Modulo V
Sistema de Arquivos

Prof. Ismael H F Santos

April 05 Prof. Ismael H. F. Santos - ismael@tecgral.

Ementa

File- System Interface
File Concept
Directory Structure
File Sharing
Protection
File- System Structure
File-System Implementation
Alocation Methods
Efficiency and Performance
NES — Network File System / Sun Microsystems

April 05 Prof. I

SOP - C0O023

Interface do

Sstema de
Arquivos

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 3

Objectives

To explain the function of file systems
To describe the interfaces to file systems

To discuss file-system design tradeoffs,
including access methods, file sharing, file
locking, and directory structures

To explore file-system protection

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.pucio.br a

SOP - C0O023

Conceito

De
Arquivo

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-1io.br 5

File Concept

Contiguous logical address space

Types:

Data
numeric
character
binary

Program

April 05 Prof. Ismael H. F. Santos - ismael @tecgraf puc-io.br 6




File Structure

None - sequence of words, bytes
Simple record structure
Lines
Fixed length
Variable length
Complex Structures
Formatted document
Relocatable load file
Can simulate last two with first method by inserting
appropriate control characters
Who decides:
Operating system
- Program

April 0

File Attributes

Name — only information kept in human-readable
form

Identifier — unique tag (number) identifies file within
file system

Type — needed for systems that support different

types
Location — pointer to file location on device

Size — current file size

April 05 Prof. Ismael H. F. San

File Attributes (cont.)

Protection — controls who can do reading, writing,
executing

Time, date, and user identification — data for
protection, security, and usage monitoring

Information about files are kept in the directory
structure, which is maintained on the disk

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 9

File Operations

File is an abstract data type
Create

Write

Read

Reposition within file
Delete

Truncate

— Open(F;)— search the directory structure on disk for

entry F,, and move the content of entry to memory

Close (F,)— move the content of entry F, in memory to
directory structure on disk

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 10

Open Files

Several pieces of data are needed to manage
open files:
File pointer: pointer to last read/write location,
per process that has the file open
File-open count: counter of number of times a file
is open — to allow removal of data from open-file
table when last processes closes it
Disk location of the file: cache of data access
information
Access rights: per-process access mode
information

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br n

Open File Locking

Provided by some operating systems and file
systems

Mediates access to a file
Mandatory or advisory:

Mandatory — access is denied depending on
locks held and requested

Advisory — processes can find status of locks
and decide what to do

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 12




File Locking Example— Java API

inport java.io.*;
inport java.nio.channels.*;
public class LockingExanple {
public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws | OException {

File Locking Example— Java API
(cont)

Il this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);
/** Now read the data . . */

Il release the |ock

exclusivelLock. rel ease();

Fil eLock sharedLock = null; } catch (java.io.lOException ioe) {
FileLock exclusiveLock = null; System err.println(ioe);
try { }finally {
RandomAccessFil e raf = new RandomAccessFile("file.txt", "rw'); if( exclusivelock !'= null )
/1 get the channel for the file _ exclusivelock. rel ease();
Fil eChannel ch = raf.get Channel (); if( sharedLock !'= null )
Il this locks the first half of the file - exclusive sharedLock. rel ease();
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE); }
/** Now modify the data . . . */ }
/1 release the |ock }
exclusiveLock.release();
April 05 Prof. Ismael H. F. Santos - ismael@tecgraf puc-io.br 3 April 05 Prof. lsmael H. . Santos - ismael@tecgraf puc-rio.br 1
File Types— Name, Extension Access Methods
file type usual extension function -
executable exe, com, bin ready-to-run machine- Sequential Access
] or none language program read next
object obj, o compiled, machine é
language, not linked write next
source code | ¢, cc, java, pas, | source code in various reset
asm, a languages .
batch bat, sh commands to the command no read after last write
interpreter (rewrite)
text txt, doc |exl‘u:ﬂ data, documents D| I'eCt ACCeSS
word processor| wp, tex, rtf, various word-processor
doc formats read n
library lib, a, so, dil libraries of routines for write n
programmers -
Printlonviewii lpepatiips) ASClllorbinaryiilslnia position to n
format for printing or read next
viewing .
archive arc, zip, tar related files grouped into write next
one file, sometimes com- rewrite n
pressed, for archiving i
CTOERED n = relative block number
multimedia mpeg, mov, rm, | binary file containing
mp3, avi audio or A/V information
April 05 Prof. Ismael H.F. Santos - ismael@tecgraf puc-io.br 15 April 05 Prof. Ismael H. . Santos - ismael@tecgraf puc+io.br 16
_— current position
beginning P end
sequential access implementation for direct access
reset cp=0;
rewind ss==——— . read next read cp;
——read or write = cp=cp+i;
write next write cp;
cp=cp+1;
April 05 Prof. Ismas H. F. Santos - ismael@tecgraf pucio.br 7 April 05 Prof. Ismael H.F. Santos - ismael@tecgraf puc-io.br 3




