
time-based animations. See also alpha value, animation and interaction.

A value in the range 0.0 to 1.0, inclusive. Alpha values are used in various
capacities in Java 3D (e.g., transparency value or Interpolator behavior
objects). Time varying alpha values are produced by Alpha objects. In the
specification of color, an alpha value expresses the opacity of the color. If
alpha is 0 then it is not opaque (it is fully transparent); if alpha is 1, the
color is fully opaque. See also Alpha Class, behavior, and interpolator.

Part of the material properties of a visual object. The ambient color of a
material and the ambient light in scene produce an ambient reflection.

A light source present in all places shining in all directions used to model
the complex inter-object reflections (repeated reflection of light from one
object to another) present in the real world. See also ambient color.

The light produced by an ambient light source reflected from a visual
object with material appearance attributes. The result depends on the
ambient color of the object and the color of the ambient light source. See
ambient color, ambient light, and lighting model.

All of the objects in a scene graph that are children of a specific object and
all of the childrens’ ancestors. See also object, scene graph, and parent-
child relationship.

The automatic change of visual content (e.g., changes based on time
alone). In this tutorial, animations are driven by the passage of time,

0-27

Getting Started with the Java 3D API Glossary

changes of the view platform location, and possibly other non-user action
influences. Animation is the subject of Chapter 5. See also interaction.

antialiasing A process of smoothing the drawing of points or lines that would
otherwise appear jagged. See also jaggies, line antialiasing and point
antialiasing.

API see Application Programming Interface

Appearance class Instances of Appearance define the appearance of a Shape3D object.

Appearance objects include AppearanceAttribute objects. See also
AppearanceAttributes and Shape3D.

application bounds The region for which something is applied. Backgrounds, Behaviors, and
Clip Nodes have application bounds. For example, when the view's
activation volume intersects the application bounds of a particular
background, that background is used in rendering. See also bounds.

Application Programming (API) General term referring to a collection of classes (or procedures) that
Interface form the programming interface to some computer system. The Java 3D
API classes form the programmers interface to the Java 3D renderer.

Attributes classes Instances of Attributes define specific appearance attributes of a Shape3D
object. There are several Attributes classes. Appearance objects include
Attribute objects. See also Appearance class and Shape3D.

B

base level Level 0 of a texture. Base level is the only level of a texture unless the
Mipmap Mode is set to MULTI LEVEL. Base level also refers to a single
level texture as opposed to a multiple level texture. In a multiple level
texture base level, level 0, is the largest texture image. See also texture
mapping and multiple levels of texture.

billboard Automatic orientation of a polygon in an orthogonal orientation to the
viewer such that only the front face of the polygon is viewed. Typically
the polygon is textured with an image.

Behavior class A javax.media.j3d class used to specify how some characteristic, such as
location, orientaion, or size, changes at runtime. Behavior classes are
used in creating animations as well as interactive programs. See also
behavior, Interpolator, and Alpha class.

behavior The changing of some characteristic, such as location, orientation, size,
color, or a combination of these, of a visual object at run time. A
behavior is either an animation or an interaction. See also Behavior class.

bounding volume A volume that defines the limits for which something is defined. Bounds
are used with behaviors, lights, sounds, and other features of Java 3D.
Bounds are defined in a program with the Bounds class. When the See
also Bounds class and scheduling region.

Bounds class An abstract class to specify a bounding volume for which something is
defined. Bounds are used with behaviors, backgrounds, sounds, and other
features of Java 3D. Bounds can be specified with a BoundingBox,

The Java 3D Tutorial 0-28

Getting Started with the Java 3D API

bounds

BoundingBox class

BoundingSphere class

branch graph

BranchGroup class

C

capabilities

CLAMP

class

Color* classes

Color3* classes

Color4d* classes

compile

concentration

content

content branch graph

convenience class

The Java 3D Tutorial

Glossary

BoundingSphere or a BoundingPolytope. See also bounding volume,
polytope, and scheduling region.

See bounding volume and Bounds class.

