
1

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 1

Modulo VII
Estudos de Caso:
Linux e Windows

Prof. Ismael H F Santos

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 2

Ementa
Linux

Linux History
Design Principles
Kernel Modules
Process Management
Scheduling
Memory Management
File Systems
Input and Output
Interprocess Communication
Network Structure
Security

Windows XP
History
Design Principles
System Components
Environmental Subsystems
File system
Networking
Programmer Interface

2

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 3

Linux
SOP – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 4

Objectives
To explore the history of the UNIX operating system
from which Linux is derived and the principles which
Linux is designed upon

To examine the Linux process model and illustrate
how Linux schedules processes and provides
interprocess communication

To look at memory management in Linux

To explore how Linux implements file systems and
manages I/O devices

3

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 5

History
Linux is a modern, free operating system based on
UNIX standards

First developed as a small but self-contained
kernel in 1991 by Linus Torvalds, with the major
design goal of UNIX compatibility

Its history has been one of collaboration by many
users from all around the world, corresponding
almost exclusively over the Internet

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 6

History (cont.)
It has been designed to run efficiently and reliably
on common PC hardware, but also runs on a
variety of other platforms

The core Linux operating system kernel is entirely
original, but it can run much existing free UNIX
software, resulting in an entire UNIX-compatible
operating system free from proprietary code

Many, varying Linux Distributions including the
kernel, applications, and management tools

4

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 7

The Linux Kernel
Version 0.01 (May 1991) had no networking, ran only on
80386-compatible Intel processors and on PC hardware,
had extremely limited device-drive support, and
supported only the Minix file system
Linux 1.0 (March 1994) included these new features:

Support for UNIX’s standard TCP/IP networking protocols
BSD-compatible socket interface for networking programming
Device-driver support for running IP over an Ethernet
Enhanced file system
Support for a range of SCSI controllers for
high-performance disk access
Extra hardware support

Version 1.2(March/95) was the final PC-only Linux kernel

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 8

Linux 2.0
Released in June 1996, 2.0 added two major new capabilities:

Support for multiple architectures, including a fully 64-bit
native Alpha port
Support for multiprocessor architectures

Other new features included:
Improved memory-management code
Improved TCP/IP performance
Support for internal kernel threads, for handling dependencies
between loadable modules, and for automatic loading of
modules on demand
Standardized configuration interface

5

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 9

Linux 2.0 (cont.)
Released in June 1996, 2.0 added two major new capabilities:

Support for multiple architectures, including a fully 64-bit native
Alpha port
Support for multiprocessor architectures

Other new features included:
Improved memory-management code
Improved TCP/IP performance
Support for internal kernel threads, for handling dependencies
between loadable modules, and for automatic loading of
modules on demand
Standardized configuration interface

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 10

Linux 2.0 (cont.)
Available for Motorola 68000-series processors, Sun Sparc
systems, and for PC and PowerMac systems

2.4 and 2.6 increased SMP support, added journaling file system,
preemptive kernel, 64-bit memory support

6

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 11

The Linux System
Linux uses many tools developed as part of Berkeley’s
BSD operating system, MIT’s X Window System, and the
Free Software Foundation's GNU project
The min system libraries were started by the GNU project,
with improvements provided by the Linux community
Linux networking-administration tools were derived from
4.3BSD code; recent BSD derivatives such as Free BSD
have borrowed code from Linux in return
The Linux system is maintained by a loose network of
developers collaborating over the Internet, with a small
number of public ftp sites acting as de facto standard
repositories

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 12

Linux Distributions

Standard, precompiled sets of packages, or
distributions, include the basic Linux system, system
installation and management utilities, and ready-to-
install packages of common UNIX tools
The first distributions managed these packages by
simply providing a means of unpacking all the files
into the appropriate places; modern distributions
include advanced package management
Early distributions included SLS and Slackware

Red Hat and Debian are popular distributions from
commercial and noncommercial sources, respectively

7

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 13

Linux Distributions (cont.)

