
tutorial v1.6 (Java 3D API v1.2)

Getting Started with
the Java 3D™ API

Chapter 7
Textures

Dennis J Bouvier

Getting Started with the Java 3D API Chapter 7 Textures

The Java 3D Tutorial

© 1999 - 2001 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A

All Rights Reserved.

The information contained in this document is subject to change without notice.

SUN MICROSYSTEMS PROVIDES THIS MATERIAL "AS IS" AND MAKES NO WARRANTY OF ANY
KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SUN MICROSYSTEMS SHALL
NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES (INCLUDING LOST PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE
OR USE OF THIS MATERIAL, WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL
THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS
PUBLICATION AT ANY TIME.

Some states do not allow the exclusion of implied warranties or the limitations or exclusion of liability for incidental
or consequential damages, so the above limitations and exclusion may not apply to you. This warranty gives you
specific legal rights, and you also may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and without
fee is hereby granted provided that this copyright notice appears in all copies.

This documentation was prepared for Sun Microsystems by Dennis J Bouvier (djb@raven-red.com). For
further information about course development or course delivery, please contact either Sun Microsystems or Dennis.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered
trademarks of Sun Microsystems, Inc. All other product names mentioned herein are the trademarks of their
respective owners.

Module 3: Lights and Textures

The Java 3D Tutorial 7-i

Table of Contents
Chapter 7:
Textures... 7-1

7.1 What is Texturing.. 7-1

7.2 Basic Texturing ... 7-2
7.2.1 Simple Texturing Recipe... 7-3
7.2.2 Simple Texture Example Programs... 7-8
7.2.3 More about Texture Coordinates .. 7-9
7.2.4 A Preview of Some Texturing Choices... 7-12
7.2.5 Texture Options... 7-12
7.2.6 Texture3D ... 7-15

7.3 Some Texturing Applications ... 7-15
7.3.1 Texturing Geometric Primitives.. 7-15
7.3.2 Texturing Lines ... 7-16
7.3.3 Using Text2D Textures ... 7-17

7.4 Texture Attributes ... 7-17
7.4.1 Texture Mode .. 7-18
7.4.2 Texture Blend Color.. 7-19
7.4.3 Perspective Correction Mode.. 7-20
7.4.4 Texture Map Transform.. 7-20
7.4.5 TextureAttributes API... 7-20

7.5 Automatic Texture Coordinate Generation... 7-22
7.5.1 Texture Generation Format ... 7-23
7.5.2 Texture Generation Mode ... 7-23
7.5.3 How to use a TexCoordGeneration Object ... 7-24
7.5.4 TexCoordGeneration API ... 7-25

7.6 Multiple Levels of Texture (Mipmaps)... 7-26
7.6.1 What is Multi Level Texturing (MIPmap) .. 7-27
7.6.2 Multiple Levels of Texture Examples... 7-29
7.6.3 Multiple Levels of Texture Minification Filters ... 7-30
7.6.4 Mipmap Mode ... 7-31

7.7 Texture, Texture2D, and Texture3D API ... 7-31
7.7.1 Minification and Magnification Filters .. 7-31
7.7.2 Texture API... 7-32
7.7.3 Texture2D API .. 7-34
7.7.4 Texture3D API .. 7-34

7.8 Multitexture <new in 1.2> ... 7-35
7.8.1 Multitexture, Texture Units, and TextureUnitStates <new in 1.2>........................... 7-36
7.8.2 TextureUnitState API <new in 1.2> .. 7-37
7.8.3 Appearance API for Multitexture <new in 1.2> ... 7-38
7.8.4 GeometryArray API for Multitexture <new in 1.2>.. 7-39

7.9 TextureLoader and NewTextureLoader API .. 7-40
7.9.1 TextureLoader API.. 7-40
7.9.2 NewTextureLoaderAPI ... 7-41

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-ii

7.10 Chapter Summary.. 7-42

7.11 Self Test .. 7-43

List of Figures
Figure 7-1 Some of the Images (outlined) used as Textures in Example Programs. 7-2
Figure 7-2 Simple Texturing Recipe... 7-3
Figure 7-3 Texture Mapping Coordinates... 7-5
Figure 7-4 The Orientation of Texture Coordinates in Texture Image Space. ... 7-7
Figure 7-5 Scenes Rendered by the SimpleTextureApp (left) and SimpleTextureSpinApp

(right) programs. ... 7-8
Figure 7-6 Three Textured Planes as Rendered By TexturedPlaneApp.java ... 7-9
Figure 7-7 Picture of Texture Mapping .. 7-10
Figure 7-8 Some of the Possible Orientations for a Texture on a Plane... 7-10
Figure 7-9 In Texturing, You Get What You Ask For.. 7-11
Figure 7-10 An Appearance Bundle with Texture and TextureAttributes Components. 7-12
Figure 7-11 Comparing the Combinations of Boundary Mode Settings for a Textured Plane............... 7-13
Figure 7-12 Image Produced by BoundaryColorApp. .. 7-14
Figure 7-13 Texturing the Sphere Geometric Primitive. .. 7-16
Figure 7-14 Textured Lines in Java 3D... 7-17
Figure 7-15 The Texture of a Text2D Object Applied to Another Visual Object.................................. 7-17
Figure 7-16 Two Visual Objects Sharing a Texture Customized by TextureAttributes Components. .. 7-18
Figure 7-17 Comparing Generation Modes of the TexCoordGeneration Object. 7-24
Figure 7-18 Appearance Bundle with Texture, TextureAttributes, and TexCoodGeneration................ 7-25
Figure 7-19 Multiple Levels of a Texture (outlined). (Image Sizes: 128x128, 64x64, 32x32, …, 1x1) 7-28
Figure 7-20 The Image Generated for a Plane Textured with a Multi Color Mipmap Texture.............. 7-28
Figure 7-21 A Visual Object with Texture, TextureAttributes, and TexCoodGeneration objects......... 7-36
Figure 7-22 Appearance Bundle with multiple TextureUnitState entries. ... 7-36

List of Tables
Table 7-1 How Texture Format Affect Pixels .. 7-15
Table 7-2 Summary of Texture Modes ... 7-19
Table 7-3 Directory of Texture Features... 7-31
Table 7-4 Review of Fundamental Texture Related Classes .. 7-35
Table 7-5 Example Usage of the texCoordSetMap... 7-39

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-iii

List of Code Fragments
Code Fragment 7-1 Using a TextureLoader Object to Load the STRIPE.GIF Image File. 7-4
Code Fragment 7-2 Creating an Appearance with a Texture.. 7-4
Code Fragment 7-3 Applying Texture Coordinates to a Quad. .. 7-6
Code Fragment 7-4 Adding Three New TexturedPlane Objects to the Scene Graph............................... 7-9
Code Fragment 7-5 Texture Coordinate Assignments for Planes in TextureRequestApp. 7-12
Code Fragment 7-6 Creating a Sphere Primitive with Pre-Assigned Texture Coordinates.................... 7-15
Code Fragment 7-7 Creating an Appearance Bundle to Display the Lines of a Geometry Array.......... 7-16
Code Fragment 7-8 Creating Multiple Level Texturing from a Base Level Image Only. 7-29
Code Fragment 7-9 Multiple Levels of Texture Loaded from Individual Image Files........................... 7-30

List of Reference Blocks
GeometryArray setTextureCoordinate Methods (partial list)... 7-6
Appearance setTextureAttributes method... 7-18
TextureAttributes Constructor Summary.. 7-20
TextureAttributes Capabilities Summary.. 7-20
TextureAttributes Constants ... 7-21
TextureAttributes method summary (partial list).. 7-21
TextureAttributes Method Summary .. 7-22
TextureAttributes Capabilities Summary.. 7-22
Appearance setTexCoordGeneration method ... 7-25
TexCoordGeneration Constructor Summary .. 7-25
TexCoordGeneration Field Summary ... 7-26
TexCoordGeneration Method Summary... 7-26
TexCoordGeneration Capabilities Summary .. 7-26
Texture Field Summary... 7-32
Texture Method Summary .. 7-33
Texture Capabilities Summary.. 7-34
Texture2D Constructor Summary ... 7-34
Texture3D Constructor Summary ... 7-35
Texture3D Method Summary.. 7-35
TextureUnitState Constructor Summary <new in 1.2> ... 7-37
TextureUnitState Method Summary ... 7-37
TextureUnitState Field Summary ... 7-38
Appearance multitexture related methods... 7-38
Appearance Capabilities (partial list) ... 7-39
GeometryArray constructor (partial list)... 7-40
GeometryArray texture related methods (partial list) ... 7-40
TextureLoader Field Summary ... 7-41
TextureLoader Constructor Summary (partial list)... 7-41
TextureLoader Method Summary ... 7-41
NewTextureLoader Constructor Summary (partial list) ... 7-42
NewTextureLoader Method Summary (partial list).. 7-42

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-iv

Preface to Chapter 7
This document is one part of a tutorial on using the Java 3D API. You should be familiar with Java 3D
API basics to fully appreciate the material presented in this Chapter. Additional chapters and the full
preface to this material is presented in the Module 0 document available at:
http://java.sun.com/products/java-media/3D/collateral

New for Java 3D API version 1.2

This chapter of the tutorial has been updated to include new features in Java 3D API release version 1.2.
You may notice the tag <new in 1.2> to the right of some section headings and in some reference
blocks in this chapter. This tag indicates the that tutorial topic or API feature is new in the API release
version 1.2. Note that since chapters are updated and released individually not all of the tutorial chapters
may reflect the latest version of the Java 3D API.

Module 3: Lights and Textures

The Java 3D Tutorial 7-1

7
Textures

Chapter Objectives
After reading this chapter, you’ll be able to:

• Add visual richness to simple geometry with textures

• Load textures easily with the TextureLoader utility

• Customize the use of textures with TextureAttributes objects

• Automatically generate texture coordinates to simplify texturing

• Apply multiple textures to a single visual object

The appearance of many real world objects depends on its texture. The texture of an object is really the
relatively fine geometry at the surface of an object. To appreciate the role surface textures play in the
appearance of real world objects, consider carpet. Even when all of the fibers of a carpet are the same
color the carpet does not appear as a constant color due to the interaction of the light with geometry of
the fibers. Even though Java 3D is capable of modeling the geometry of the individual carpet fibers, the
memory requirements and rendering performance for a room size piece of carpet modeled to such detail
would make such a model useless. On the other hand, having a flat polygon of a single color does not
make a convincing replacement for the carpet in the rendered scene.

Up to this point in the tutorial, the detail of visual objects has been provided by the geometry. As a
result, visually rich objects, such as trees, can require a great deal of geometry which in turn requires the
appropriate memory and rendering computation. At some level of detail, the performance may become
unacceptable. This chapter shows how to add the appearance of surface detail to a visual object without
adding more geometry through the use of textures.

7.1 What is Texturing
Carpet may be the extreme example in terms of the complexity and density of the surface geometry, but it
is far from the only object for which we perceive texture. Bricks, concrete, wood, lawns, walls, and
paper are just some of the objects for which flat geometry (e.g., polygons) can be used to represent the
general shape, but not the fine detail. Just as with carpet, the cost of representing surface texture in
geometric primitives for these objects is quite high.

C H A P T E R

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-2

A possible alternative to modeling the fiber of the carpet is to model the carpet as a flat polygon with
many vertices, assigning colors to the vertices to give variations in color. If the vertices are sufficiently
close, then the image of the carpet can be produced. This requires significantly less memory than the
model that includes the fibers of the carpet; however, the model would still require too much memory for
a reasonable size room. This idea, that of representing the image of the object on a flat surface, is the
basic idea of texturing. However, with texturing, the geometry can be very simple.

Texturing, also called texture mapping, is a way to add the visual richness of a surface without adding the
fine geometric details. The visual richness is provided by an image, also called a texture1, which gives
the appearance of surface detail for the visual object. The image is mapped on to the geometry of the
visual object at rendering time. Thus the term texture mapping.

Figure 7-1 shows some of the textures used in example programs for this chapter. As you can see from
this figure, a texture can provide the visual richness of objects of various sizes. The striped texture with
words is used in a variety of examples to demonstrate the flexibility of texturing objects, the words are
there to easily distinguish the edges of the texture image.

Figure 7-1 Some of the Images (outlined) used as Textures in Example Programs.

7.2 Basic Texturing
Texturing of polygons in a Java 3D program is achieved though creating the appropriate appearance
bundle and loading the texture image into it, specifying the location of the texture image on the geometry,
and setting texturing attributes. As you will see, specifying textures can be complex. Fortunately, there
are utility classes to help with the process and the default settings for texturing options are appropriate
for basic texturing applications.