Instances of BoundingBox define bounds as a axis-aligned box. See also
bounding volume.

Instances of BoundingSphere define bounds as a sphere. See also
bounding volume.

That portion of the scene graph rooted in a BranchGroup object. See also:
BranchGroup, scene graph, content branch graph, and view branch graph.

Instances of BranchGroup are the root of individual scene graph branches,
called branch graphs. A BranchGroup may have many children that are
Group and/or Leaf objects. A BranchGroup is the only object that may be
inserted into a Locale object. See also scene graph, branch graph, and
Locale.

In the Java 3D sense, access to the parameters of a live object are
controlled with capabilities. For example, a transform of a live
TransformGroup can not be changed unless the capability to do so was set
for that instance of TransformGroup before it was made live. See also /ive
and TransformGroup.

One of the Boundary Modes available in texture mapping. Clamps texture
coordinates to be in the range [0, 1]. See also texture mapping.

The specification of a set of values and a set of operations. A class is
analogous to a type in a procedural language such as C. See also object.

A set of classes used to represent a single color value. The classes are
Color3b, Color3f, Colordb, and Color4f.

A set of classes used to represent a single RGB color value. The classes
are Color3b and Color3f. See also Color* and RGB.

A set of classes used to represent a single RGBA color value. The classes
are Color4db and Color4f. See also Color* and RGBA.

In the Java 3D sense, compile () is a method of BranchGroup to allow
Java 3D to make run-time performance improvements in the branch graph
rooted on the BranchGroup. See also BranchGroup and branch graph.

A parameter of spot light objects that determines the spread of light from
the light source. See also spot light.

The visual (including shape and lights) and audio objects of a virtual
universe. See also visual object.

The portion of the scene graph that contains the visual objects. See also
content and visual object.

A class that extends a core class for the purpose of making a core class (or
classes) easier to use. Convenience classes are found in the com.sun.j3d.*
packages.

0-29

Getting Started with the Java 3D API Glossary

crease angle

cull

cull face

D
DAG

deactivation

diffuse reflection

directed acyclic graph

E

emissive (material) color

examples.jar

exception

execution culling

eye vector

The Java 3D Tutorial

The threshold angle between the surfaces of adjacent triangles in a surface
for which it is taken to be a discontinuous crease. When a crease is
detected by the NormalGenerator it produces multiple normals for
vertices.

To remove something not valuable or not needed. See also cull face.

The face that is not to be rendered. A cull face is specified to avoid
rendering a face that is not needed, for example, the interior face of an
enclosed surface. Cull faces are specified as either front face or back face.
A cull face is specified to improve rendering performance. See also front

face.

See Directed Acyclic Graph

When a behavior's scheduling region and the ViewPlatform's activation
volume no longer intersect, the behavior is deactivated. Since a behavior
can only be triggered when active, a deactivated behavior object will not
do anything. See also active and behavior.

The most common reflection of light from visual objects present in the real
world. The diffuse color is the color of an object in typical lighting
conditions. See also lighting model.

A data structure composed of elements and directed arcs in which no
cycles are formed. In the Java 3D world, the elements of the DAG are
Group and Leaf objects, and the arcs are the parent/child relationships
between Groups and Leaf objects. In forming the structure without cycles
means no element can be its own parent.

A color specified to make an object self illuminating. The object is not a
light source and does not lit other object, but is visible in the absence of
light sources. See also material properties.

The archive of example programs published with this tutorial. See also
jar.

An expected runtime problem that halts execution when detected. The
Java 3D API defines several exceptions.

Since computational resources are shared for rendering and behavior
execution; some (or all) computational resources are not available for
rendering while behaviors are executed. This could degrade rendering
performance when executing behavior objects. Therefore, Java 3D ignores
behaviors when they are not active to conserve execution resources. This
is termed execution culling since execution of deactivated behavior objects
is culled. See also active and behavior.

The vector between a vertex (to be shaded) and the viewing position. This
vector is used in calculating the specular reflection of an object. See also
specular reflection, local eye, and infinite eye.