SOP - C0O023

Conceito

De
Diretério

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 19

Example of Index and Relative
Files

logical record
lastname  number
Adams
Arthur
Asher smith, john social-security| age
o
.
.
Smith
index file relative file
April 05 Prof. lsmael H. . Santos - ismael@tecgraf puc-rio.br 2

Directory Structure

A collection of nodes containing
information about all files

Both the directory Directory

structure and the files
reside on disk.

Backups of these two

structures are kept on
tapes Files

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 21

A Typica File-system Organization

directory directory

partition A filos disk 2
disk 1
directory artition C
e files
partition B i
disk 3

April 05 Prof.Ismael H.F. Santos - ismael@ecgraf pucio.br 2

Operations Performed on Directory

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 2

Organize the Directory (Logically) to
Obtain

Efficiency — locating a file quickly

Naming — convenient to users
Two users can have same name for different files
The same file can have several different names

Grouping — logical grouping of files by properties,
(e.g., all Java programs, all games, ...)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 2




Single-Level Directory

A single directory for all users

Naming problem

Grouping problem

April 05 Prof. Ismael

I H. F. Santos - ismael@tecgraf puc-io.br 25

Two-Level Directory

Separate directory for each user

master file
Sroson |4ser 1 %

user file

jrectory car ‘ z ‘ test H C’Ij (1 rest ‘ I
= Path name
®m  Can have the same file name for different user
m  Efficientsearching
= No grouping capability

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. pucio.br 2

Tree-Structured Directories

“Tew [ o ]

—

-~ ‘--.\‘
whar | mad | oer r [ ."-"'f [ |---| 1 v [ & |wa
1 % v
6 \8dd00/ |\
i i 4
[ n-l'n-'[n.. cworte] uf]'w mTM]
% = =
\ 2 Sde |
"y W Q9
[Lor [ ot Jomer || || e |
bdbdddd

Tree-Structured Directories (Cont)

Efficient searching
Grouping Capability
Current directory (working directory)

cd /spell/mail/prog
type list

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br »

Tree-Structured Directories (Cont)

Absolute or relative path name
Creating a new file is done in current directory
Delete a file: rm <file-name>

Creating a new subdirectory is done in current
directory: mkdir <dir-name>

Example: if in current directory /mail

mkdir count

| prog | copyl pnlexplcountl

Deleting “mail” P deleting the entire subtree rooted by “mail”

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br

Acyclic-Graph Directories

Have shared subdirectories and files

Iist| all ‘ w |caunt| ‘count‘wurds‘ list

April 05 Prof lsmael H. F. Santos - ismael@tecgral puc-Tio br £




Acyclic-Graph Directories (Cont.)

Two different names (aliasing)
If dict deletes list b dangling pointer
Solutions:

Backpointers, so we can delete all pointers
Variable size records a problem

Backpointers using a daisy chain organization
Entry -hold-count solution
New directory entry type

General Graph Directory

root | avi

‘ text ‘ mail ‘coun!| bcok |bock‘ mail ‘unhex hyp ‘

M

Link —another name (pointer) to an existing file - |cou,,[| |u,,heX| e |
Resolve the link—follow pointer to locate the file
General Graph Directory (Cont.) File System Mounting

How do we guarantee no cycles?
Allow only links to file not subdirectories
Garbage collection

Every time a new link is added use a cycle
detection
algorithm to determine whether it is OK