To explain texturing, Section 7.2.1 presents a simple recipe; then Section 7.2.2 develops an example
program based on the recipe, further explaining texturing. The remaining subsections present additional
example programs to further explain details of texture specification. The texturing options not discussed
in the context of an example will be discussed with the API details in Section 7.7.

1 Even though texture images are referred to as 'textures' and they visually represent geometric structures, they are
neither representations of geometry nor do they alter the geometry of a visual object in any way.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-3

7.2.1 Simple Texturing Recipe
Due to the flexibility of texturing in the Java 3D API, the number of texturing related options can be a bit
overwhelming at first. Even so, texturing need not be difficult. To make easy work of texture
specifications, follow the simple recipe of Figure 7-2.

The recipe only outlines the steps directly related to texturing. The reader should realize that the
geometry and appearance are set in a Shape3D object which is added to the scene graph. Previous
chapters of this tutorial, Chapters 1 and 2 in particular, cover the implied steps of the recipe

 1. Prepare texture images
 2a. Load the texture
 2b. Set the texture in Appearance bundle
 3. Specify TextureCoordinates of Geometry
Figure 7-2 Simple Texturing Recipe

As with several of the recipes in the tutorial, some steps of the recipe may be performed out of the order
they are presented. In fact, the steps of this recipe may be performed in any order (provided steps 2a and
2b are done together).

Texturing Step 1: Prepare the texture image
This recipe begins with a non-programming step: "prepare texture images” . Creating and editing texture
images is something that is normally done external to Java 3D programs. In fact, most texture images are
prepared before the program is begun. There are two essential tasks in texture image preparation: 1.
ensuring the images are of acceptable dimensions, and 2. ensuring the images are saved in a file format
which can be read. Of course the image could be edited to achieve the desired color, transparency, and
tiling characteristics.

For rendering efficiency, Java 3D requires the size of the texture image to be a mathematical power of
two (1, 2, 4, 8, 16, …) in each dimension. Failing to meet this restriction will result in a runtime
exception.

If an image is not of acceptable dimensions, it must be modified (scaled or cropped) to meet the
dimension requirements before it is used. Image editing can be done in a wide variety of programs
including the Java Advanced Imaging API2. In Figure 7-1, the two smaller images are 128 by 128, the
tree is 256 by 128, and the earth is 256 by 256.

As far as the file formats are concerned, a texture (image) may be stored in any image file format
provided there is a method to load it. The programs of this chapter load textures using the TextureLoader
utility class (there is more information on texture loaders in the next step, API details are in Section 7.7).
A TextureLoader object loads JPEG, GIF, and other file formats.

One more word about the example programs before moving to the next step. The code fragments and
example programs of this chapter use file names for some image files that are included in the example
programs jar. There is nothing special about these image files other than that they comply with the
power of two dimension restriction. Any image file can be used in the programs provided the images
have dimensions that are a power of two. Feel free to compile and run the example programs with your
own image files. Now, with texture images ready, the programming can begin.

2 The Java Advanced Imaging API (http://java.sun.com/products/java-media/jai) enables Java
programmers to easily create and edit 2D imagery.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-4

Texturing Step 2a: Load the Texture
The next step is to get the prepared image into an image object. This is known as loading the texture.
Textures can be loaded from files or URLs using the same basic process3. Loading a texture can be
accomplished with many lines of code, or with two lines of code that use a TextureLoader utility object.
Either way, the result is to get the image into a ImageComponent2D object. Code Fragment 7-1 shows an
example of two lines that use a TextureLoader. The result of these two lines is to load the image of the
file stripe.gif into a Image2DComponent object which can be used to create the necessary
appearance bundle of step 3.

1. TextureLoader loader = new TextureLoader("stripe.gif", this);
2. ImageComponent2D image = loader.getImage();

Code Fragment 7-1 Using a TextureLoader Object to Load the STRIPE.GIF Image File.

Before moving on to step 3 of the recipe, let's take a closer look at the use of the TextureLoader object.
The second argument of the constructor specifies an object which serves an the image observer. The
TextureLoader class uses the java.awt.image package for loading the images. This package loads
images asynchronously, which is particularly useful when an image is loaded from a URL. To facilitate
managing asynchronous loads of images, AWT components are capable of being image observers, which
is to observe the image load process. An image observer can be queried for the details of the image load.

For the purpose of writing Java 3D programs all that you need to know is that any AWT component can
serve as an image observer. Since Applet is an extension of the AWT component Panel, the Applet
object of a Java 3D program can be the image observer for the TextureLoader object. Further details on
image observers and other AWT topics is beyond the scope of this tutorial. Refer to an AWT reference
for more information.

Texturing Step 2b: Create the Appearance Bundle
To be used as a texture for a visual object, the texture image loaded in Step 2a must be set as the texture
in a Texture object, which is then used in an appearance bundle referenced by the visual object.
Specifically, a Texture2D4 object holds the texture image. The ImageComponent2D image loaded in the
Step 2a is central to the appearance bundle creation of step 2b 5.

Code Fragment 7-2 shows the two lines of code from Step 2a followed by the code to form a simple
texturing appearance bundle. Having loaded the texture (lines 1 and 2), the image is then set in the
Texture2D object (line 4). The Texture2D object is then added to the Appearance object (line 6).

1. TextureLoader loader = new TextureLoader("stripe.jpg", this);
2. ImageComponent2D image = loader.getImage();
3. Texture2D texture = new Texture2D();
4. texture.setImage(0, image);
5. Appearance appear = new Appearance();
6. appear.setTexture(texture);

Code Fragment 7-2 Creating an Appearance with a Texture.

3 Other sources for Textures include Text2D objects and procedurally created images.
4 There is a Texture3D object discussed in Section 7.7.4. The Texture3D object is used when a volume of color, or a
stack of images, is the texture.
5 The discussion of the image observer is a major reason why loading a texture (step 2a) is identified as a step
separate from the creation of the appearance bundle (step 2b).

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-5

The appearance bundle created in Code Fragment 7-2 could have other node components, most notably
of the possibilities is the TextureAttributes node component. For the simple example, no
TextureAttributes object is used. Section 7.4 discusses TextureAttributes.

Texturing Step 3: Specify TextureCoordinates
In addition to loading the texture into an appearance bundle, the programmer also specifies the placement
of the texture on the geometry through the specification of the texture coordinates. Texture coordinate
specifications are made per geometry vertex. Each texture coordinate specifies a point of the texture to
be applied to the vertex. With the specification of some points of the image to be applied to vertices of
the geometry, the image will then be rotated, stretched, squashed, and/or duplicated to make it fit the
specification6.

TextureCoordinates are specified in the s (horizontal) and t (vertical) dimensions of the texture image
space in the range of 0.0 to 1.0, as shown in Figure 7-3.

0 1.0 s

t
1.0

0

Figure 7-3 Texture Mapping Coordinates

The reference block below shows just some of the many GeometryArray methods available for setting
texture coordinates. This reference block also lists a deprecated setTextureCoordinate() method, more is
said about this on page 7-7 in the section called "A word about API changes". Refer to the Java 3D API
Specification for additional setTextureCoordinate methods. Additional information on the
GeometryArray class is available in Chapter 2 of the tutorial.

6 Specifically, the texture coordinates are linearly interpolated from the vertices to map the texture to the geometry.
See Section 7.2.3 for more details.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-6

GeometryArray setTextureCoordinate Methods (partial list)
Texture coordinates are specified per vertex in the geometry via one of several setTextureCoordinate methods which
are methods of the GeometryArray class. Beginning with Java 3D API version 1.2 the methods for managing texture
coordinates changed. More is said about this on page 7-7 in "A word about API changes".

This reference block lists only two of the new methods of which there are nine. See The Java 3D API Specification
for additional information on setting texture coordinates.

void setTextureCoordinate(int texCoordSet, int index, <new in 1.2>
TexCoord* texCoord)

Sets the texture coordinate associated with the vertex at the specified index in the specified texture coordinate set for
this object. There are numerous similar methods.

texCoordSet - texture coordinate set in this geometry array
index - destination vertex index in this geometry array
texCoord – any one of the TexCoord* class objects (such as TexCoord2f or TexCoord3f) containing

the new texture coordinate

void setTexCoordRefFloat(int texCoordSet, float[] texCoords) <new in 1.2>
Sets the float texture coordinate array reference for the specified texture coordinate set to the specified array.

texCoordSet - texture coordinate set in this geometry array
texCoords - an array of 2*n or 3*n values to which a reference will be set.

void setTextureCoordinate(int index, Point2f texCoord) <deprecated>
Sets the texture coordinate associated with the vertex at the specified index for this object.

Code Fragment 7-3 creates a single plane using a QuadArray geometry object. Texture coordinates are
assigned to each vertex. In Code Fragment 7-3, lines three through eleven establish the four corners of a
quad in 3-space. Lines 13 through 21 establish the texture's location on the geometry. This particular
code fragment creates a plane of 2 meters on a side and places the texture image in the normal (upright,
not reversed) orientation across the face of the plane.

1. QuadArray plane = new QuadArray(4, GeometryArray.COORDINATES
2. | GeometryArray.TEXTURE_COORDINATE_2);
3. Point3f p = new Point3f();
4. p.set(-1.0f, 1.0f, 0.0f);
5. plane.setCoordinate(0, p);
6. p.set(-1.0f, -1.0f, 0.0f);
7. plane.setCoordinate(1, p);
8. p.set(1.0f, -1.0f, 0.0f);
9. plane.setCoordinate(2, p);
10. p.set(1.0f, 1.0f, 0.0f);
11. plane.setCoordinate(3, p);
12.
13. TexCoord2f q = new TexCoord2f();
14. q.set(0.0f, 1.0f);
15. plane.setTextureCoordinate(0, 0, q);
16. q.set(0.0f, 0.0f);
17. plane.setTextureCoordinate(0, 1, q);
18. q.set(1.0f, 0.0f);
19. plane.setTextureCoordinate(0, 2, q);
20. q.set(1.0f, 1.0f);
21. plane.setTextureCoordinate(0, 3, q);

Code Fragment 7-3 Applying Texture Coordinates to a Quad.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-7

Figure 7-4 shows the relationship between the vertex coordinates and the texture coordinates for the
example quad created in Code Fragment 7-3. The left image of Figure 7-5 shows the application of the
stripe.gif texture to the example geometry.

v0 = (-1.0, 1.0, 0.0)
tc (0.0, 1.0)

v1 = (-1.0, -1.0, 0.0)
tc (0.0, 0.0)

v3 = (1.0, 1.0, 0.0)
tc (1.0, 1.0)

v2 = (1.0, -1.0, 0.0)
tc (1.0, 0.0)

Figure 7-4 The Orientation of Texture Coordinates in Texture Image Space.

Having now completed the three texturing steps, the textured object can be added to a scene graph. The
following section presents a series of example programs demonstrating some options in texturing.

A word about API changes …. <new in 1.2>

… and about Multitexture
The previous reference block lists has the only deprecated method listed in the tutorial. You should be
aware that deprecated API features (e.g., constructors, methods, classes, …) should be avoided.
However, the setTextureCoordinate(int index, Point2f texCoord) method of
GeometryArray is listed here for two reasons.

The first reason is to point out one of the most heavily revised classes in v1.2 of the Java 3D API. All of
the setTextureCoordinate() methods of class GeometryArray have changed. In previous versions of the
API, the setTextureCoordinate() methods used Point* classes instead of TexCoord* classes. The switch
to TexCoord classes is made in v1.2 and all setTextureCoordinate() methods now use TexCoord*
parameters, as was intended.

The second reason for showing the deprecated method next to the new methods is to introduce
multitexturing by way of explaining the new parameter in the setTextureCoordinate methods. You may
have noticed the additional parameter in the new setTextureCoordinate() methods. The first parameter of
the setTextureCoordinate() method selects the texture coordinate set to be used. Which only makes sense
if a GeometryArray object can have multiple sets of texture coordinates. This is exactly the case; a
GeometryArray object can have multiple sets of texture coordinates.

Java 3D API v1.1 introduces multitextures. Multitexture is a feature allowing one visual object to have
multiple textures applied. If multiple textures are applied to a single visual object then the visual object
may need multiple texture coordinate sets so that each texture may have its own coordinate set. Hence,
the need for multiple texture coordinate sets.

Many applications may benefit from multitexture. For example, a texture may give a brick appearance to
an object. However, the brick objects may appear fake due to the regular nature of the same texture
image applied repeatedly to a large object. A second texture, one of a weathering or dirty pattern may be
applied over the brick to give a more natural appearance to the visual object. Another application
involving multitexture is to texture a shadow over an already textured visual object.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-8

Since there are many basic texture details left to explain, the topic of multitexture is put off until Section
7.8. The reason for introducing it now is to explain purpose of the texCoordSet parameter of the
setTextureCoordinate() methods. But, also, knowing multiple textures can be applied to one visual
object may inspire you to think more, and experiment more with textures.