0-30

Getting Started with the Java 3D API

F
flat shading

font

front face

frustum

G
get* or get-method

Geometry classes

glyph
Gouraud shading

Group class

H
half-space

I

image plate

image observer

infinite eye (lighting)

influence (of a light)

Glossary

Shading an object with the colors of each vector without interpolation.
See also shading model.

The collection of glyphs for the alphabet. A typeface at a specific point
size and attributes (i.e., italics or bold). See also glyph and typeface.

The face of a polygon for which the vertices are in counter-clockwise
order. An easy way to remember is to apply the right-hand rule. See also
right-hand rule and cull face.

see view frustum

A method of a class that retrieves a field or value from an object. See also
set*

The abstract class that is the super class for all geometric primitive classes
such as GeometryArray, and Text3D.

The image of a character in a font. See also font and typeface.

Smooth shading of an object through trilinear interpolation of color values
at the object's vertices. See also flat shading, trilinear interpolation.

Group is an abstract class. Instances of subclasses Group are used in
creating scene graphs. A Group is a scene graph object whose primary
function is to be the parent of other scene graph objects (Leaf objects and
other Group objects. See also BranchGroup and TransformGroup.

The space on one side of a plane. A plane divides all of space in two
halves, one half on each side of the plane. See also plane.

The imaginary rectangle in the virtual universe to which the scene is
projected. See Figure 1-9 for an illustration. See also view frustum.

An object that implements the image observer interface which allows it to
monitor the loading of images from a file or URL.

Rendering an scene as though it were viewed from a position at infinity.
The actual effect is to have a constant eye vector (0, 0, 1). This reduces
rendering time, but may look 'funny' due to the placement of specular
reflections. Infinite eye lighting is the default. See also /ighting model,
specular reflection, eye vector, and local eye (lighting).

The region (volume) for which the bounding volume of a visual object
must intersect for the visual object to be lit by the light source. See also
bounds.

influencing bounds (of a light) See influence (of a light).

instance (of a class)

The Java 3D Tutorial

An instance of a class is a specific, individual object constructed of the
named class.

0-31

Getting Started with the Java 3D API

intensity

interaction

interface

interpolator

interpolation

J
Java 2D

jaggies

jar

K
K Computing

key frame

L
level of detail (LOD)

The Java 3D Tutorial

Glossary

A single value that represents the perceived brightness of a light source.
Also used as a setting for a texture image that has a single value for each
texel which is taken as the value for R, G, B, and A.

Changing the state of a virtual world in response to user action. This is in
contrast to animation which is defined as a change in the state of the
virtual world not directly caused by user action. Interaction is the subject
of Chapter 4. See also animation.

Like an abstract class, an interface defines methods to be implemented by
other classes. No constructor is defined in an interface and all of the
methods defined in an interface are abstract.

Refers to one of several classes subclassed from the Interpolator class, or
an object of one of these classes. Interpolator objects provide animation in
the Java 3D virtual world by varying some parameter(s) of a target scene
graph object. The changes made by the interpolator are determined by the
parameters of the interpolator and the Alpha object driving the
interpolator. See also Alpha Class, behavior, and target object.

The computation of a value, or set of values, based on the value of a single
integer. Sometimes the derived value is interpolated between two values,
or two sets of values; other times, the derived value is the result of a
formula. Specifically, there are a set of interpolator classes useful for
animation. See Section 4.1 and Chapter 5 for more details.

An API for 2D graphics.

The technical term for the roughness that may appear on points, lines, or
polygons when rendered. The roughness appears when the individual
pixels used stand out. See also antialiasing.

1. An archive file format useful for distributing a collection of files.
2. The utility that creates and reads such archive files (Java ARchive).

The training and consulting company that developed this tutorial
document. See also http://www.kcomputing.com

A term used in traditional and computer animation for a frame of the
animation on which others are based. The process of creating frames in
between the key frames is called "in-betweening". Animations made from
key frames and in-betweening are called key frame animations. A Morph
object can be used to do key frame animations in Java 3D.