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br

A file system must be mounted before it
can be accessed

A unmounted file system (i.e. Fig. 11-11(b))
is mounted at a mount point

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br

(a) Existing. (b) Unmounted
Partition

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br

SOP - C0O023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br




Mount Point

File Sharing

users

April 05

Sharing of files on multi-user systems is
desirable

Sharing may be done through a protection
scheme

On distributed systems, files may be shared
across a network

Network File System (NFS) is a common
distributed file-sharing method

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. pucio.br E

File Sharing — Multiple Users

File Sharing — Remote File Systems

User IDs identify users, allowing
permissions and protections to be per-
user

Group IDs allow users to be in groups,
permitting group access rights

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br £

Uses networking to allow file system access
between systems

Manually via programs like FTP

Automatically, seamlessly using distributed file

systems

Semi automatically via the world wide web
Clientserver model allows clients to mount
remote file systems from servers

Server can serve multiple clients

Client and user-on-client identification is insecure

or complicated

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 0

File Sharing — Remote File Systems

File Sharing — Failure Modes

NFS is standard UNIX client-server file sharing

protocol

CIFS is standard Windows protocol

Standard operating system file calls are

translated into remote calls
Distributed Information Systems (distributed
naming services) such as LDAP, DNS, NIS,
Active Directory implement unified access to
information needed for remote computing

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br a

Remote file systems add new failure modes,
due to network failure, server failure
Recovery from failure can involve state
information about status of each remote
request

Stateless protocols such as NFS include all
information in each request, allowing easy
recovery but less security

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br a2




File Sharing — Consistency Semantics

Consistency semantics specify how
multiple users are to access a shared file
simultaneously
Similar to process synchronization algorithms
Tend to be less complex due to disk I/0 and
network latency (for remote file systems

Andrew File System (AFS) implemented
complex remote file sharing semantics

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br s

File Sharing — Consistency Semantics

Unix file system (UFS) implements:
Writes to an open file visible immediately to other
users of the same open file

Sharing file pointer to allow multiple users to read
and write concurrently

AFS has session semantics

Writes only visible to sessions starting after the
file is closed

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. pucio.br M

SOP - C0O023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br a5

Protection

File owner/creator should be able to control:
what can be done
by whom

Types of access
Read
Write
Execute
Append
Delete
List

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 6

Access Lists and Groups

Mode of access: read, write, execute

Three classes of users RWX
a) owner access 7 p 111
b) group access 6 p 110
c) public access 1 p 001

Ask manager to create a group (unigue name), say
Groupl, and add some users to the group.

wroup public
For a particular file (say game)

or subdirectory, define CLIGEE e GED
an appropriate access. chgrp Groupl game

Attach a group to a file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br a

A Sample UNIX Directory Listing

I 3pbg staff 1024 Aug2906:52 mail/

w-rw-r—- I pbg staff 31200 Sep308:30  intro.ps
drwx-—---- Spbg  staff 512 Jul809.33  private/
drwxrwxr-x 2 pbg  staff 512 Jul809:35  docf
drwxrwx--  2pbg student 512 Aug3 1413 student-proj
STW-T---- I pbg  staff 9423 Feb242003  program.c
-wxr-xi-x - Ipbg staff 20471 Feb 242003 program
drwx--x-x  4pbg faculty 512 Jul3110:31  lib/

drwxrwxrwx 3 pbg  staff 512 Jul809:35  test/

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 48




¥ wite

Windows XP Access-control List

e ey ]

7
»
H

Deny

v
0000
IRREY

Special Parmissions

For cpocial permiscions or for advancod soninge. [ Aavamses ]
chek Advanced Ak d

[ ox Canest

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br a9

SOP-—

C0O023

Implementagéo

April 05

Sstema de
Arquivos

Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br

Objectives

To describe the details of implementing local
file systems and directory structures

To describe the implementation of remote file
systems

To discuss block allocation and free-block
algorithms and trade-offs

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 51

SOP - CO023

Estrutura do

April 05

Sistema de
Arquivos

Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br

File-System Structure

File structure
Logical storage unit
Collection of related information
File system resides on secondary storage
(disks)
File system organized into layers

File control block — storage structure
consisting of information about a file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 53

Layered File System

April 05

application programs

logical file system
ffile-organization module
basic file system

1/0O control

U

devices

ProT TemaeT H T Santos - uc-io b




A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 55

In-Memory File System Structures

The following

figure illustrates |

the necessary L1

file system directory structure

truct open (file name) — I

s ru(?du rg Sb ditecloryain cture) file-control block

provided by

the operating user space kernel memory secondary storage

systems. @

Figure (a) index

refers to /% E%

opening a file. = =

read (index) —t \\l:l

Figure (b) per-process system-wide file-control block

refers to open-file table open-file table

reading a file. user space kemel memory secondary storage
(b)

Aprl 05 Prof. tsmael H.F. Santos - Ismael@tecgral puctio br %

Virtual File Systems

Schematic View of Virtua File
System

Virtual File Systems (VFS) provide an object
oriented way of implementing file systems.