7.2.2 Simple Texture Example Programs
Following the recipe of Figure 7-2, a simple texturing example program has been developed. A complete
example is found in SimpleTextureApp.java of the examples/texture directory in the
examples jar available with this tutorial. Figure 7-5 shows the scene rendered by SimpleTextureApp on
the left. This program appears as little more than an image display program.

Figure 7-5 Scenes Rendered by the SimpleTextureApp (left) and SimpleTextureSpinApp
(right) programs.

Using a RotationInterpolator object7 another example program, SimpleTextureSpinApp, was
created. In this program the same textured plane spins to demonstrate the 3D nature of the program.
Figure 7-5 shows a rendering from this program on the right. One thing to notice when viewing the
program, the back side of the plane is blank.

The NewTextureLoader Class
Java 3D programs using textures can have a large number of lines just for loading textures and creating
the appearance bundles. Some programming and, more importantly, runtime memory can be conserved
by sharing appearance bundles when appropriate. However, this does not reduce the amount of
programming a great deal. Further reductions in programming can be achieved by creating a class to
create the texture appearance bundles. The challenge in creating such a class lies in the image observer
requirement for the TextureLoader object.

The Canvas3D object or an Applet can server as the image observer, but having a reference to some
component everywhere in the program can be bothersome. To address this inconvenience, I have

7 The interpolator code used is similar to that of the HelloJava3Dd example from Chapter 1. Interpolators are
explained in Chapter 5 of the tutorial.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-9

extended the TextureLoader class eliminating the need for an image observer component. Instead a
single method is used to specify an image observer for all future uses of the texture loader.

The constructors for NewTextureLoader are the same as those for TextureLoader except none require a
image observer component. The methods for NewTextureLoader are those of TextureLoader with the
additional method for setting an image observer. See Section 0 for API information for both classes.

Another example program, TexturedPlaneApp, loads three textures and displays them on planes as
shown in Figure 7-6. The significance of this program is that the textures are loaded using the
TexturedPlane class defined external to the rest of the program which is more easily done with the
NewTextureLoader class. This TexturedPlane class is not flexible enough to be used in very many
applications, but serves as a demonstration for similar classes.

Figure 7-6 Three Textured Planes as Rendered By TexturedPlaneApp.java

Code Fragment 7-4 is an excerpt from TexturedPlaneApp and is nearly all the code required to
create the three textured planes of that application. The image observer object is provided to the
NewTextureLoader object of the TexturedPlane.

1. scene.addChild(tg0);
2. tg0.addChild(tg1);
3. tg1.addChild(new TexturedPlane("stripe.gif"));
4.
5. tg0.addChild(tg2);
6. tg2.addChild(new TexturedPlane("brick.gif"));
7.
8. tg0.addChild(tg3);
9. tg3.addChild(new TexturedPlane("earth.jpg"));

Code Fragment 7-4 Adding Three New TexturedPlane Objects to the Scene Graph.

7.2.3 More about Texture Coordinates
As mentioned in "Texturing Step 3: Specify TextureCoordinates" (page 7-5), the texture image is made
to fit the geometry based on the specification of the texture coordinates. The actual process is to map the
texels of the texture to the pixels of the geometry as it is rendered. Each pixel of a texture is called a
texel, or a 'texture element'. This is the process of texture mapping.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-10

Texture mapping begins with the specification of texture coordinates for the vertices of the geometry. As
each pixel of textured triangle is rendered, the texture coordinates for the pixel is calculated from the
vertices of the triangle. Trilinear interpolation of the vertices' texture coordinates determine the texture
coordinates for the pixel and therefore, the texel of the texture image used in the final color of the pixel.

Figure 7-7 illustrates the process of trilinear interpolation for an example pixel. Rendering is done in
scanline order. The pixel, P, to texture map is roughly in the center of the current scanline in the triangle
on the left of the illustration. Texture coordinates have been assigned to each of the vertices of the
triangle. They are labeled TC1, TC2, and TC3. These texture coordinates are the starting point for the
trilinear interpolation (each of the linear interpolations are shown as two-headed arrows in the figure).
The first two linear interpolations determine the texture coordinates along the sides of the triangle at the
scanline (labeled points A and B in the figure). The third interpolation is done between these two points.
The resulting texture coordinates for P are (0.75, 0.6). On the right of the figure is the texture. Using the
calculated texture coordinates for P the texel is selected.

0 1.0 s

t
1.0

0

TC1: (1.0, 1.0)

TC3: (1.0, 0.0)

(TC2: (0.0, 1.0)

A: (0.5, 1.0)
B: (1.0, 0.2)

P: (0.75, 0.6)

(1.0, 1.0)
(0.0, 1.0)

(1.0, 0.0)

scanline

Figure 7-7 Picture of Texture Mapping

Texel selection is not fully explained in the above example. The Specification of Filtering section (page
7-13) gives more details on texel selection. Another detail not yet explained is the interaction between
the texel color, other sources of color, and the final pixel color. The default mode is 'replace' in which
the texel color is used as the color of the pixel, but there are other modes as explained in Section 7.4.1.
Before moving on to other topics, further discussion of texture coordinates and mapping is in order.

To this point in the chapter all of the textures have been used in their ordinary orientation. Figure 7-8
shows planes with a few of the texture orientations possible just by setting the texture coordinates of the
vertices. The TextureCoordApp example program produces this image.

Figure 7-8 Some of the Possible Orientations for a Texture on a Plane.

You should note that in the TextureCoordinatesApp example program the stripe.gif texture is loaded only
once. Only one texture appearance bundle is created which is shared by all four textured planes. This is

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-11

possible because there is nothing in the texture bundle that is unique for any of the planes. Loading the
texture only once saves time and memory.

Of course, mistakes can be made in specifying the texture coordinates. When this happens, the Java 3D
rendering system does what is asked of it. When the texture coordinates are not specified for regularly
spaced mapping, then the triangulation of the geometry becomes obvious as the 'seams' of the texture will
occur along the edges of triangles.

Figure 7-9 shows the image rendered for textured planes where the texture coordinates are not specified
to make a uniform presentation of the texture. In the program that generates this image,
TextureRequestApp, there is only one texture bundle shared by the three visual objects. The
variations in the appearance of the planes is due only to the specification of the texture coordinates. This
is a rendering of the phrase "In texturing, you get what you ask for."

Figure 7-9 In Texturing, You Get What You Ask For.

This program shows some of the possible renderings for a plane using the same texture. The texture
assignments made in this program are examples of possible mistakes while all are legitimate applications.
The left-most image is an application of only a single row of texels – the same texture coordinates are
assigned to pairs of vertices. The right-most image is the application of a single texel – all four texture
coordinates are the same. The middle two images demonstrate the assignment of texture coordinates in
non-uniform ways. The change of the texture along the diagonal is due to the triangulation of the
polygon.

Code Fragment 7-5 shows the texture coordinate assignments made in TextureRequestApp. These
assignments used with the stripe.gif texture result in the images of Figure 7-9.

1. // texture coordinate assignments fof the first plane
2. texturedQuad.setTextureCoordinate(0, 0, new TexCoord2f(1.0f, 0.0f));
3. texturedQuad.setTextureCoordinate(0, 1, new TexCoord2f(1.0f, 0.0f));
4. texturedQuad.setTextureCoordinate(0, 2, new TexCoord2f(0.0f, 0.0f));
5. texturedQuad.setTextureCoordinate(0, 3, new TexCoord2f(0.0f, 0.0f));

6. // texture coordinate assignments for the second plane
7. texturedQuad.setTextureCoordinate(0, 0, new TexCoord2f(0.0f, 1.0f));
8. texturedQuad.setTextureCoordinate(0, 1, new TexCoord2f(1.0f, 0.5f));
9. texturedQuad.setTextureCoordinate(0, 2, new TexCoord2f(0.5f, 0.5f));
10. texturedQuad.setTextureCoordinate(0, 3, new TexCoord2f(0.0f, 1.0f));

11. // texture coordinate assignments for the third plane
12. texturedQuad.setTextureCoordinate(0, 0, new TexCoord2f(1.0f, 0.0f));
13. texturedQuad.setTextureCoordinate(0, 1, new TexCoord2f(1.0f, 1.0f));
14. texturedQuad.setTextureCoordinate(0, 2, new TexCoord2f(0.0f, 0.0f));
15. texturedQuad.setTextureCoordinate(0, 3, new TexCoord2f(1.0f, 1.0f));

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-12

16. // texture coordinate assignments for the forth plane
17. texturedQuad.setTextureCoordinate(0, 0, new TexCoord2f(0.0f, 0.0f));
18. texturedQuad.setTextureCoordinate(0, 1, new TexCoord2f(0.0f, 0.0f));
19. texturedQuad.setTextureCoordinate(0, 2, new TexCoord2f(0.0f, 0.0f));
20. texturedQuad.setTextureCoordinate(0, 3, new TexCoord2f(0.0f, 0.0f));

Code Fragment 7-5 Texture Coordinate Assignments for Planes in TextureRequestApp.

The complete source for the TextureRequestApp and TextureCoordApp example programs is
available in the examples jar available with the tutorial.

7.2.4 A Preview of Some Texturing Choices
There is much more to texturing than just specifying the texture coordinates for the vertices of the
geometry. To this point, the discussion of texturing has not included any of the options available in
texture applications. For example, the Texture2D object can be configured for different boundary modes
and mapping filters. Section 7.2.5 presents these options. But there is even more than this.

Additional configuration of a texture is done through a TextureAttributes node component. Figure 7-10
shows a visual object with an appearance bundle with both Texture and TextureAttributes components.
Section 7.4 presents the details of the TextureAttributes components.

Appearance

S

Geometry

Texture TextureAttributes

Figure 7-10 An Appearance Bundle with Texture and TextureAttributes Components.

Other options in texturing are beyond the settings in Texture and TextureAttributes. For example, a
texture can be three dimensional. Section 7.7 presents the API for the Texture3D class, which, like
Texture2D, is an extension of the Texture class. Section 7.6 presents Multiple level textures, commonly
called MIPmaps, and their applications. Section 7.5 presents a utility for automatic texture coordinate
generation.

Since many of these options are intertwined in the API, the API details appear at the end of the chapter
after all of the various options have been discussed.

7.2.5 Texture Options
Texture2D, the class used in the previous examples, is an extension of Texture. Some of the basic
choices for texturing are implemented in the Texture class. Since Texture is an abstract class, your
settings will be made through either a Texture2D or Texture3D object. The settings are Boundary Mode,
Filters, and Texture Format.

Boundary Mode: Wrap or Clamp
In all of the previous programs, the textures have been mapped in such a way that one copy of the image
has been used to cover the plane. The issue of what to do when a texture coordinate is beyond the 0 to 1
range of the texture space was not addressed.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-13

The boundary mode setting determines what mapping takes place when the texture coordinates go
beyond the 0 to 1 range of the image space. The choices are to wrap the image, or to clamp it.
Wrapping, which means to repeat the image as needed, is the default. Clamping the image uses the color
from the edge of the image anywhere outside of the 0 to 1 range. These settings are made independently
in the s and t dimensions.

In the BoundaryModeApp example program the texture is mapped onto approximately the middle
ninth of each of the planes. Figure 7-11 shows the scene as rendered by this program. The variations in
the images are due only to the setting of the boundary modes for the planes. From left to right the
settings are (s then t) WRAP and WRAP, CLAMP and WRAP, WRAP and CLAMP, and CLAMP and
CLAMP. Consult the source code of this example for specific details of this program. Section 7.7.2
presents the API for this topic in more detail.

Figure 7-11 Comparing the Combinations of Boundary Mode Settings for a Textured Plane.

Note that unlike the previous applications which share the same texture object among four visual objects,
the texture is loaded four times in this application. This is necessary since each of the texture objects has
different combinations of Boundary Mode settings.

Specification of Filtering
In the computation of texture coordinates for each pixel, rarely does a pixel map directly to just one texel.
Usually a pixel is either the size of multiple texels or smaller than one texel. In the former case a
magnification filter is used to map the multiple texels to one pixel. In the later case a minification filter
is used to map the texel or texels to the pixel. There are choices for how to handle each of these cases.

The magnification filter specifies what to do when a pixel is smaller than a texel. In this case the texture
will be magnified as it is applied to the geometry. Each texel will appear as several pixels and it is
possible for the resulting image to exhibit "texelization” where the individual texels would be seen in the
rendering. The choices for magnification filter are to do point sampling, which is to select the nearest
texel and use its color, or to interpolate among neighboring texels. The point sampling, or nearest
neighbor sampling, filter usually has the least computational cost; while the linear interpolation sampling
typically costs more (in computation and therefore rendering time) but reduces the appearance of any
texelization8.