Level of detail (LOD) refers to an application specific behavior that
changes the representation of a visual object based on its distance
(normally) to the viewer. When the LOD object is close to the viewer,
more detailed representations are used. Less detailed representations are
used with more distance. The goal is to reduce the rendering computation

0-32

Getting Started with the Java 3D API Glossary

light vector

lighting model

line antialiasing

live

loader

local eye (lighting)

Locale class

luminance

M

magnification filter

material properties

memory burn

The Java 3D Tutorial

without degrading rendered imagery. See Section 4.1 and Chapter 5 for
more details.

The vector between a light source and the vertex being shaded. See also
lighting model.

The calculation of the color (shade) of a specific vertex of a visual object
as the result of influencing light sources and the material properties of the
visual object. The shade is the result of ambient, diffuse, and specular

reflections as well as the emissive color of the material. See also ambient
reflection, diffuse reflection, specular reflection, and material properties.

An appearance attribute that, when enabled, causes the renderer to apply
antialiasing to lines as they are rendered. See also antialiasing and render.

The term ‘live’ refers to the state of a SceneGraphObject being associated
with a rendering engine. In other words, a live object is a member of a
branch graph associated with a Locale which is a member of a
VirtualUniverse that has a View attached (through a Locale object) and,
therefore, has the potential to be rendered. Live objects have restricted
capabilities. See also render, SceneGraphObject, branch graph, Locale
class, VirtualUniverse class, scene graph, and capabilities.

A Java 3D utility class that creates scene graph elements from a file.
Loaders exist for many common 3D file formats.

Rendering an scene as though it were viewed from the local eye position -
as opposed to the default infinite eye. This increases rendering time.
Infinite eye lighting is the default. See also lighting model, specular
reflection, eye vector, and infinite eye (lighting).

Instances of Locale provide landmarks in the virtual universe. The
position of all visual objects is relative to some Locale object. Locale
objects are the only object VirtualUniverse objects reference.
BranchGroup objects are the only children of a Locale object. See also
BranchGroup, VirtualUniverse class, visual object, and branch graph.

A single value that represents the perceived brightness for a surface. Also
used as a setting for a texture image that has a two values for each texel
where one value is taken as the value for R, G and B and the other value is
used for alpha.

A filter used in texture mapping when the pixel size is larger than the texel
size. See also fexture mapping and texel.

The specification of the ambient, diffuse, specular, and emissive colors,
and concentration of a material used in calculating the shade of an object.
The first three colors are used in calculating the appropriate reflection.

See also ambient reflection, diffuse reflection, specular reflection, lighting
model, and shade.

The rate of memory allocation and garbage collection as an application
runs. This is typically due to unnecessarily creating and destroying

0-33

Getting Started with the Java 3D API Glossary

minification filter

MIP Map

multi level texturing

multiple levels of texture

multitexture

N

normal

normal vector
(0]
object

object of change

P
pick
picking

pick ray

pixel

The Java 3D Tutorial

objects. Memory burn can adversely affect rendering performance in some
runtime environments. Avoid memory burn in behaviors.

A filter used in texture mapping when the pixel size is smaller than the
texel size. See also texture mapping and texel.

MIP (multum in parvo — Latin for many things in a small place) Map 1.
Refers to a specific storage technique for storing a series of images for
multi level texturing, where each successive image is one quarter the size
of the next (% the size in each dimension) until the size of the smallest
image is 1 texel by 1 texel [See Williams, SIGGRAPH 1983].

2. The common use of the term means "multi level texturing". See
Chapter 7. See also texture mapping, multiple levels of texture, and texel.

See multiple levels of texture.

Having a series of texture images at various resolutions available so that
the rendering system can select the texture map of a size that is the closest
match to the visual object being rendered. See Chapter 7. See also fexture
mapping and MIPmap.

Applying multiple texture images to one visual object. Refer to Chapter 7.
See also texture mapping and texture unit.

A vector that defines the surface orientation. In Java 3D normals are
associated with coordinate points in geometry. See also Geometry.

See normal.

An instantiation of a class. See also class and visual object.