Early distributions included SLS and Slackware
Red Hat and Debian are popular distributions from
commercial and noncommercial sources, respectively

The RPM Package file format permits compatibility
among the various Linux distributions

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 14

Linux Licensing

The Linux kernel is distributed under the
GNU General Public License (GPL), the
terms of which are set out by the Free
Software Foundation

Anyone using Linux, or creating their own
derivative of Linux, may not make the
derived product proprietary; software
released under the GPL may not be
redistributed as a binary-only product

8

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 15

Design Principles

Linux is a multiuser, multitasking system with a full set of
UNIX-compatible tools
Its file system adheres to traditional UNIX semantics, and
it fully implements the standard UNIX networking model
Main design goals are speed, efficiency, and
standardization
Linux is designed to be compliant with the relevant
POSIX documents; at least two Linux distributions have
achieved official POSIX certification
The Linux programming interface adheres to the SVR4
UNIX semantics, rather than to BSD behavior

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 16

Components of a Linux System
Like most UNIX implementations, Linux is composed of
three main bodies of code; the most important
distinction between the kernel and all other components
The kernel is responsible for maintaining the important
abstractions of the operating system

Kernel code executes
in kernel mode with
full access to all the
physical resources of
the computer
All kernel code and
data structures are
kept in the same single address space

9

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 17

Components of a Linux System
(cont.)

The system libraries define a standard set of
functions through which applications interact
with the kernel, and which implement much of
the operating-system functionality that does not
need the full privileges of kernel code

The system utilities perform individual
specialized management tasks

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 18

Kernel Modules
Sections of kernel code that can be compiled, loaded,
and unloaded independent of the rest of the kernel

A kernel module may typically implement a device
driver, a file system, or a networking protocol

The module interface allows third parties to write and
distribute, on their own terms, device drivers or file
systems that could not be distributed under the GPL

10

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 19

Kernel Modules (cont.)
Kernel modules allow a Linux system to be set up with
a standard, minimal kernel, without any extra device
drivers built in

Three components to Linux module support:
module management
driver registration
conflict resolution

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 20

Module Management

Supports loading modules into memory and letting
them talk to the rest of the kernel

Module loading is split into two separate sections:
Managing sections of module code in kernel memory
Handling symbols that modules are allowed to reference

The module requestor manages loading requested, but
currently unloaded, modules; it also regularly queries
the kernel to see whether a dynamically loaded
module is still in use, and will unload it when it is no
longer actively needed

11

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 21

Driver Registration

Allows modules to tell the rest of the kernel that a new
driver has become available
The kernel maintains dynamic tables of all known
drivers, and provides a set of routines to allow drivers to
be added to or removed from these tables at any time
Registration tables include the following items:

Device drivers
File systems
Network protocols
Binary format

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 22

Conflict Resolution

A mechanism that allows different device drivers to
reserve hardware resources and to protect those
resources from accidental use by another driver

The conflict resolution module aims to:
Prevent modules from clashing over access to
hardware resources
Prevent autoprobes from interfering with existing
device drivers
Resolve conflicts with multiple drivers trying to access
the same hardware

12

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 23

Process Management

UNIX process management separates the creation of
processes and the running of a new program into two
distinct operations.

The fork system call creates a new process
A new program is run after a call to execve

Under UNIX, a process encompasses all the information
that the operating system must maintain t track the
context of a single execution of a single program
Under Linux, process properties fall into three groups:
the process’s identity, environment, and context

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 24

Process Identity
Process ID (PID). The unique identifier for the process;
used to specify processes to the operating system when
an application makes a system call to signal, modify, or
wait for another process
Credentials. Each process must have an associated
user ID and one or more group IDs that determine the
process’s rights to access system resources and files
Personality. Not traditionally found on UNIX systems,
but under Linux each process has an associated
personality identifier that can slightly modify the
semantics of certain system calls

Used primarily by emulation libraries to request that
system calls be compatible with certain specific flavors of
UNIX

13

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 25

Process Environment
The process’s environment is inherited from its parent,
and is composed of two null-terminated vectors:

The argument vector lists the command-line arguments
used to invoke the running program; conventionally starts
with the name of the program itself
The environment vector is a list of “NAME=VALUE” pairs
that associates named environment variables with
arbitrary textual values