The minification filter specifies what to do when a pixel is larger than a texel. In this case the texels
must be "minified" (opposite of magnified) to fit the pixel. The problem lies in that a pixel can only have
one color value and yet several texels could supply the color. The choices for the minification filter are to
do point sampling, which is to select the nearest texel and use its color, or to interpolate among
neighboring texels.

8 Performance differences will vary significantly among different platforms.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-14

It is not always clear which filter will be used. Consider a texture stretched in one direction but squashed
in another. Depending on which dimension is considered, a different filter would be picked. There is
nothing the programmer can do to determine which will be used. However, the runtime system usually
picks the filter that results in the better image.

The selection of a filter has other implications with respect to the use of the boundary color (next
section). Also, the minification filter choices are more complex when a multiple level texture is used.
Multi level texturing is discussed in Section 7.6. Section 7.7.1 gives the API details for filter settings.

Boundary Color
The boundary mode behavior is further configurable by a boundary color. When the boundary mode is
CLAMP and boundary color is specified, the boundary color is used when texture coordinates are outside
of the 0 to 1 range. Only one boundary color can be specified so that one color is used in each dimension
for which the boundary mode is set to clamp. The example program BoundaryColorApp
demonstrates this feature.

In Figure 7-12 boundary colors are set for all four planes. The left most plane does not use its boundary
color as the boundary modes are both WRAP. For the next plane the black boundary color is used in the
vertical dimension only due to the boundary modes. You can see the blend between the blue and black
on the left; on the right side of the image the black boundary color blends with the white edge of the
texture. The boundary colors for the remaining two planes are green and red. Both boundary modes are
CLAMP for the rightmost plane in the image.

Figure 7-12 Image Produced by BoundaryColorApp.

Note that the Boundary Color is not used if the filter is BASE_LEVEL_POINT. For the Boundary Color
to be used, the filter needs to be at least BASE_LEVEL_LINEAR. The corollary is that anytime the
filter is not BASE_LEVEL_POINT the BoundaryColor will be used.

Also note that the same texture is loaded four times in this application. One texture object can not be
shared among the four planes in this application since each texture object is configured with a different
combination of Boundary Mode settings.

Texture Format
The last setting of the Texture class is that of the texture format. The texture format is both a statement
of how many values there are per texel and how those values effect pixels. For example, a texture format
setting of INTENSITY states that the single texel value will be used for red, green, blue, and alpha values
of the pixel. A texture format setting of RGB states that the three texel values will be used for red, green,
and blue values of the pixel while the alpha value of the pixel remains the same.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-15

Table 7-1 How Texture Format Affect Pixels

Texture Format values per texel modify pixel color modify pixel alpha

INTENSITY 1 yes, R=G=B yes, R=G=B=A

LUMINANCE 1 (color only) yes, R=G=B no

ALPHA 1 (alpha only) no yes

LUMINANCE_ALPHA 2 yes, R=G=B yes

RGB 3 yes no

RGBA 4 yes yes

The texture mode, or how the texel values are used to change the pixel value, is a setting of the texture
attribute object.

7.2.6 Texture3D
As the name implies, a Texture3D object holds a three dimensional texture image. You might think of it
as being a volume of color. The Texture3D class is an extension of Texture, so all of the features of the
Texture class as explained in the previous section (Section 7.2.5) applies to Texture3D. The only feature
that Texture3D has that Texture2D does not is a specification for the boundary mode in the third
dimension, or r dimension.

7.3 Some Texturing Applications
Believe it or not, there are many more texturing features to be discussed. However, you can use the
features already discussed in many applications. This section takes a break from discussing the details of
texturing to demonstrate two applications of texturing. One application is to apply a texture to a
geometric primitive (see Chapter 2). Another is to texture the lines of non-filled polygons. A third
application uses the texture created by a Text2D (see Chapter 3) object to another visual object.

7.3.1 Texturing Geometric Primitives
One way to simplify the process of presenting a texture is to use a geometric primitive. A flag can be
used to have texture coordinates automatically assigned when creating geometric primitives. Code
Fragment 7-6 shows the use of a constructor for a Sphere primitive with the coordinate generation.

1. objRoot.addChild(new Sphere(1.0f, Primitive.GENERATE_TEXTURE_COORDS, appear));

Code Fragment 7-6 Creating a Sphere Primitive with Pre-Assigned Texture Coordinates.

The line of Code Fragment 7-6 is used in the PrimitiveTextureApp example program. The
complete source for this application is available in the examples/texture subdirectory of the
example program jar distributed with this tutorial. This program textures the sphere with the
earth.jpg image, also in the examples jar, resulting in the image of Figure 7-13.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-16

Figure 7-13 Texturing the Sphere Geometric Primitive.

7.3.2 Texturing Lines
Polygons are not the only graphic elements that can be textured; lines can be textured too. The
TexturedLinesApp demonstrates using a 1-D texture to texture lines of a visual object. In this
application, the twisted strip visual object created in Chapter 2 is used. The only 'trick' to texturing the
lines is to create the appropriate appearance bundle to display the lines of the geometry and not filled
polygons. Code Fragment 7-7 shows the lines of code to add the PolygonAttributes component to an
appearance bundle to display lines.

1. PolygonAttributes polyAttrib = new PolygonAttributes();
2. polyAttrib.setCullFace(PolygonAttributes.CULL_NONE);
3. polyAttrib.setPolygonMode(PolygonAttributes.POLYGON_LINE);
4. twistAppear.setPolygonAttributes(polyAttrib);

Code Fragment 7-7 Creating an Appearance Bundle to Display the Lines of a Geometry Array.

A one dimensional texture is really a Texture2D object with one dimension (usually t) having size 1. For
the example program, the texture is 16 texels by 1 texel. Two dimensional texture coordinates are
assigned to the visual object. The t-value of every texture coordinate is set to 0.0f. However, any t-value
could be used and the result would be the same. Figure 7-14 shows the twisted strip9 geometry displayed
as textured lines. The complete source code and texture for TexturedLinesApp appears in the
examples/texture subdirectory of the examples jar distributed with the tutorial.

9 The twisted strip geometry used in this example first appears in Chapter 2 of the tutorial.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-17

Figure 7-14 Textured Lines in Java 3D.

7.3.3 Using Text2D Textures
Text2D objects create textures of specified text and apply the texture to a polygon. This texture can be
easily accessed from the Text2D and applied to another visual object. Figure 7-15 shows the image
produced by Text2DTextureApp, a program in the examples jar, which applies the texture created by
the Text2D object shown in the background to geometry of another visual object as seen in the
foreground.

Figure 7-15 The Texture of a Text2D Object Applied to Another Visual Object.

7.4 Texture Attributes
Section 7.2 presented some of the options available in texturing. The TextureAttributes node component
allows further customization of the texturing. Texture attribute settings include the texture mode, blend
color, perspective correction mode, and a texture map transform. The default values for these settings are
REPLACE, black, FASTEST, and NONE, respectively. In addition, the setEnable method allows
enabling and disabling of texture mapping. Each of the settings are explained in this section.

One benefit of having texturing features controlled by a different node component is the ability to share a
texture among visual objects but still be able to customize it for each visual object. Figure 7-10 shows
two visual objects sharing a single texture object. Each of the visual objects customize the texture with
the TextureAttributes component in its appearance bundle.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-18

Appearance

S

Geometry

Texture TextureAttributes

Appearance

S

Geometry

TextureAttributes

Figure 7-16 Two Visual Objects Sharing a Texture Customized by TextureAttributes Components.

TextureAttributes objects are added to the scene graph as members of an appearance bundle. The
Appearance method is setTextureAttributes, as shown in the following reference block.

Appearance setTextureAttributes method

void setTextureAttributes(TextureAttributes textureAttributes)
Sets the textureAttributes object in an appearance object.

7.4.1 Texture Mode
To appreciate the role of the texture mode you must understand the sequence of operations involved in
determining the color of a pixel. Very simply stated, a pixel's non-texture color is calculated first, then
the texture is applied. The non-texture color is determined from geometry per-vertex color,
ColoringAttributes, or by the combination of material properties and lighting conditions. Just as there
are several ways to determine the non-texture color, there are several possible ways to combine the non-
texture color and the texture color.

The texture mode setting is a major factor in determining how the texel value (color and/or alpha) affects
the non-texture pixel color and alpha values. The actual texturing operation depends on the combination
of the texture format (see Section 7.2.5) and the texture mode. Refer to the Java 3D API Specification
(Appendix E) for more information.

The default texture mode is REPLACE, the other options are BLEND, DECAL, and MODULATE. Each
of the modes is described in the following subsections. Also note Table 7-2 (page 7-19) which
summarizes the texture modes.

Blend
In BLEND mode, the texture color blends with the non-texture color. The texture color determines the
amount of the non-texture color to use. The resulting transparency is the combination of the texture and
material transparency. This particular texture mode has the added flexibility of optionally including a
blend color. Section 7.4.2 for more information on blend color.

Decal
In DECAL mode, the texture color is applied as a decal on top of the non-texture color. The
transparency of the texture determines the amount of material color to use. The transparency of the pixel

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-19

is left unchanged. This is completely analogous to applying a decal to a real world object. The texture
format must be RGB or RGBA for DECAL texture mode.

Modulate
In MODULATE mode the Texture color is combined with the non-texture color. The resulting
transparency is the combination of the texture and material transparency. Since the resulting color
depends on both the non-texture and the texture colors, this mode is useful in applying the same texture
to a variety of visual objects without having them all look the same. This mode is often used in lit
scenes.

Replace
In REPLACE mode the texture provides the color and transparency for the pixel, ignoring all other colors
except the specular color (if lighting is enabled). This is the default texture mode even when there is no
TextureAttributes component in the appearance bundle.

Texture Modes Summary
Table 7-2 gives summary information for each of the texture modes. This table is meant as a general
guide to understanding the variety of texture modes available. The actual color calculations are based on
a combination of texture mode and texture format10.

When lighting is enabled, the ambient, diffuse, and emissive color components are all affected by the
texture operation; specular color is not. The specular color is calculated normally based on material and
lighting conditions, then after the texture operation is applied to the other color components the
(untextured) specular color is added to the other colors yielding the final pixel color.

Table 7-2 Summary of Texture Modes

Texture Mode Pixel Color Derived From Determined By Application Hint

BLEND Texture color, non-texture, and optional
blend color

texture color lit scenes with blending
color

DECAL Texture color and non-texture color alpha of texture detailing a surface

MODULATE Texture color and non-texture color n/a lit scenes

REPLACE texture color only (default texture
mode)

n/a non-lit scenes

7.4.2 Texture Blend Color
The blend color is used in texturing only when the texture mode is BLEND. The resulting pixel color is
a combination of the texel color and the blend color. With the blend color the same texture can be
applied in a variety of shades to different visual objects. The blend color is expressed as an RGBA
value. The default blend color is (0,0,0,0) black with and alpha of 0.

10 The actual texture operation may vary by implementation of Java 3D.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-20

7.4.3 Perspective Correction Mode
Texture mapping takes place in the image space. For this reason the textured planes may appear
incorrect when viewed from an edge. That is, they appear incorrect unless a perspective correction is
made. In Java 3D the perspective correction is always made. The choice is how this perspective
correction is made.

The two options are FASTEST and NICEST. Obviously, the choice is the classic speed versus image
quality tradeoff. For this option, the default setting is NICEST.

7.4.4 Texture Map Transform
Within the Texture Attributes component a Transform3D object can be specified to alter the texture
mapping function. This texture map transform can be used to move a texture on a visual object at run
time. The transform translates, rotates, and scales texture coordinates (s,t,r) before the texels are selected
from the texture image.

A translation in the texture transform would slide the texture across the visual object. A rotation
transformation could be used to reorient the texture on a visual object. A scale transformation can be
used to repeat the texture across a visual object. Of course, since a transform object can contain a
combination of these, the texture can be animated on a visual object by manipulating the texture
transform.

7.4.5 TextureAttributes API
The following reference blocks list the constructors, methods, and capabilities of the Texture Attributes
node component.

TextureAttributes Constructor Summary
extends: NodeComponent

The TextureAttributes object defines attributes that apply to texture mapping. See the following reference block for
a list of texture mode and perspective correction mode constants. Consult the text for more information.

TextureAttributes()
Constructs a TextureAttributes object with default settings:
 texture mode : REPLACE, transform : null, blend color : black (0,0,0,0), perspective correction: NICEST

TextureAttributes(int textureMode, Transform3D transform,
Color4f textureBlendColor, int perspCorrectionMode)

Construct a TextureAttributes with specified values.