VFS allows the same system call interface
(the API) to be used for different types of file
systems.

The APl is to the VFS interface, rather than
any specific type of file system.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 57

Ple-g e em rdnrias |

W |
£ | - -] {E a |
looa e mpdem ol Bl e aTErE e apdem
e T tpal L |

3 3 =

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 8

SOP - C0O023

Alocacéo

de
Arquivos

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 50

Directory Implementation

Linear list of file names with pointer to the
data blocks.

simple to program

time-consuming to execute
Hash Table — linear list with hash data
structure.

decreases directory search time

collisions — situations where two file names

hash to the same location

fixed size

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br &




Allocation Methods

An allocation method refers to how disk
blocks are allocated for files:

Contiguous allocation

Linked allocation

Indexed allocation

April 05 Prof. Ismael

Contiguous Allocation of Disk Space

Each file occupies a set of contiguous blocks
on the disk

Simple — only starting location (block #) and
length (number of blocks) are required

Random access

Wasteful of space (dynamic storage-allocation
problem).

Files cannot grow !

April 05

Contiguous Allocation of Disk Space

Extent-Based Systems

Mapping from — directory
logical to physical S fle  start length
od 10 2 31 count 0 2
79 it tr 14 3
LA/512 4L sL el 70 mal 196
80 o HoH40] IS
R f 6 2

tr
12013141507
Block to be accessed = Q+| 5, 71507160]
starting address

mail

20(J21[J22[J23(]

Displacement into block = R|| 242502612701
list

28D29|:|I§0D31D

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 63

Many newer file systems (i.e. Veritas File
System) use a modified contiguous allocation
scheme

Extent-based file systems allocate disk blocks
in extents

An extent is a contiguous block of disks
Extents are allocated for file allocation
A file consists of one or more extents.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 6

Linked Allocation

Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

block = pointer

Simple — need only starting address

L = Free-space management system— no waste of space

No random access
Mapping

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 65

Linked Allocation
/Q directory
LA/511\R jgleep stgn e2n5d

Block to be accessed is the
Qth block in the linked chain
of blocks representing the
file.

Displacement into block =

R+1
2021 2[|23|:|
24[J25E26[]27[]

28[]29[Js0[]31[]

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.pucio.br




File-Allocation Table (FAT)

Indexed Allocation

256K words and block size of
512 words. We need only 1
block for index table.

Q = displacement
into index table

R = displacement
into block

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 69

[directory entry Brings a” v directory
start block pointers fle  indexblock
' 0 together o 1EL\2E| 3] =D &
Eile-allocation table
i 4[] 5] 70
disk-space allocation i mms1s !ntO the
=l index block.
MS-DOS and 0S/2. a0 Logica| view.
j \ /
— 0 = |
S | O 20[J21[J22[A23[ ]|
] > (2402802602700
no. of disk blocks  —1 —>[ ||28[J29[J30[J31[]
FAT index table
Aprit0s o omaelFLF. Samos - mactGtecarat puc 1o o o April0s B a o 5
Indexed Allocation (Cont.) Is 2 Ea e fe=lik pelis
(Cont.)
Need index table Mapping from logical to h
Random access physical in a file of LAl GL2lx 511’<(;
Dynamic access without external F&ggll(’g?zeedclfeggtzh Q, = block of index table
fragmentatlo_n, but have WOI’dS) R; is used as follows:
overhead of index block. o : .
Mapping from logical to physical LA/Slg . . Rx’512<R
in a file of maximum size of < Linked scheme — Link :
R Q, = displacement into

blocks of index table

N 5 block of index table
(no limit on size).

R, = displacement into
block of file:

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br i

Indexed Allocation — Mapping
(Cont.)