Passing environment variables among processes and
inheriting variables by a process’s children are flexible
means of passing information to components of the
user-mode system software

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 26

Process Environment
The environment-variable mechanism provides a
customization of the operating system that can be set on
a per-process basis, rather than being configured for the
system as a whole

14

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 27

Process Context
The (constantly changing) state of a running program at
any point in time
The scheduling context is the most important part of the
process context; it is the information that the scheduler
needs to suspend and restart the process
The kernel maintains accounting information about the
resources currently being consumed by each process, and
the total resources consumed by the process in its lifetime
so far

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 28

Process Context (cont.)
The file table is an array of pointers to kernel file
structures

When making file I/O system calls, processes refer to
files by their index into this table

Whereas the file table lists the existing open files, the
file-system context applies to requests to open new
files

The current root and default directories to be used for
new file searches are stored here

15

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 29

Process Context (Cont.)

The signal-handler table defines the routine in the
process’s address space to be called when specific
signals arrive

The virtual-memory context of a process describes the
full contents of the its private address space

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 30

Processes and Threads

Linux uses the same internal representation for
processes and threads; a thread is simply a new
process that happens to share the same address
space as its parent
A distinction is only made when a new thread is
created by the clone system call

fork creates a new process with its own entirely new
process context
clone creates a new process with its own identity, but
that is allowed to share the data structures of its parent

Using clone gives an application fine-grained control
over exactly what is shared between two threads

16

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 31

Scheduling

The job of allocating CPU time to different tasks within
an operating system
While scheduling is normally thought of as the running
and interrupting of processes, in Linux, scheduling also
includes the running of the various kernel tasks
Running kernel tasks encompasses both tasks that are
requested by a running process and tasks that execute
internally on behalf of a device driver
As of 2.5, new scheduling algorithm – preemptive,
priority-based

Real-time range
nice value

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 32

Relationship Between Priorities and
Time-slice Length

17

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 33

List of Tasks Indexed by Priority

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 34

Kernel Synchronization

A request for kernel-mode execution can occur in two
ways:

A running program may request an operating system
service, either explicitly via a system call, or implicitly, for
example, when a page fault occurs
A device driver may deliver a hardware interrupt that
causes the CPU to start executing a kernel-defined
handler for that interrupt

Kernel synchronization requires a framework that will
allow the kernel’s critical sections to run without
interruption by another critical section

18

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 35

Kernel Synchronization (Cont.)

Linux uses two techniques to protect critical sections:
1. Normal kernel code is nonpreemptible (until 2.4)

– when a time interrupt is received while a process is
executing a kernel system service routine, the kernel’s
need_resched flag is set so that the scheduler will run
once the system call has completed and control is
about to be returned to user mode

2. The second technique applies to critical sections that occur in
an interrupt service routines
– By using the processor’s interrupt control hardware to
disable interrupts during a critical section, the kernel
guarantees that it can proceed without the risk of concurrent
access of shared data structures

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 36

Kernel Synchronization (Cont.)

To avoid performance penalties, Linux’s kernel uses a
synchronization architecture that allows long critical
sections to run without having interrupts disabled for the
critical section’s entire duration

19

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 37

Kernel Synchronization (Cont.)

Interrupt service routines are separated into a top half
and a bottom half.

The top half is a normal interrupt service routine, and runs
with recursive interrupts disabled
The bottom half is run, with all interrupts enabled, by a
miniature scheduler that ensures that bottom halves never
interrupt themselves
This architecture is completed by a mechanism for
disabling selected bottom halves while executing normal,
foreground kernel code

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 38

Interrupt Protection Levels

Each level may be interrupted by code running at a
higher level, but will never be interrupted by code running
at the same or a lower level
User processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs

20

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 39

Process Scheduling
Linux uses two process-scheduling algorithms:

A time-sharing algorithm for fair preemptive scheduling
between multiple processes
A real-time algorithm for tasks where absolute priorities
are more important than fairness

A process’s scheduling class defines which algorithm to
apply

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 40

Process Scheduling
For time-sharing processes, Linux uses a prioritized,
credit based algorithm

The crediting rule

factors in both the process’s history and its priority
This crediting system automatically prioritizes interactive or
I/O-bound processes

priority
2

credits : credits +=

21

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 41

Process Scheduling (Cont.)