The scene graph object that is changed by a behavior and through which
the behavior affects the virtual world. For example, a TransformGroup
object is often the object of change for interactive behaviors. See Section
4.2 for more information.

To select an object with the mouse. See also picking.

To select a visual object for interaction with the mouse. Picking is
implemented in Java 3D through behaviors. See Chapter 4 for more
information on Behaviors, Picking, and example programs utilizing
picking classes. See also behavior.

A pick ray is a ray whose end point is the mouse location and direction is
parallel to the projection (parallel with projectors). In many picking
applications, the pick ray is used in picking an object for interaction. Also,
PickRay is a subclass of PickShape. See the appropriate reference
block or API reference for the class. See also picking.

An individual picture element of the display. Each pixel is addressable by
an [x, y] coordinate and assigned a single color. In Java 3D, programs do

0-34

Getting Started with the Java 3D API

plane

plane equation

Point* classes

point antialiasing

polytope

processStimulus

project

projector

Q
quad

quaternion

R
raster

rasterize

ray tracing

render
renderer

RGB

The Java 3D Tutorial

Glossary

not typically address individual pixels, instead 3D elements are rasterized.
See also rasterize.

A flat surface extending infinitely in all directions. The orientation of a
plane is normally expressed as a surface normal. A plane can be uniquely
defined by a single point and a normal vector.

A plane is uniquely specified by a 4-tuple. The first three values represent
the surface normal vector for the plane. The fourth value specifies the
distance from the origin to the plane along a vector parallel to the plane's
surface normal vector.

Point* refers to one, or all, of a number of classes used to represent points
in Java 3D. Consult a reference for Point2f, Point3f, Point3d, ... classes.

An appearance attribute that, when enabled, causes the renderer to apply
antialiasing to points as they are rendered, causing the points to look less
jagged. See also antialiasing, render, and jaggies.

A bounding volume defined by a closed intersection of half-spaces.

A method of Behavior. The processStimulus method is called by Java 3D
when the appropriate trigger condition has occurred. It is through this
method that the behavior object responds to the trigger. See Chapter 4 for
more information. See also behavior and wakeup condition.

To express the world coordinate geometry of 3D objects in 2D image plate
space.

The lines that correlate the vertices of a 3D object in world coordinate
space with the pixels in image plate space. A straight line drawn between
a 3D vertex and the viewpoint (viewer's eye) is a projector and determines
the pixel(s) the vertex will rasterize to.

Short for quadrilateral. A four sided polygon.

A quaternion is defined using four floating point values [x y zw|. A
quaternion specifies rotation in four dimensions.

The per-pixel memory of the display hardware.

To convert visual objects and their components to their projected images.
The term comes from the use of a raster display device on virtually all
common computers.

Applications which render scenes by modeling individual rays of light.
These applications can model inter-object effects such as shadows but are
not fast enough for real time rendering.

To produce the image represented by the scene graph.
Software to produce the image from a scene graph.

Red, Green, and Blue, the three components used to represent color.

0-35

Getting Started with the Java 3D API Glossary

RGBA

right-hand rule

scale

scanline

scanline order

scene graph

scene graph path

scheduling bounds

scheduling bounding leaf

scheduling region

scope

sensor

The Java 3D Tutorial

Red, Green, Blue, and Alpha, the three components used to represent color
with a transparency value. If alpha is O then it is not opaque (it is fully
transparent); if alpha is 1, the color is fully opaque.

"Right-hand rule" refers to the correlation between the
direction the fingers curl and the direction the thumb
points on your right hand. The right-hand rule applies
in determining the front face of a polygon, when
computing a cross product of vectors, and when
figuring out which way to turn right-handed nuts, bolts,
and screws. The figure at the right shows the fingers , 0
of the right hand curling in the order in which the

vertex coordinates were defined for a triangle. The

thumb, pointing up (out of the page), indicates we are

seeing the front face of the triangle. See also front face

and culling.

To change the shape of a visual object by transforming each of the vertices
of the object. The shape of the visual object can be preserved or distorted
depending on the scale transform. See also transform.