Two-level index (maximum file size is 5123)

1
LA/ (512 x 512)<Q |
f ——————1
Q, = displacement into \ 1 | \
outer-index D
R, is used as follows: \E\\
L]
R,/ 512<
R, ~—
i . outer-index
Q, = displacement into

block of index table
R, = displacement into
block of file

index table file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 7

Combined Scheme: UNIX (4K bytes per
block)

mode —_—

owners (2)

timestamps (3)

size block count

direct blocks

[iedhed o | R

single indirect —

double indirect _|

triple indirect

April 05 Prof. lsmael H. F. Santos pucHiobr 72




Free-Space Management

Bit vector (n blocks)
01 2 n-1

;. 0 b block[i] free
bit[i] =
1 b block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

April 05 Prof

Free-Space Management (Cont.)

Bit map requires extra space
Example:
block size = 2*? bytes
disk size = 2% bytes (1 gigabyte)
n = 2%/212 = 218 pits (or 32K bytes)
Easy to get contiguous files
Linked list (free list)

—— Cannot get contiguous space easily

No waste of space
Grouping
Counting

April 05 Prof. Ismael H. F. Santos

Free-Space Management (Cont.)

Need to protect:
Pointer to free list
Bit map
Must be kept on disk
Copy in memory and disk may differ
Cannot allow for block]i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk
Solution:
Set bit[i] = 1 in disk
Allocate block[i
Set bit[i] = 1 in memory

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br i

Directory Implementation

Linear list of file names with pointer to the
data blocks

simple to program

time-consuming to execute
Hash Table — linear list with hash data
structure

decreases directory search time

collisions — situations where two file names

hash to the same location

fixed size

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 76

Linked Free Space List on Disk

free-space list head ——

28[J29[J30[J31[]

April 05 PToT TemaeT F T Santos — TSmae@ecgral pucTiohr

SOP - C0O023

Eficiéncia
e
Performance

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 8




Efficiency and Performance

Efficiency dependent on:
disk allocation and directory algorithms
types of data kept in file’s directory entry
Performance
disk cache — separate section of main memory
for frequently used blocks
free-behind and read-ahead — techniques to
optimize sequential access
improve PC performance by dedicating
section of memory as virtual disk, or RAM disk

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 7

Page Cache

A page cache caches

' 1/0 using
pages rather than disk

’ A e ‘ read( ) and write( )

blocks using virtual
memory techniques

page cache

Memory-mapped I/O
uses a page cache

buffer cache

Routine 1/0 through
the file system uses
the buffer (disk) cache

file system

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-io.br )

Unified Buffer Cache

Recovery

A unified buffer 1/0 using
cache uses the || MemovmappedO | oy andwite()
same page cache
to cache both \ /
memory- mapped
pages and buffer cache
ordinary file
system |/O

file system

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 81

Consistency checking — compares data in
directory structure with data blocks on disk,
and tries to fix inconsistencies

Use system programs to back up data from
disk to another storage device (floppy disk,
magnetic tape, other magnetic disk, optical)

Recover lost file or disk by restoring data
from backup

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br &

Log Structured File Systems

Log structured (or journaling) file systems record each
update to the file system as a transaction
All transactions are written to a log

A transaction is considered committed once it is written
to the log

However, the file system may not yet be updated
The transactions in the log are asynchronously written
to the file system
When the file system is modified, the transaction is
removed from the log
If the file system crashes, all remaining transactions in
the log must still be performed

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br &

The Sun Network File System (NFS)

An implementation and a specification of a
software system for accessing remote files
across LANs (or WANS)

The implementation is part of the Solaris and
SunOS operating systems running on Sun
workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br 8




SOP - C0O023

April 05 Prof

NFS (Cont.)

Interconnected workstations viewed as a set of
independent machines with independent file
systems, which allows sharing among these
file systems in a transparent manner
A remote directory is mounted over a local file
system directory
The mounted directory looks like an integral
subtree of the local file system, replacing the
subtree descending from the local directory

April 05 Prof. Ismael H. F. Santos

NFS (Cont.)

Specification of the remote directory for the
mount operation is nontransparent; the host
name of the remote directory has to be
provided

Files in the remote directory can then be

accessed in a transparent manner

Subject to access-rights accreditation,
potentially any file system (or directory within a
file system), can be mounted remotely on top of
any local directory

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br &

NFS (Cont.)