TextureAttributes Capabilities Summary

ALLOW_COLOR_TABLE_READ <new in 1.2>
Specifies that this TextureAttributes object allows reading its texture color table component information.

ALLOW_COLOR_TABLE_WRITE <new in 1.2>
Specifies that this TextureAttributes object allows writing its texture color table component information.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-21

TextureAttributes Constants
These constants are used in constructors and methods for setting the texture and perspective correction modes.

Texture Mode Constants
 BLEND Blend the texture blend color with the object color.
 DECAL Apply the texture color to the object as a decal.
 MODULATE Modulate the object color with the texture color.
 REPLACE Replace the object color with the texture color.

Perspective Correction Mode Constants
 FASTEST Use the fastest available method for texture mapping perspective correction.
 NICEST Use the nicest (highest quality) available method for texture mapping perspective correction.

TextureAttributes method summary (partial list)

void setTextureColorTable(int[][] table) <new in 1.2>
Sets the texture color table from the specified table. The individual integer array elements are copied. The array is
indexed first by color component (r, g, b, and a, respectively) and then by color value; table.length defines the
number of color components and table[0].length defines the texture color table size. If the table is non-null, the
number of color components must either be 3, for rgb data, or 4, for rgba data. The size of each array for each color
component must be the same and must be a power of 2. If table is null or if the texture color table size is 0, the
texture color table is disabled. If the texture color table size is greater than the device-dependent maximum texture
color table size for a particular Canvas3D, the texture color table is ignored for that canvas.

When enabled, the texture color table is applied after the texture filtering operation and before texture application.
Each of the r, g, b, and a components are clamped to the range [0,1], multiplied by textureColorTableSize-1, and
rounded to the nearest integer. The resulting value for each component is then used as an index into the respective
table for that component. If the texture color table contains 3 components, alpha is passed through unmodified.

Parameters:
table - the new texture color table

int getNumTextureColorTableComponents() <new in 1.2>
Retrieves the number of color components in the current texture color table. A value of 0 is returned if the texture
color table is null.

Returns: the number of color components in the texture color table, or 0 if the table is null

int getTextureColorTableSize() <new in 1.2>
Retrieves the size of the current texture color table. A value of 0 is returned if the texture color table is null.

Returns: the size of the texture color table, or 0 if the table is null

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-22

TextureAttributes Method Summary
See the following reference block for a list of texture mode and perspective correction mode constants. Consult the
text of this chapter for more information.

void getTextureBlendColor(Color4f textureBlendColor)
Gets the texture blend color for this appearance component object.

void getTextureTransform(Transform3D transform)
Retrieves a copy of the texture transformation object.

void setPerspectiveCorrectionMode(int mode)
Sets perspective correction mode to be used for color and/or texture coordinate interpolation to one of:
 FASTEST Use the fastest available method for texture mapping perspective correction.
 NICEST Use the nicest (highest quality) available method for texture mapping perspective correction.

void setTextureBlendColor(Color4f textureBlendColor)
void setTextureBlendColor(float r, float g, float b, float a)
Sets the texture blend color for this TextureAttributes object.

void setTextureMode(int textureMode)
Sets the texture mode parameter to one of:
 BLEND Blend the texture blend color with the object color.
 DECAL Apply the texture color to the object as a decal.
 MODULATE Modulate the object color with the texture color.
 REPLACE Replace the object color with the texture color.

void setTextureTransform(Transform3D transform)
Sets the texture transform object used to transform texture coordinates.

TextureAttributes Capabilities Summary

ALLOW_BLEND_COLOR_READ | WRITE Allow reading (writing) texture blend color
ALLOW_MODE_READ | WRITE Allow reading (writing) texture and perspective correction modes.
ALLOW_TRANSFORM_READ | WRITE Allow reading (writing) texture transform.

7.5 Automatic Texture Coordinate Generation
As previously discussed, assigning texture coordinates to each vertex of the geometry is a necessary step
in texturing visual objects. This process can be time consuming as well as difficult for large and/or
complex visual objects. Keep in mind that this is a problem for the programmer and once solved, it is not
a recurring problem.

Texture coordinates are often assigned with code specific to a visual object. However, another solution
is to automate the assignment of texture coordinates via some method. This method could be used for
any visual object whether large or small, complex or simple. This approach is exactly what a
TexCoordGeneration (texture coordinate generation) object does. Whether an object is loaded from a
file or created in the program code, a texture coordinate generation object can be used to assign texture
coordinates.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-23

TexCoordGeneration is a Java 3D API core class used to generate texture coordinates. To automatically
generate texture coordinates, the programmer specifies the texture coordinate parameters in a
TexCoordGeneration object and adds that object to the appearance bundle of the visual object. The
texture coordinates are calculated based on the coordinate specification parameters at runtime. The
parameters are explained in the following sections.

7.5.1 Texture Generation Format
This setting simply specifies if the texture coordinates will be generated for a two or three dimensional
texture. The possible settings are TEXTURE_COORDINATE_2 and TEXTURE_COORDINATE_3 which
generates 2D texture coordinates (S and T) and 3D texture coordinates (S, T, and R), respectively.

7.5.2 Texture Generation Mode
There are two basic texture generation approaches: linear projection or sphere mapping. The following
two subsections explain these options.

Linear Projection
With linear projection, the texture coordinates are specified with planes. For texture coordinates of two
dimensions (s,t), two planes are used. The distance from a vertex to one plane is the texture coordinate in
one dimension; distance to the other plane to a vertex is the texture coordinate in the other dimension.
For three dimensional textures, three planes are used.

The three possible plane parameters are named planeS, planeT, and planeR, where the name corresponds
to the dimension for which it is used. Each plane is specified as a 4-tuple (plane equation). The first
three values are the surface normal vector for the plane. The fourth value specifies the distance from the
origin to the plane along a vector parallel to the plane's surface normal vector.

There are two variations on this automatic texture coordinate generation method. The first, called object
linear, produces static texture coordinates. With object linear generated texture coordinates, if the visual
object moves, the texture coordinates do not change. The second option, called eye linear, produces
texture coordinates relative to the eye coordinates resulting in variable texture coordinates for the object.
With eye linear texture coordinates moving objects appear to move through the texture.

Figure 7-17 shows images produced by an example program that uses a TexCoordGeneration object
to assign texture coordinates to a twisted strip. A one dimensional texture is used for this application.
The texture has a single red texel at one end. When the application runs, the twisted strip rotates.

The image on the left of Figure 7-17 shows the texturing with the OBJECT_LINEAR generation mode.
In this case the texture rotates with the object and you can see the red texel rotate with the strip. The
image on the right of Figure 7-17 shows the resulting texture when the EYE_LINEAR generation mode
is used for the twisted strip. In this case, the red texel stays in the center of the view as the object rotates.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-24

Figure 7-17 Comparing Generation Modes of the TexCoordGeneration Object.

TexCoordGenApp is the program that produces these images and is available in the texture
subdirectory of the examples jar distributed with this tutorial. This is one application you should run to
see the difference. The example program is written with the Generation Mode set to EYE_LINEAR.
Line 100 is the place to change to OBJECT_LINEAR generation mode.

Sphere Map
If a shiny object is in the middle of a real room, the shiny object would likely reflect the image of many
of the other objects in the room. The reflections would depend on the shape of the object and orientation
of things in the room. The sphere map coordinate generation mode is designed to assign texture
coordinates to approximate the reflections of other objects onto the visual object as would happen for the
shiny object in the example real world.

When a TexCoordGeneration object is used in sphere map generation mode the texture coordinates are
calculated based on the surface normals and the viewing direction.

The texture used for this effect must be specially prepared. If the virtual environment of the shiny object
exists in the real world, a photograph of the scene taken with a fisheye lens will create a suitable texture
image. If the scene does not exist, then the texture must be created to look like the image is a photograph
taken with a fisheye lens.

7.5.3 How to use a TexCoordGeneration Object
To use a TexCoordGeneration Object, set it as a component of an appearance bundle for the visual object
to be textured. Figure 7-18 shows the diagram of an appearance bundle with an TexCoordGeneration
object along with a Texture and TextureAttributes object.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-25

TexCoord
Generation

Texture

Appearance

S

Geometry

TextureAttributes

Figure 7-18 Appearance Bundle with Texture, TextureAttributes, and TexCoodGeneration.

The following reference block shows the Appearance method for setting a TexCoordGeneration object as
a component of an appearance bundle.

Appearance setTexCoordGeneration method

void setTexCoordGeneration(TexCoordGeneration texCoordGeneration)
Sets the texCoordGeneration object to the specified object.

7.5.4 TexCoordGeneration API
The following reference blocks list the constructors, constants, methods, and the capabilities for
TexCoordGeneration class objects.

TexCoordGeneration Constructor Summary
The TexCoordGeneration object contains all parameters needed for texture coordinate generation. It is included as
part of an Appearance component object.

TexCoordGeneration()
Constructs a TexCoordGeneration object using defaults for all state variables.

TexCoordGeneration(int genMode, int format)
Constructs a TexCoordGeneration object with the specified genMode and format.

TexCoordGeneration(int genMode, int format, Vector4f planeS)

TexCoordGeneration(int genMode, int format, Vector4f planeS, Vector4f planeT)

TexCoordGeneration(int genMode, int format, Vector4f planeS, Vector4f planeT,
 Vector4f planeR)

Constructs a TexCoordGeneration object with the specified genMode, format, and the coordinate plane equation(s).

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-26

TexCoordGeneration Field Summary
The TexCoordGeneration object contains all parameters needed for texture coordinate generation. It is included as
part of an Appearance component object.

Generation Mode Constants
 EYE_LINEAR Generates texture coordinates as a linear function in eye coordinates. (default)
 OBJECT_LINEAR Generates texture coordinates as a linear function in object coordinates.
 SPHERE_MAP Generates texture coordinates using a spherical reflection mapping in eye coordinates.

Format Constants
 TEXTURE_COORDINATE_2 Generates 2D texture coordinates (S and T) (default)
 TEXTURE_COORDINATE_3 Generates 3D texture coordinates (S, T, and R)

TexCoordGeneration Method Summary

void setEnable(boolean state)
Enables or disables texture coordinate generation for this appearance component object.

void setFormat(int format)
Sets the TexCoordGeneration format to the specified value.

void setGenMode(int genMode)
Sets the TexCoordGeneration generation mode to the specified value.

void setPlaneR(Vector4f planeR)
Sets the R coordinate plane equation.

void setPlaneS(Vector4f planeS)
Sets the S coordinate plane equation.

void setPlaneT(Vector4f planeT)
Sets the T coordinate plane equation.

TexCoordGeneration Capabilities Summary
ALLOW_ENABLE_READ | WRITE allows reading/writing its enable flag.
ALLOW_FORMAT_READ allows reading its format information.
ALLOW_MODE_READ allows reading its mode information.
ALLOW_PLANE_READ allows reading its planeS, planeR, and planeT component information.

7.6 Multiple Levels of Texture (Mipmaps)
To understand the reason for multiple levels of texture, consider an application which contains a textured
visual object which moves about in the scene (or the viewer moves). When this visual object is near the
viewer it appears as many pixels in the image. For this case, a texture of good size should be used to
avoid viewing individual texels; this is especially true when point sampling is used for the magnification
filter.

 However, when this visual object is viewed as a distance, the texture will be much too large for the
visual object and the texture will be mininified during the rendering. (Recall that texture mapping takes

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-27

place at render time in the image, or screen, space.) Point sampling for the minification filter will
probably not yield satisfactory results when the visual object appears 1/32 or smaller (in pixel size) than
the texture resolution. The tradeoff is image quality for rendering performance.

If instead of using a large texture map (because the visual object will appear large) a small one is used to
make the visual object look better when it is small, the reverse problem exists. For good quality images
the magnification filter will involve linear interpolation resulting in more computation. Once again, the
tradeoff is for image quality versus rendering performance. The only advantage that using a smaller
texture map has is a reduced memory requirement for storing the texture.

What is needed is a small texture map when the visual object is appears small and a large texture map
when the visual object appears large. The current texturing technique using one texture image, called
base level texturing, can not do this. That is exactly what multiple levels of texture provides.

7.6.1 What is Multi Level Texturing (MIPmap)
Multiple Levels of Texture refers to a texturing technique where a series of texture images together are
used as the texture for visual objects. The series of images is (usually) the same texture at a variety of
resolutions. When a visual object is being rendered with multiple levels of texture, the texture image that
is closest to the screen size of the visual object is used.

The performance of the renderer depends on the minification and magnification filters used (see Sections
7.2.5 and 0). However, with MIPmaps you have more control over the appearance of the visual objects
and can get better looking visual objects with better performance11.