A single row of pixels of the output device.

The ordering of pixels of a window taken left to right and top to bottom —
like the order of characters are read (in English). This order is normally
used in rendering pixels.

The Java 3D data structure that specifies the visual objects and viewing
parameters in a virtual universe.

The path from a locale object, or an interior node, to a leaf of the scene
graph. SceneGraphPath is a class used in picking. See Chapter 4 for
more information on the class.

A region defined for a behavior. The activation volume of a view must
intersect the scheduling bounds of a behavior for the behavior to be active.
A behavior must be active to be able to execute in response to a stimulus.
See also active, activation volume, and behavior.

An alternative to a scheduling bounds. See also BoundingLeaf and
scheduling bounds.

See scheduling bounds.

The portion of a scene graph for which an object's (e.g., light node, fog
node, model clip node) influence is considered. By default, the scope of a
node is the universe. Sub-graphs of the scene graph can be specified as the
scope of a light. This does not replace the specification of a lights region
of influence, but is complementary to the influence of a light. See also
influence (of a light) and universe scope.

The abstract concept of an input device such as joy-stick, tracker, or data
glove.

0-36

Getting Started with the Java 3D API

set* or set-method

shade

shade model

shadow polygon

shininess

specular reflection

SpotLight class

stitching

stripification

surface normal

T

texel

texture

texture mapping

texture unit

three space

The Java 3D Tutorial

Glossary

A method of a class that sets a field or value in an object. See also get*

n. The color of a vertex or pixel as a result of the application of the
lighting model (for a vertex) or the shade model (for pixel).

v. To calculate the color of a vertex or pixel by the application of the
lighting model (for a vertex) or the shade model (for pixel).

The calculation of each pixel's shade value from the shade of each
neighboring vertex shade. See also shade, Gouraud shading and flat
shading.

A polygon used to create a shadow in a scene. See section 6.7.3

The specification of how shiny a material surface is. This value (in the
range 1.0 to 128.0) is used in calculating the specular reflection of a light
from a visual object. The higher the value the more concentrated the
specular reflection is. See also specular reflection and material
properties.

The highlight reflection of light from a shiny visual object. In the real
world presence of a specular reflection depends heavily on how smooth
the surface is. In Java 3D this is modeled as a specular material color and
a concentration value. See also material properties, specular color, and
concentration.

A light source class that has a position, direction, spread angle and
concentration values. See Chapter 6 for more information. See also
concentration.

When the same geometry is rendered as a wire frame and as filled
polygons (of different color), by default the depth of the pixels rendered
for each will not correspond and so the wire frame will appear to move in
and out of the surface and appear as a thread though a cloth surface. See
Section 2.6.3. PolygonAttributes in Module 1 for additional information.

Organization of triangles into triangle strips for rendering efficiency.

See normal.

A TEXture ELement. A pixel of a texture image. See fexture mapping.

1. n. The image used in texture mapping a visual object. 2. v. To apply an
image to a visual object through texture mapping. See also fexture

mapping.
The application of a texture image to a visual object based on the
assignment of texture coordinate values to geometric vertices and texture

mapping filters. See also texture, minification filter, and magnification
filter.

That portion of the low-level hardware/software rendering system
responsible for texture mapping a single texture on a visual object. Refer
to Chapter 7. See also texture mapping and multitexture.

Three dimensional space.

0-37

Getting Started with the Java 3D API

transform

translate

TransformGroup class

target object
triangulation

trilinear interpolation

Tuple* classes

typeface

U

universe scope

utility class

v

vecmath

View class

view branch graph

view frustum

viewer

The Java 3D Tutorial

Glossary

The mathematical operation performed on a vertex, or collection of
vertices, to translate, rotate, or scale the vertices. Transformations are
represented as 4 x 4 matrices and stored in TransformGroup objects.

Move a vertex or vertices.

A subclass of Group that also applies a transformation to its child nodes.
See also transformation.

The scene graph object changed by a behavior or interpolator.
The subdivision of a polygon into triangles.