NFS is designed to operate in a heterogeneous
environment of different machines, operating systems,
and network architectures; the NFS specifications
independent of these media

This independence is achieved through the use of RPC
primitives built on top of an External Data
Representation (XDR) protocol used between two
implementationindependent interfaces

The NFS specification distinguishes between the
services provided by a mount mechanism and the actual

remote -file-access services

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br ]

Three Independent File Systems
u: Si1: S2:
local shared dir2
dir1
AR
F—\

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br £

Mounting in NFS

u:

local local

dirt dir1

(a) (b)

Mounts Cascading mounts

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br ®




NFS Mount Protocol

Establishes initial logical connection between
server and client

Mount operation includes name of remote
directory to be mounted and name of server
machine storing it

Mount request is mapped to corresponding RPC
and forwarded to mount server running on server
machine

Export list — specifies local file systems that
server exports for mounting, along with names of
machines that are permitted to mount them

April 05 rof. Ismael H. F. Santos - ismael@tecgraf p o1

NFS Mount Protocol

Following a mount request that conforms to its
export list, the server returns a file handle —a
key for further accesses

File handle — a file-system identifier, and an
inode number to identify the mounted directory
within the exported file system

The mount operation changes only the user’s
view and does not affect the server side

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. pucio.br o

NFS Protocol

Provides a set of remote procedure calls for
remote file operations. The procedures
support the following operations:

searching for a file within a directory

reading a set of directory entries

manipulating links and directories

accessing file attributes

I reading and writing files

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br °

NFS Protocol

NFS servers are stateless; each request has
to provide a full set of arguments (NFS V4 is
just coming available — very different, stateful)

Modified data must be committed to the
server's disk before results are returned to the
client (lose advantages of caching)

The NFS protocol does not provide
concurrency-control mechanisms

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br o

Three Major Layers of NFS Architecture

UNIX file-system interface (based on the
open, read, write, and close calls, and file
descriptors)

Virtual File System (VFS) layer —
distinguishes local files from remote ones,
and local files are further distinguished
according to their file-system types

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br %

Three Mgjor Layers of NFS Architecture

The VFS activates file-system-specific
operations to handle local requests according
to their file-system types
Calls the NFS protocol procedures for remote
requests
NFS service layer — bottom layer of the
architecture

— Implements the NFS protocol

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-io.br %




Schematic View of NFS Architecture

eharg [ —

systomaals ieiace

VFE milorfeca - VFE narec s
{ . ) r |

mor iwpers of LR ke 123 &F& LRILY fie
12 mpxiam BT ol L AP
! FPCDR FPCDR l
= | T i ==
ik J | ok
ot

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br o

NFS Path-Name Translation

Performed by breaking the path into
component names and performing a separate
NFS lookup call for every pair of component
name and directory vnode

To make lookup faster, a directory name
lookup cache on the client’s side holds the
vnodes for remote directory names

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. pucio.br o

NFS Remote Operations

Nearly one-to-one correspondence between
regular UNIX system calls and the NFS protocol
RPCs (except opening and closing files)

NFS adheres to the remote-service paradigm,
but employs buffering and caching techniques
for the sake of performance

File-blocks cache —when a file is opened, the
kernel checks with the remote server whether to
fetch or revalidate the cached attributes

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br %

NFS Remote Operations

Cached file blocks are used only if the
corresponding cached attributes are up to date

File-attribute cache — the attribute cache is
updated whenever new attributes arrive from the
server

Clients do not free delayed-write blocks until the
server confirms that the data have been written
to disk

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-rio.br 100

Example: WAFL File System

Used on Network Appliance “Filers” —
distributed file system appliances

“Write-anywhere file layout”

Serves up NFS, CIFS, http, ftp

Random I/O optimized, write optimized
NVRAM for write caching

o Similar to Berkeley Fast File System, with

extensive modifications

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 101

The WAFL File Layout

root inode

inode file

free block map ‘ | free inode map | | file in the file system... | oo

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf. puc-io.br 102




Snapshotsin WAFL Permissions

root inode

file permissions

block A

(a) Before a snapshot.

file dates (create, access, write)

‘ root inode.

e |

file owner, group, ACL

N\
block A \i“i‘ D

(b) After a snapshot, before any blocks change file size

B

S

l root inode.

file data blocks or pointers to file data blocks

/
block A \i“i“i‘ E

April 05 (o) After block D has changed to D” 108 April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br