Using multiple levels of texture is like using a DistanceLOD object (see Section 5.4) to apply different
textures to a visual object when it is viewed from different distances. The exceptions are that with the
Mipmap the visual object will always be textured whereas with the DistanceLOD object, the object could
be untextured at some distances. And, for visual objects textured at all distances, the MIPmap is more
efficient and has added filtering possibilities as compared with a DistanceLOD object used for a similar
application.

Multiple levels of texture is commonly referred to as a mipmap. The term "MIPmap" comes from an
acronym of the Latin phrase multum in parvo, which means many things in a small place. The term
MIPMap truly refers to a specific storage technique for storing a series of images for use in multilevel
texturing. The term MIPmap is commonly used to mean multilevel texturing.

With the MIPmap storage technique, the size of a texture image is ¼ the size of the previous (½ the size
in each dimension). This continues until the size of the smallest image is 1 texel by 1 texel. For
example, if the full size texture is 16x4, the remaining textures are 8x2, 4x1, 2x1, and 1x1. Figure 7-19
shows the multiple levels of texture for the stripe.gif texture, each outlined. Each of these texture
images was prepared using image editing software.

11 The quality of appearance versus rendering performance tradeoff depends on the execution environment, choices
of texture filters, the texture image, and the range of distances the visual object is viewed from.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-28

Figure 7-19 Multiple Levels of a Texture (outlined). (Image Sizes: 128x128, 64x64, 32x32, …, 1x1)

Figure 7-20 shows an image of a single plane textured with a multiple level texture where each level of
the texture is a different color. The plane is oriented at an angle to the viewer such that the left side is
much nearer to the viewer than the right side. Due to the perspective projection the left side of the plane
appears larger in image coordinates than the right side.

Due to the orientation and projection of the plane, the pixels represent less of the surface area (in the
virtual object coordinate system) on the left and progressively more visual object surface area proceeding
to the right, resulting in the texture level changes. At the left of the plane in the image, the base level of
the texture is used. The color changes in the image indicate where texture level changes occurred while
rendering.

Having a texture where each level is a different color is not the typical application of multiple level
texturing. This application simply illustrates the operation of a multiple level texture.

Figure 7-20 The Image Generated for a Plane Textured with a Multi Color Mipmap Texture.

Figure 7-20 is generated by MIPmapDemo, an example program available in the examples jar12. The
texture in this program is created from the files named color<number>.gif (e.g., color128.gif,
color64.gif, color32.gif, …) also in the examples jar.

12 The example MIPmapDemo.java example application was inspired by a similar OpenGL example application
in the OpenGL Programming Guide, third edition, by Mason Woo, et al.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-29

7.6.2 Multiple Levels of Texture Examples
As far as programming with the Java 3D API is concerned, creating a multilevel texture is nearly the
same as creating the single level, or base level, texture. Looking back at the simple texturing recipe
(Figure 7-2) the only thing that differs is that multiple texture images are required for the multilevel
texture. There are two ways to create the multiple levels of texture images. One way is to create each
image by hand using the appropriate image editing/creation applications, the other uses a texture loader
feature to create those images from the base image.

The two multiple level texturing techniques take about the same amount of code. The least amount of
overall work is to generate the levels' images from the base image. Code Fragment 7-8 presents the
texture loading code from MIPmapApp.java. This application is an example of generating multiple
levels of texture from a base image. The complete code for this application is available in the tutorial's
examples jar example/texture subdirectory.

1. Appearance appear = new Appearance();
2.
3. NewTextureLoader loader = new NewTextureLoader("stripe.gif",
4. TextureLoader.GENERATE_MIPMAP);
5. ImageComponent2D image = loader.getImage();
6.
7. imageWidth = image.getWidth();
8. imageHeight = image.getHeight();
9.
10. Texture2D texture = new Texture2D(Texture.MULTI_LEVEL_MIPMAP,
11. Texture.RGB, imageWidth, imageHeight);
12. imageLevel = 0;
13. texture.setImage(imageLevel, image);
14.
15. while (imageWidth > 1 || imageHeight > 1){ // loop until size: 1x1
16. imageLevel++; // compute this level
17.
18. if (imageWidth > 1) imageWidth /= 2; // adjust width as necessary
19. if (imageHeight > 1) imageHeight /= 2; // adjust height as necessary
20.
21. image = loader.getScaledImage(imageWidth, imageHeight);
22. texture.setImage(imageLevel, image);
23. }
24.
25. texture.setMagFilter(Texture.BASE_LEVEL_POINT);
26. texture.setMinFilter(Texture.MULTI_LEVEL_POINT);
27.
28. appear.setTexture(texture);

Code Fragment 7-8 Creating Multiple Level Texturing from a Base Level Image Only.

Code Fragment 7-8 begins by following the same steps as are used for any texture application by loading
the base image. One difference is that the TextureLoader is created with the GENERATE_MIPMAP flag
set (lines 3-4). Then the base image is retrieved from the loader in the usual way.

The dimensions of this image are needed not only to create the Texture2D object, but also to calculate
the sizes of the images that follow. For this reason they recorded in two variables (lines 7 and 8). These
variables will be used while generating and loading the remaining images for the texture.

The Texture2D object is created using the MIPmap Mode MULTI_LEVEL_MIPMAP and the dimension
of the base image. (lines 10 and 11). The base level is level 0. Then the level number is recorded and the
base image set as the image for level 0 (lines 12 and 13).

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-30

The loop interates until the size of the image is 1 pixel by 1 pixel (line 15). The level number is
incremented for each iteration (line 16) and the dimension of the image is calculated (lines 18 and 19).
The appropriately scaled image is gotten from the TextureLoader (line 21) and set for the current level in
the Texture2D object (line 22).

When creating a multiple level texture map be sure to set a multiple level filters as is done on lines 25
and 26 of Code Fragment 7-8. (Section 7.7.1 presents more information on filter choices.) The default
filter settings disable multiple level texturing.

Creating the images by hand allows for superior image quality and/or special effects. The generated
images are produced by filtering the base image.

1. Appearance appear = new Appearance();
2.
3. String filename = "stripe.gif"; // filename for level 0
4. NewTextureLoader loader = new NewTextureLoader(filename);
5. ImageComponent2D image = loader.getImage();
6.
7. imageWidth = image.getWidth();
8. imageHeight = image.getHeight();
9.
10. Texture2D texture = new Texture2D(Texture.MULTI_LEVEL_MIPMAP,
11. Texture.RGBA,imageWidth, imageHeight);
12. imageLevel = 0;
13. texture.setImage(imageLevel, image);
14.
15. while (imageWidth > 1 || imageHeight > 1){ // loop until size: 1x1
16. imageLevel++; // compute this level
17.
18. if (imageWidth > 1) imageWidth /= 2; // adjust width as necess.
19. if (imageHeight > 1) imageHeight /= 2;// adjust height as necess.
20. filename = "stripe"+imageWidth+".gif";// file to load
21.
22. loader = new NewTextureLoader(filename);
23. image = loader.getImage();
24.
25. texture.setImage(imageLevel, image);
26. }
27.
28. texture.setMagFilter(Texture.BASE_LEVEL_POINT);
29. texture.setMinFilter(Texture.MULTI_LEVEL_POINT);
30.
31. appear.setTexture(texture);

Code Fragment 7-9 Multiple Levels of Texture Loaded from Individual Image Files.

Section 0 presents the API for the TextureLoader and NewTextureLoader classes.

7.6.3 Multiple Levels of Texture Minification Filters
In addition to the two base level filter options, there are two multiple level filter options for the
minification filter setting. These additional settings are MIPMAP_POINT, and MIPMAP_LINEAR. As
with the other filter settings, the point filter is likely to be faster but yield images of lower quality as
compared to the linear filter.

Remember, when using a multiple level texture, you must select one of the multiple level filters for the
minification filter to utilize the levels other than the base level. These additional filter settings do not
apply to the magnification filter settings since magnification of the texture would only be done at the
base level. Consult section 7.7.1 for further filter information.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-31

7.6.4 Mipmap Mode
The MIPmap Mode of the Texture class is really a choice between multiple levels of texture and a single
level texture, called base level texturing. The two settings are BASE_LEVEL and
MULTI_LEVEL_MIPMAP. Of course, for multiple levels of texture the latter setting is used.

7.7 Texture, Texture2D, and Texture3D API
Many of the preceding sections present some portion of the Texture, Texture2D, or Texture3D classes.
Since these classes are described over many sections, the API for these classes is presented in this
section.

Texture is the base class for Texture2D and Texture3D. The Texture class provides the majority of the
interface for the Texture2D and Texture3D classes including multi level texturing. Table 7-3 presents a
summary of the features of these three classes. For each texturing option the table lists the class which
provides the interface, the set-Method for changing the setting, the default value, and sections of the
tutorial which discuss the feature.

Table 7-3 Directory of Texture Features

Feature/Setting Class set-Methods Default Sections

Texture Image Texture setImage() null 7.2

Image Format Texture (see constructors) none 7.2

Mipmap Mode Texture setMipMapMode() BASE_LEVEL 7.6

Minification Filter Texture setMinFilter() BASE_LEVEL_POINT 7.2.5, 7.6.3,
7.7.1

Magnification
Filter

Texture setMagFilter() BASE_LEVEL_POINT 7.2.5, 7.6.3,
7.7.1

Boundary Modes Texture
Texture
Texture3D

setBoundaryModeS()
setBoundaryModeT()
setBoundaryModeR()

WRAP
WRAP
WRAP

7.2.5

BoundaryColor Texture setBoundaryColor() black 7.2.5

7.7.1 Minification and Magnification Filters
Sections 7.2.5 and 7.6.3 both discuss texture filters. Since neither of these sections discuss texture filters
in detail, this section presents texture filters in a little more generality.

As previously discussed there are separate filter settings for minification and magnification. The
magnification choices are: BASE_LEVEL_POINT, BASE_LEVEL_LINEAR, FASTEST, or NICEST.
The filter will be BASE_LEVEL_POINT when FASTEST is specified and BASE_LEVEL_LINEAR
when NICEST is specified.

The minification choices are: BASE_LEVEL_POINT, BASE_LEVEL_LINEAR,
MULTI_LEVEL_POINT, MULTI_LEVEL_LINEAR, FASTEST, or NICEST. The base level filter
choices can be used for single or multiple level textures. The actual filters used when FASTEST or
NICEST is specified is implementation dependant and may not choose a multi level filter for a multiple
level texture.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-32

7.7.2 Texture API
Now that all texture features have been presented, the Texture API is presented. The Texture class is
abstract so there is no Texture class constructor reference block. The next reference block lists the fields
of the Texture class which are used as settings. The method and capabilities reference blocks follow.

Texture Field Summary
The Texture object is a component object of an Appearance object that defines the texture properties used when
texture mapping is enabled. Texture object is an abstract class and all texture objects must be created as either a
Texture2D object or a Texture3D object.

Format Constants
 ALPHA Specifies Texture contains only Alpha values.
 INTENSITY Specifies Texture contains only Intensity values.
 LUMINANCE Specifies Texture contains only luminance values.
 LUMINANCE_ALPHA Specifies Texture contains Luminance and Alpha values.
 RGB Specifies Texture contains Red, Green and Blue color values.
 RGBA Specifies Texture contains Red, Green, Blue color values and Alpha value.

MIP Map Mode Constants
 BASE_LEVEL Indicates that Texture object only has one level.
 MULTI_LEVEL_MIPMAP Texture object has multiple images- one for each mipmap level

Filter Constants
 BASE_LEVEL_LINEAR Performs bilinear interpolation on the four nearest texels in level 0 texture map.
 BASE_LEVEL_POINT Selects the nearest texel in level 0 texture map.
 MULTI_LEVEL_LINEAR Performs tri-linear interpolation between four texels each from two nearest mipmap

levels.
 MULTI_LEVEL_POINT Selects the nearest texel in the nearest mipmap.

Boundary Mode Constants
 CLAMP Clamps texture coordinates to be in the range [0, 1].
 WRAP Repeats the texture by wrapping texture coordinates that are outside the range [0,1].

Perspective Correction Mode Constants
 FASTEST Uses the fastest available method for processing geometry.
 NICEST Uses the nicest available method for processing geometry.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-33

Texture Method Summary
The Texture object is a component object of an Appearance object that defines the texture properties used when
texture mapping is enabled. Texture object is an abstract class and all texture objects must be created as either a
Texture2D object or a Texture3D object.