The use of three linear interpolations to arrive at a value. This technique is
used to calculate a shade value for a pixel from the shade values of
vertices in Gouraud shading. See also Gouraud shading and flat shading.

A set of classes defined in the javax.vecmath package used to
represent tuples. The seven individual Tuple classes are Tuple2f, Tuple3b,
Tuple3d, Tuple3f, Tupledb, Tupledf, and Tuple4d. These classes are the
superclasses of Color*, Point* and Vector* classes (among others).

The style of printing text. For example Times Roman, Helvetica, and
Courier are all typefaces. By contrast, a font is a typeface with other
specific attributes. For example, "10 point, italic, Times Roman" is a font.
See also font.

The default scope for those scene graph object that can have a scope
specification, which is that the scope is all scene graph objects in the
virtual universe.

A class in the com.sun.j3d.utils package, that builds upon the
core classes to enhance programming capabilities.

An extension package that defines classes for computing vector math.
Among these are the Tuple* classes.

The View object is the central object for coordinating all aspects of a view
including which canvas(es). Java 3D supports multiple simultaneous
views.

The portion of the scene graph containing a View object. The parameters
of the viewing environment (e.g., stereo) and physical parameters (e.g.,
physical position of the viewer) are specified in the view branch graph.

A truncated pyramid-shaped viewing volume that defines how much of the
virtual universe the viewer sees. Visual objects not within the view
frustum are not visible. Objects that intersect the boundaries of the
viewing frustum are clipped. See Figure 1-9 for an illustration. See also
clip, viewer, and visual object.

The (primary) person viewing the display device Java 3D is rendering to.
It is for this person the PhysicalBody calibration parameters are set.

0-38

Getting Started with the Java 3D API Glossary

virtual universe

VirtualUniverse class

virtual world

visual object

W

wakeup condition

wakeup criterion

WRAP

yo-yo

z-buffer

The Java 3D Tutorial

The conceptual space in which the visual objects 'exist'. A virtual universe
may contain multiple virtual worlds as defined by Locale objects.

The core class for Java 3D. An instance of VirtualUniverse must be the
root of the scene graph.

The conceptual space in which the visual objects 'exist' as defined by a
single Locale object. A virtual world is contained by a virtual universe.

The term “visual object” is used in places where ‘object” would make
sense in English but not in the Object Oriented sense. A visual object may
or may not be visible in a view depending on many factors. “Visual
object” most often refers to a Shape3D object. (see section 1.2) See also
content.

The combination of wakeup criterion that specifies the trigger condition
for a behavior object. Java 3D calls the processStimulus method of the
behavior object in response to the occurrence of the wakeup condition for
an active behavior object. WakeupCondition is a class presented in
Chapter 4. See also behavior, processStimulus, and wakeup criterion.

Combinations of wakeup criterion objects form a wakeup condition for a
behavior object. Some possible wakeup criterion include AWTEvents,
collisions, behavior activation, passage of time, and a specified number of
frames have been drawn. WakeupCriterion is a class presented in
Chapter 4. See also wakeup condition.

One of the Boundary Modes available in texture mapping. Repeats the
texture by wrapping texture coordinates that are outside the range [0,1].
See texture mapping.

A toy.

A data structure internal to the renderer to determine the relative depth
(distance from image plate) of visual objects on a per pixel basis. Only the
visual object closest to the image plate is visible.

0-39

	Overview and Appendices
	0.1 Navigating the Tutorial
	0.1.1 Tutorial Contents
	Module Overview
	Chapter Contents
	What is Not in the Tutorial

	0.1.2 How Can I Use the Tutorial
	0.1.3 Preface to the Tutorial
	What’s Inside
	How to download this document
	Audience
	Feedback
	Typographic Conventions
	What software is required
	Cover Image

	0.1.4 Disclaimers

	0.2 (Appendix A) Summary of Example Programs
	0.2.1 HelloJava3D
	examples/HelloJava3D/HelloJava3Da
	examples/HelloJava3D/HelloJava3Db
	examples/HelloJava3D/HelloJava3Dc
	examples/HelloJava3D/HelloJava3Dd