ImageComponent getImage(int level)
Gets a specified mipmap level.

void setBoundaryColor(Color4f boundaryColor)
void setBoundaryColor(float r, float g, float b, float a)
Sets the texture boundary color for this texture object.

void setBoundaryModeS(int boundaryModeS)
Sets the boundary mode for the S coordinate in this texture object.

void setBoundaryModeT(int boundaryModeT)
Sets the boundary mode for the T coordinate in this texture object.

void setEnable(boolean state)
Enables or disables texture mapping for this appearance component object.

void setImage(int level, ImageComponent image)
Sets a specified mipmap level.

void setMagFilter(int magFilter)
Sets the magnification filter function.

void setMinFilter(int minFilter)
Sets the minification filter function.

void setMipMapMode(int mipmapMode)
Sets mipmap mode for texture mapping for this texture object.

void setImages(ImageComponent[] images) <new in 1.2>
Sets the array of images for all mipmap levels.

Parameters:
images - array of ImageComponent objects containing the texture images for all mipmap levels

int getFormat() <new in 1.2>
Retrieves the format of this Texture object.

public int getWidth() <new in 1.2>
Retrieves the width of this Texture object.

public int getHeight() <new in 1.2>
Retrieves the height of this Texture object.

int numMipMapLevels() <new in 1.2>
Retrieves the number of mipmap levels needed for this Texture object.

Returns: log2(max(width,height))+1 if mipMapMode is MULTI_LEVEL_MIPMAP; otherwise it returns 1.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-34

Texture Capabilities Summary
ALLOW_BOUNDARY_COLOR_READ allows reading its boundary color information.
ALLOW_BOUNDARY_MODE_READ allows reading its boundary mode information.
ALLOW_ENABLE_READ | WRITE allows reading its enable flag.
ALLOW_FILTER_READ allows reading its filter information.
ALLOW_IMAGE_READ allows reading its image component information.
ALLOW_MIPMAP_MODE_READ allows reading its mipmap mode information.
ALLOW_IMAGE_WRITE allows writing its image component information <new in 1.2>
ALLOW_FORMAT_READ allows reading its format information <new in 1.2>
ALLOW_SIZE_READ allows reading its size information (e.g., width, height) <new in 1.2>

7.7.3 Texture2D API
Texture2D is a concrete extension of the abstract Texture class. Texture2D provides only one
constructor of interest. All of the methods used with Texture2D objects are methods of Texture. The
following reference block presents the Texture2D constructor.

Texture2D Constructor Summary
Texture2D is a subclass of Texture class. It extends Texture class by adding a constructor.

Texture2D(int mipmapMode, int format, int width, int height)
Constructs an empty Texture2D object with specified mipmapMode, format, width, and height. Image at level 0 must
be set by the application using 'setImage' method. If mipmapMode is set to MULTI_LEVEL_MIPMAP, images for
ALL levels must be set.

Parameters:
mipmapMode - type of mipmap for this Texture: One of BASE_LEVEL, MULTI_LEVEL_MIPMAP.
format - data format of Textures saved in this object. One of INTENSITY, LUMINANCE, ALPHA,

LUMINANCE_ALPHA, RGB, RGBA.
width - width of image at level 0. Must be power of 2.
height - height of image at level 0. Must be power of 2.

7.7.4 Texture3D API
Texture3D is a concrete extension of the abstract Texture class. Texture3D provides only one
constructor and a method to set the boundary mode in the r dimension. All other methods used with
Texture3D objects are methods of Texture. The following two reference blocks present the Texture3D
constructor and the Texture 3D methods.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-35

Texture3D Constructor Summary
Texture3D is a subclass of Texture class. It extends Texture class by adding a third coordinate, a constructor, and a
mutator method for setting a 3D texture image.

Texture3D(int mipmapMode, int format, int width, int height, int depth)
Constructs an empty Texture3D object with specified mipmapMode, format, width, height, and depth. Image at level
0 must be set by the application using 'setImage' method. If mipmapMode is set to MULTI_LEVEL_MIPMAP,
images for ALL levels must be set.
Parameters:

mipmapMode - type of mipmap for this Texture: One of BASE_LEVEL, MULTI_LEVEL_MIPMAP.
format - data format of Textures saved in this object. One of INTENSITY, LUMINANCE, ALPHA,

LUMINANCE_ALPHA, RGB, RGBA.
width - width of image at level 0. Must be power of 2.
height - height of image at level 0. Must be power of 2.
depth - depth of image at level 0. Must be power of 2.

Texture3D Method Summary

void setBoundaryModeR(int boundaryModeR)
Sets the boundary mode for the R coordinate in this texture object.

boundaryModeR - the boundary mode for the R coordinate, one of: CLAMP or WRAP.

int getDepth() <new in 1.2>
Retrieves the depth of this Texture3D object.

7.8 Multitexture <new in 1.2>

Before tackling mutltitexuring, you should be familiar with how texturing is accomplished in Java 3D. If
you skipped the previous 7 sections of this chapter, here is an outline of what you missed.

The previous sections explain how to combine Texture, TextureAttributes, and TextureCoordGeneration
objects to texture visual objects. Not all texture applications use objects of all classes, but some do.
Table 7-1 lists these texturing classes.

Table 7-4 Review of Fundamental Texture Related Classes

Class Feature/Setting Sections
Texture Texture Image, Image Format, MIPmap Mode, Minification

and Magnification Filters, and Boundary Modes
7.2, 7.6, 7.7

TextureAttributes TextureMode, Texture Transform, Blend Color, Perspective
Correction

7.4

TextureCoordGeneration automatic generation of texture coordinates (optional) 7.5

Also recall that Texture, TextureAttributes, and TextureCoordGeneration objects are associated with a
visual object through an Appearance object. Figure 7-21 illustrates an appearance bundle with a
complete complement of texturing objects.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-36

TexCoord
Generation

Texture

Appearance

S

Geometry

TextureAttributes

Figure 7-21 A Visual Object with Texture, TextureAttributes, and TexCoodGeneration objects.

With the review now behind us (feel free to refer back to previous sections as necessary) lets move on to
multitexturing

7.8.1 Multitexture, Texture Units, and TextureUnitStates <new in 1.2>

Multitexturing allows the programmer to apply multiple textures to a single visual object. As we have
just seen, texturing may be specified by the combination of Texture, TextureAttributes, and
TexCoordGeneration objects. In addition, the GeometryArray has texture coordinates specified on a per
vertex basis. To achieve multitexturing, multiple Texture, TextureAttributes, and TexCoordGeneration
objects are needed. This is where the texture unit and the TextureUnitState class comes in.

With the exception of the texture coordinates, a texture unit completely defines texturing of a visual
object. The texture coordinates are defined with the object's geometry. That is, a texture unit references
Texture, TextureAttributes, and TexCoordGeneration objects. In some graphics cards, there are
hardware implementations of texture units, otherwise, software handles its functions.

Figure 7-22 shows a visual object set for texturing by two texture units. The Appearance node
component references two TextureUnitState objects. Each of the TextureUnitState objects has
TextureAttributes, TexCoordGeneration, and Texture objects. Although not done in this example,
TextureAttributes, TexCoordGeneration, and/or Texture objects can be shared by TextureUnitState
objects.

Appearance

S

Geometry

TexCoord
Generation

TextureTextureAttributes

TextureUnitState

TexCoord
Generation

TextureTextureAttributes

TextureUnitState

Figure 7-22 Appearance Bundle with multiple TextureUnitState entries.

Two things should be obvious from this section. First, multitexturing is not difficult. Multitexturing is
simply texturing multiple times. Second, to accomplish multitexturing requires knowledge of

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-37

TextureUnitState and Appearance classes. The relevant API features of TextureUnitState and
Appearance appear in sections 7.8.2 and 7.8.3, respectively.

As mentioned on page 7-7, multitexturing may require multiple texture coordinate sets. This final piece
of the multitexture puzzle is explained in section 7.8.4.

7.8.2 TextureUnitState API <new in 1.2>

Sections 7.1 to 7.7 texture visual objects without obviously using a texture unit. In this section the
texture unit is introduced in explaining multitexturing. With the discussion of texture units, you may
have expected to find a TextureUnit class in the Java 3D API. This is not the case. Think of a texture
unit as some hardware in your computer for handling texturing. Since you have texture unit hardware,
you need a way to control it – the way to control the hardware is by changing its state, thus, the
TextureUnitState class.

The TextureUnitState object defines all texture mapping state for a single texture unit. An appearance
object contains an array of texture unit state objects to define the state for multiple texture mapping units.
The texture unit state consists of a Texture object, a TexturingAtttributes object, and a
TexCoordGeneration object. Previous sections describe the functions of these classes. Refer to Table
7-4 (page 7-35) for a summary of the function of these classes.

TextureUnitState Constructor Summary <new in 1.2>

The TextureUnitState object defines all texture mapping state for a single texture unit. An appearance object
contains an array of texture unit state objects to define the state for multiple texture mapping units. The texture unit
state consists of the following: a Texture object, a TextureAttributes object, and a TexCoordGeneration object.

TextureUnitState() <new in 1.2>
Constructs a TextureUnitState component object using defaults for all state variables.

TextureUnitState(Texture texture, <new in 1.2>
TextureAttributes textureAttributes, TexCoordGeneration texCoordGeneration)
Constructs a TextureUnitState component object using the specified component objects.

The methods of TextureUnitState allow the setting (and getting) of the Texture, TextureAttributes, and
TexCoordGeneration objects referred to by a TextureUnitState object.

TextureUnitState Method Summary

void set(Texture texture, TextureAttributes textureAttributes, <new in 1.2>
TexCoordGeneration texCoordGeneration)

Sets the texture, texture attributes, and texture coordinate generation components in this TextureUnitState object to
the specified component objects.

void setTexCoordGeneration(TexCoordGeneration texCoordGeneration) <new in 1.2>
Sets the texCoordGeneration object to the specified object.

void setTexture(Texture texture) <new in 1.2>
Sets the texture object to the specified object.

void setTextureAttributes(TextureAttributes textureAttributes) <new in 1.2>
Sets the textureAttributes object to the specified object.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-38

Without setting the appropriate capabilities the texture node components objects referred to by a live or
compiled TextureUnitState object can neither be read nor written. The following reference block lists
the related capabilities.

TextureUnitState Field Summary

ALLOW_STATE_READ | WRITE <new in 1.2>
Specifies that this TextureUnitState object allows reading (writing) its texture, texture attribute, or texture coordinate
generation component information.

7.8.3 Appearance API for Multitexture <new in 1.2>

As previously noted, Appearance objects refer to multiple TextureUnitState objects to achieve
multitexturing. Appearance class reference blocks appear in nearly every chapter of this tutorial. This
section and the accompanying reference block explains the Appearance API related to multitexturing.

In the sections prior to 7.8 (this section), an Appearance object could refer to Texture, TextureAttributes,
and TextureCoordGeneration objects directly (as shown in Figure 7-21, page 7-36). To achieve
multitexturing, an Appearance object indirectly refers to Texture, TextureAttributes, and
TextureCoordGeneration objects through TextureUnitState objects (as shown in Figure 7-22, page 7-36).
It is not legal for an Appearance object to do both. Either use the texture objects directly, or use them
indirectly (through a TextureUnitState object). To do otherwise will cause an exception to be thrown at
runtime.

The Appearance object may have an array of references to TextureUnitState objects. The array is created
when the first method is called. The TextureStateUnit array internal to the Appearance node component
will have references to any TextureUnitState objects referred to by the parameter array. The second
method can be used to change the TextureUnitState objects referred to by an Appearance object.

Appearance multitexture related methods

void setTextureUnitState(TextureUnitState[] stateArray) <new in 1.2>
Sets the texture unit state array for this appearance object to the specified array. A shallow copy of the array of
references to the TextureUnitState objects is made. If the specified array is null or if the length of the array is 0,
multi-texture is disabled. Within the array, a null TextureUnitState element disables the corresponding texture unit.

stateArray - array of TextureUnitState objects that specify the desired texture state for each unit.
The length of this array specifies the maximum number of texture units used by this Appearance
object. The texture units are numbered from 0 through stateArray.length-1.

void setTextureUnitState(int index, TextureUnitState state) <new in 1.2>
Sets the texture unit state object at the specified index within the texture unit state array to the specified object. If the
specified object is null, the corresponding texture unit is disabled. The index must be within the range
[0, stateArray.length-1].

index - the array index of the object to be set
state - new texture unit state object

int getTextureUnitCount() <new in 1.2>
Retrieves the length of the texture unit state array from this appearance object. The length of this array specifies the
maximum number of texture units used by this Appearance object. If the array is null, a count of 0 is returned.

Without setting the appropriate capabilities TextureStateUnit objects of a live or compiled Appearance
object can neither be read nor written. The following reference block lists the multitexture-related
Appearance capabilities.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-39

Appearance Capabilities (partial list)

ALLOW_TEXTURE_UNIT_STATE_READ | WRITE <new in 1.2>
Specifies that this Appearance object allows writing its texture unit state component information.