	0.2.2 Geometry
	examples/Geometry/Axis.java
	examples/Geometry/AxisApp.java
	examples/Geometry/AxisClassDemoApp.java
	examples/Geometry/ColorConstants.java
	examples/Geometry/ColorYoyoApp.java
	examples/Geometry/ConeYoyoApp.java
	examples/Geometry/ModelClipApp.java
	examples/Geometry/MultiGeomApp.java
	examples/Geometry/TwistByRefApp.java
	examples/Geometry/TwistStripApp.java
	examples/Geometry/YoyoApp.java
	examples/Geometry/YoyoLineApp.java
	examples/Geometry/YoyoPointApp.java

	0.2.3 EasyContent
	examples/easyContent/BackgroundApp.java
	examples/easyContent/GeomInfoApp.java
	examples/easyContent/Text2Dapp.java
	examples/easyContent/Text3Dapp.java

	0.2.4 Loader
	examples/Loader/SimpleQuadLoader/SimpleQuadLoad.java

	0.2.5 Interaction
	examples/Interaction/DoorApp.java
	examples/Interaction/KeyNavigatorApp.java
	examples/Interaction/MouseBehaviorApp.java
	examples/Interaction/MouseNavigatorApp.java
	examples/Interaction/MousePickApp.java
	examples/Interaction/MouseRotateApp.java
	examples/Interaction/MouseRotate2App.java
	examples/Interaction/PickCallbackApp.java
	examples/Interaction/SimpleBehaviorApp.java

	0.2.6 Animation
	examples/Animation/AlphaApp.java
	examples/Animation/BillboardApp.java
	examples/Animation/ClockApp.java
	examples/Animation/InterpolatorApp.java
	examples/Animation/LODApp.java
	examples/Animation/MorphApp.java
	examples/Animation/Morph3App.java
	examples/Animation/OrientedShape3DApp.java
	examples/Animation/ParticleApp.java

	0.2.7 Light
	examples/light/LightsNPlanes.java
	examples/light/LitPlane.java
	examples/light/LitSphere.java
	examples/light/LitTwist.java
	examples/light/LightScope.java
	examples/light/LocalEyeApp.java
	examples/light/ShadowApp.java
	examples/light/ShininessApp.java
	examples/light/SpotLightApp.java

	0.2.8 Texture
	examples/texture/BoundaryColorApp
	examples/texture/BoundaryModeApp
	examples/texture/MIPmapApp
	examples/texture/MIPmapApp2
	examples/texture/MIPmapDemo
	examples/texture/SimpleTextureApp
	examples/texture/SimpleTextureSpinApp
	examples/texture/Text2DTextureApp
	examples/texture/TextureCoordApp
	examples/texture/TextureCoordGenApp
	examples/texture/TexturedLineApp
	examples/texture/TexturedPlaneApp
	examples/texture/TexturedPrimitiveApp
	examples/texture/TexturedSceneApp
	examples/texture/TextureRequestApp

	0.3 (Appendix B) Reference Material
	0.3.1 Books
	0.3.2 The Java 3D API can be downloaded from the Java 3D Home Page:
	0.3.3 Sun Java Web Pages
	0.3.4 Other Web Pages

	0.4 (Appendix C) Solutions To Selected Self Test Questions
	0.4.1 Answers to Questions in Chapter 1
	0.4.2 Answers to Questions in Chapter 2
	0.4.3 Answers to Questions in Chapter 3
	0.4.4 Answers to Questions in Chapter 4
	0.4.5 Answers to Questions in Chapter 5
	0.4.6 Answers to Questions in Chapter 6
	0.4.7 Answers to Questions in Chapter 7

	0.5 (Appendix D) Geometry and Math
	0.5.1 Defining a Plane
	Specification of half-space

	0.6 Glossary
	a
	b
	c
	de
	fghi
	jkl
	m
	nop
	qr
	s
	t
	uv
	wxyz