7.8.4 GeometryArray API for Multitexture <new in 1.2>

A texture unit provides all texture information except the texture coordinates of the geometry. As texture
coordinates are defined per vertex, it is necessary that this information is stored with the geometry.
While texture units can share the same set of texture coordinates, with multitexture it may be desirable to
have different texture coordinates for each texture unit. For this reason Java 3D API v1.2 includes the
ability to store multiple sets of texture coordinates in a GeometryArray.

Some setTextureCoordinates() methods are presented in the reference block on page 7-6. There are more
setTextureCoordinate() methods than listed in that reference block, refer to the Java 3D API
Specification for more information.

With the possibility of having multiple texture units and multiple texture coordinate sets there is a need
to create associations among them. For this purpose a GeometryArray object may have a map, which is
an array whose contents determines which set of texture coordinates is used by which texture unit.

The array, texCoordSetMap, contains integers. The array is indexed by texture unit number for each
texture unit in the associated Appearance object. The values in the array specify the texture coordinate
set within this GeometryArray object that maps to the corresponding texture unit. For example, the
integer in the first location of the array, texCoordSetMap[0], contains the number of the texture
coordinate set to be used by the first texture unit.

All elements within the array must be less than texCoordSetCount, the number of texture coordinate
sets defined in the geometry object. A negative value in the texCoordSetMap[] array specifies that
no texture coordinate set is to be used for the texture unit corresponding to the index. If there are more
texture units in any associated Appearance object than elements in the mapping array, the extra elements
are assumed to be -1. The same texture coordinate set may be used for more than one texture unit. The
following table shows an example usage of the texCoordSetMap.

Table 7-5 Example Usage of the texCoordSetMap

Index
(texture unit)

Element Value
(texture coordinate set)

Description

0 1 Use texture coord set 1 for texture unit 0
1 -1 Use no texture coord set for texture unit 1
2 0 Use texture coord set 0 for texture unit 2
3 1 Reuse texture coord set 1 for texture unit 3

Each texture unit in every associated Appearance must have a valid source of texture coordinates: either
a non-negative texture coordinate set must be specified in the mapping array or texture coordinate
generation must be enabled. Texture coordinate generation will take precedence for those texture units
for which a texture coordinate set is specified and texture coordinate generation is enabled.

The following reference block shows yet another constructor of the GeometryArray class. This particular
constructor has parameters for specifying the number of texture coordinate sets and a texture coordinate
set mapping array.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-40

GeometryArray constructor (partial list)

GeometryArray(int vertexCount, int vertexFormat, <new in 1.2>
int texCoordSetCount, int[] texCoordSetMap)

Constructs an empty GeometryArray object with the specified number of vertices, vertex format, number of texture
coordinate sets, and texture coordinate mapping array. Defaults are used for all other parameters.

vertexCount - the number of vertex elements in this GeometryArray
vertexFormat - a mask indicating which components are present in each vertex
texCoordSetCount - the number of texture coordinate sets in this GeometryArray object
texCoordSetMap - an array that maps texture coordinate sets to texture units

The following reference block lists texture related methods of the GeometryArray class. Additional
methods of the GeometryArray class are found in the reference block on page 7-6, in various other
chapters of the tutorial, and in the Java 3D API Specification.

GeometryArray texture related methods (partial list)

int getTexCoordSetCount() <new in 1.2>
Retrieves the number of texture coordinate sets in this GeometryArray object.

int getTexCoordSetMapLength() <new in 1.2>
Retrieves the length of the texture coordinate set mapping array of this GeometryArray object.

void getTexCoordSetMap(int[] texCoordSetMap) <new in 1.2>
Retrieves the texture coordinate set mapping array from this GeometryArray object.

texCoordSetMap - an array that will receive a copy of the texture coordinate set mapping array.
The array must be large enough to hold all entries of the texture coordinate set mapping array.

7.9 TextureLoader and NewTextureLoader API
This section lists the reference blocks for the TextureLoader and NewTextureLoader classes. The
texture loader is explained in some detail in Step 2a of the simple texture recipe as defined in Section
7.2.1 on page 7-4. The texture loader is used in the all the example programs of this chapter. Of
particular interest are the examples on using the texture loader for the MIPmap applications (see Section
7.6).

The NewTextureLoader class extends the TextureLoader class providing an easier to use texture loader
utility – one that does not require a awt.component image observer for each constructor.

7.9.1 TextureLoader API
The following reference block lists the field constants used in creating TextureLoader objects.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-41

TextureLoader Field Summary

GENERATE_MIPMAP
MIPmaps are generated for all levels

BY_REFERENCE <new in 1.2>
the ImageComponent2D will access the image data by reference

Y_UP <new in 1.2>
the ImageComponent2D will have a y-orientation of y up, meaning the origin of the image is the lower left

The following reference block lists some constructors for the TextureLoader class. There are a number
of constructors not listed in the constructors reference block which allow loading texture images from
other sources. Consult the Java 3D API Specification for a complete list of constructors.

TextureLoader Constructor Summary (partial list)
extends: java.lang.Object
package: com.sun.j3d.utils.image

This class is used for loading a texture from an Image or BufferedImage. Methods are provided to retrieve the
Texture object and the associated ImageComponent object or a scaled version of the ImageComponent object.
Default format is RGBA.

Other legal formats are: RGBA, RGBA4, RGB5_A1, RGB, RGB4, RGB5, R3_G3_B2, LUM8_ALPHA8,
LUM4_ALPHA4, LUMINANCE and ALPHA

TextureLoader(java.lang.String fname, java.awt.Component observer)
TextureLoader(java.lang.String fname, int flags, java.awt.Component observer)
Contructs a TextureLoader object using the specified file, option flags and default format RGBA

TextureLoader(java.net.URL url, java.awt.Component observer)
TextureLoader(java.net.URL url, int flags, java.awt.Component observer)
Contructs a TextureLoader object using the specified URL, option flags and default format RGBA

The following reference block lists the methods of the TextureLoader class.

TextureLoader Method Summary

ImageComponent2D getImage()
Returns the associated ImageComponent2D object

ImageComponent2D getScaledImage(float xScale, float yScale)
Returns the scaled ImageComponent2D object

ImageComponent2D getScaledImage(int width, int height)
Returns the scaled ImageComponent2D object

Texture getTexture()
Returns the associated Texture object

7.9.2 NewTextureLoaderAPI
The reason to use the NewTexureLoader is to avoid needing an image observer to construct a texture
loader. The following reference block lists some constructors for the NewTextureLoader class.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-42

NewTextureLoader has the same constructors as TextureLoader except none require an awt component
to server as the image observer. NewTextureLoader.html, a javadoc file included in the examples
jar, gives complete documentation for the NewTextureLoader class.

NewTextureLoader Constructor Summary (partial list)
extends: com.sun.j3d.utils.image.TextureLoader

This class is used for loading a texture from an file or URL. This class differs from
com.sun.j3d.util.image.TextureLoader only in the absence of an image observer in the constructor and the method to
set a single image observer for all subsequent uses. All TextureLoader class constructors requiring an image
observer have a corresponding NewTextureLoader constructor without an image observer awt.component.

NewTextureLoader(java.lang.String fname)
NewTextureLoader(java.lang.String fname, int flags)
Contructs a TextureLoader object using the specified file, option flags and default format RGBA

TextureLoader(java.net.URL url)
TextureLoader(java.net.URL url, int flags)
Contructs a TextureLoader object using the specified URL, option flags and default format RGBA

The following reference block lists the two methods of the defined in the NewTextureLoader class. All
other methods are defined by the TextureLoader class. To use a NewTextureLoader object an image
observer must be set first. This is normally done when the Canvas3D object is created.

NewTextureLoader Method Summary (partial list)

java.awt.component getImageObserver()
Returns the awt.component object used as the image observer for NewTextureLoader objects.

void setImageObserver(java.awt.component imageObserver)
Sets a awt.component object as the object to use as an image observer in subsequent constructions of
NewTextureLoader objects.

7.10 Chapter Summary
This chapter presents the Java 3D features for rendering objects with textures. Texturing is primarily a
function of the Texture class and its two subclasses, Texture2D and Texture3D. Section 7.1 provides
motivation for texturing and introduces some texturing terminology. Section 7.2 presents the basics of
the Texture, Texture2D, and Texture3D classes. Section 7.2 also includes a simple texturing recipe and a
simple texturing application. Section 7.3 demonstrates the use of Texture2D in some other applications.
Section 7.4 presents the TextureAttributes class. TextureAttributes objects are used to customize certain
aspects of texturing applications. Section 7.5 presents the TexCoordGeneration class. Objects of this
class are used to automatically generate texture coordinates for visual objects. Section 7.6 explains multi
level texturing. Section 7.7 presents the API for the Texture, Texture2D and Texture3D classes. Along
with the reference blocks for these classes is a 'directory' of texturing features (see Table 7-3 on page 7-
31).

Java 3D API version 1.2 introduces multitextures. Section 7.8 explains all about multitexture. Section
7.9 presents the API for the TextureLoader class. TextureLoader objects are used in the example
programs throughout the chapter and briefly discussed in Sections 7.2 and 7.6. The chapter concludes
with the traditional set of "self test" questions.

Module 3: Lights and Textures Chapter 7. Textures

The Java 3D Tutorial 7-43

7.11 Self Test
1. What happens if a texture coordinate assignment is not made for a vertex in some geometry? Is there

an exception? A warning? Does it render? If it renders, what is the result?

2. How can a single image of a texture (not repeated) be mapped onto a visual object and have the
image surrounded by a single solid color? Assume the texture image is the typical non-solid-color
image. How could the surrounding color be assigned or modified at runtime?

3. How can multiple textures be applied to a single visual object? How can you apply different textures
to the opposite sides of the same visual object? How can you apply different textures to the lines and
the surfaces of a polygon?

4. How would you animate a shadow that moves across a stationary visual object as the shadow moves?

5. How would you animate a shadow that moves across a visual object as the object passes through a
stationary shadow?

	Preface to Chapter 7
	Table of Contents
	List of FIgures
	List of Tables
	List of Code Fragments
	List of Reference Blocks
	7. Textures
	7.1 What is Texturing
	7.2 Basic Texturing
	7.2.1 Simple Texturing Recipe
	Texturing Step 1: Prepare the texture image
	Texturing Step 2a: Load the Texture
	Texturing Step 2b: Create the Appearance Bundle
	Texturing Step 3: Specify TextureCoordinates
	A word about API changes ….							<new in 1.2>

	7.2.2 Simple Texture Example Programs
	The NewTextureLoader Class

	7.2.3 More about Texture Coordinates
	7.2.4 A Preview of Some Texturing Choices
	7.2.5 Texture Options
	Boundary Mode: Wrap or Clamp
	Specification of Filtering
	Boundary Color
	Texture Format

	7.2.6 Texture3D

	7.3 Some Texturing Applications
	7.3.1 Texturing Geometric Primitives
	7.3.2 Texturing Lines
	7.3.3 Using Text2D Textures

	7.4 Texture Attributes
	7.4.1 Texture Mode
	Blend
	Decal
	Modulate
	Replace
	Texture Modes Summary

	7.4.2 Texture Blend Color
	7.4.3 Perspective Correction Mode
	7.4.4 Texture Map Transform
	7.4.5 TextureAttributes API

	7.5 Automatic Texture Coordinate Generation
	7.5.1 Texture Generation Format
	7.5.2 Texture Generation Mode
	Linear Projection
	Sphere Map

	7.5.3 How to use a TexCoordGeneration Object
	7.5.4 TexCoordGeneration API

	7.6 Multiple Levels of Texture (Mipmaps)
	7.6.1 What is Multi Level Texturing (MIPmap)
	7.6.2 Multiple Levels of Texture Examples
	7.6.3 Multiple Levels of Texture Minification Filters
	7.6.4 Mipmap Mode

	7.7 Texture, Texture2D, and Texture3D API
	7.7.1 Minification and Magnification Filters
	7.7.2 Texture API
	7.7.3 Texture2D API
	7.7.4 Texture3D API

	7.8 Multitexture <new in 1.2>
	7.8.1 Multitexture, Texture Units, and TextureUnitStates <new in 1.2>
	7.8.2 TextureUnitState API <new in 1.2>
	7.8.3 Appearance API for Multitexture <new in 1.2>
	7.8.4 GeometryArray API for Multitexture <new in 1.2>

	7.9 TextureLoader and NewTextureLoader API
	7.9.1 TextureLoader API
	7.9.2 NewTextureLoaderAPI

	7.10 Chapter Summary
	7.11 Self Test