Linux implements the FIFO and round-robin real-time
scheduling classes; in both cases, each process has a
priority in addition to its scheduling class

The scheduler runs the process with the highest priority;
for equal-priority processes, it runs the process waiting the
longest
FIFO processes continue to run until they either exit or
block
A round-robin process will be preempted after a while and
moved to the end of the scheduling queue, so that round-
robing processes of equal priority automatically time-share
between themselves

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 42

Symmetric Multiprocessing

Linux 2.0 was the first Linux kernel to support
SMP hardware; separate processes or
threads can execute in parallel on separate
processors

To preserve the kernel’s nonpreemptible
synchronization requirements, SMP imposes
the restriction, via a single kernel spinlock,
that only one processor at a time may
execute kernel-mode code

22

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 43

Memory Management

Linux’s physical memory-management system deals
with allocating and freeing pages, groups of pages,
and small blocks of memory

It has additional mechanisms for handling virtual
memory, memory mapped into the address space of
running processes

Splits memory into 3 different zones due to hardware
characteristics

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 44

Relationship of Zones and Physical
Addresses on 80x86

23

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 45

Splitting of Memory in a Buddy Heap

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 46

Managing Physical Memory
The page allocator allocates and frees all physical
pages; it can allocate ranges of physically-contiguous
pages on request
The allocator uses a buddy-heap algorithm to keep track
of available physical pages

Each allocatable memory region is paired with an
adjacent partner
Whenever two allocated partner regions are both freed up
they are combined to form a larger region
If a small memory request cannot be satisfied by
allocating an existing small free region, then a larger free
region will be subdivided into two partners to satisfy the
request

24

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 47

Managing Physical Memory
Memory allocations in the Linux kernel occur either
statically (drivers reserve a contiguous area of memory
during system boot time) or dynamically (via the page
allocator)

Also uses slab allocator for kernel memory

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 48

Managing Physical Memory (cont.)

25

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 49

Virtual Memory

The VM system maintains the address space visible to
each process: It creates pages of virtual memory on
demand, and manages the loading of those pages from
disk or their swapping back out to disk as required
The VM manager maintains two separate views of a
process’s address space:

A logical view describing instructions concerning the
layout of the address space

The address space consists of a set of nonoverlapping
regions, each representing a continuous, page-aligned
subset of the address space

A physical view of each address space which is stored in
the hardware page tables for the process

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 50

Virtual Memory (Cont.)
Virtual memory regions are characterized by:

The backing store, which describes from where the pages for
a region come; regions are usually backed by a file or by
nothing (demand-zero memory)
The region’s reaction to writes (page sharing or copy-on-
write)

The kernel creates a new virtual address space
1. When a process runs a new program with the exec system

call
2. Upon creation of a new process by the fork system call

26

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 51

Virtual Memory (Cont.)

On executing a new program, the process is given a new,
completely empty virtual-address space; the program-
loading routines populate the address space with virtual-
memory regions
Creating a new process with fork involves creating a
complete copy of the existing process’s virtual address
space

The kernel copies the parent process’s VMA descriptors,
then creates a new set of page tables for the child
The parent’s page tables are copied directly into the child’s,
with the reference count of each page covered being
incremented

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 52

Virtual Memory (Cont.)
After the fork, the parent and child share the same physical
pages of memory in their address spaces

The VM paging system relocates pages of memory from
physical memory out to disk when the memory is needed
for something else
The VM paging system can be divided into two sections:

The pageout-policy algorithm decides which pages to write
out to disk, and when
The paging mechanism actually carries out the transfer,
and pages data back into physical memory as needed

27

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 53

Virtual Memory (Cont.)

The Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of every
process for its own internal use

This kernel virtual-memory area contains two regions:
A static area that contains page table references to
every available physical page of memory in the system,
so that there is a simple translation from physical to
virtual addresses when running kernel code
The reminder of the reserved section is not reserved for
any specific purpose; its page-table entries can be
modified to point to any other areas of memory

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 54

Executing and Loading User
Programs

Initially, binary-file pages are mapped into virtual memory
Only when a program tries to access a given page will a
page fault result in that page being loaded into physical
memory

An ELF-format binary file consists of a header followed by
several page-aligned sections

The ELF loader works by reading the header and mapping
the sections of the file into separate regions of virtual
memory

Linux maintains a table of functions for loading programs;
it gives each function the opportunity to try loading the
given file when an exec system call is made

28

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 55

Executing and Loading User
Programs

The registration of multiple loader routines allows
Linux to support both the ELF and a.out binary
formats
Initially, binary-file pages are mapped into virtual
memory

Only when a program tries to access a given page will a
page fault result in that page being loaded into physical
memory

An ELF-format binary file consists of a header followed
by several page-aligned sections

The ELF loader works by reading the header and
mapping the sections of the file into separate regions of
virtual memory

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 56

Memory Layout for ELF Programs

29

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 57

Static and Dynamic Linking

A program whose necessary library functions are
embedded directly in the program’s executable binary
file is statically linked to its libraries

The main disadvantage of static linkage is that every
program generated must contain copies of exactly the
same common system library functions

Dynamic linking is more efficient in terms of both
physical memory and disk-space usage because it
loads the system libraries into memory only once

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 58

File Systems
To the user, Linux’s file system appears as a hierarchical
directory tree obeying UNIX semantics
Internally, the kernel hides implementation details and
manages the multiple different file systems via an
abstraction layer, that is, the virtual file system (VFS)
The Linux VFS is designed around object-oriented
principles and is composed of two components:

A set of definitions that define what a file object is allowed to
look like

The inode-object and the file-object structures represent
individual files
the file system object represents an entire file system

A layer of software to manipulate those objects

30

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 59

The Linux Ext2fs File System
Ext2fs uses a mechanism similar to that of BSD Fast File
System (ffs) for locating data blocks belonging to a
specific file
The main differences between ext2fs and ffs concern
their disk allocation policies

In ffs, the disk is allocated to files in blocks of 8Kb, with
blocks being subdivided into fragments of 1Kb to store
small files or partially filled blocks at the end of a file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 60

The Linux Ext2fs File System
Ext2fs does not use fragments; it performs its allocations
in smaller units

The default block size on ext2fs is 1Kb, although 2Kb and
4Kb blocks are also supported

Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation

31

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 61

Ext2fs Block-Allocation Policies

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 62

The Linux Proc File System
The proc file system does not store data, rather, its
contents are computed on demand according to user file
I/O requests
proc must implement a directory structure, and the file
contents within; it must then define a unique and
persistent inode number for each directory and files it
contains

It uses this inode number to identify just what operation is
required when a user tries to read from a particular file
inode or perform a lookup in a particular directory inode
When data is read from one of these files, proc collects the
appropriate information, formats it into text form and places
it into the requesting process’s read buffer

32

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 63

Input and Output

The Linux device-oriented file system accesses disk
storage through two caches:

Data is cached in the page cache, which is unified with the
virtual memory system
Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block

Linux splits all devices into three classes:
block devices allow random access to completely
independent, fixed size blocks of data
character devices include most other devices; they don’t
need to support the functionality of regular files
network devices are interfaced via the kernel’s networking
subsystem

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 64

Device-Driver Block Structure

33

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 65

Block Devices

Provide the main interface to all disk devices in a
system

The block buffer cache serves two main purposes:
it acts as a pool of buffers for active I/O
it serves as a cache for completed I/O

The request manager manages the reading and
writing of buffer contents to and from a block device
driver

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 66

Character Devices

A device driver which does not offer random access
to fixed blocks of data
A character device driver must register a set of
functions which implement the driver’s various file I/O
operations
The kernel performs almost no preprocessing of a file
read or write request to a character device, but
simply passes on the request to the device
The main exception to this rule is the special subset
of character device drivers which implement terminal
devices, for which the kernel maintains a standard
interface

34

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 67

Interprocess Communication

Like UNIX, Linux informs processes that an event has
occurred via signals
There is a limited number of signals, and they cannot
carry information: Only the fact that a signal occurred
is available to a process
The Linux kernel does not use signals to
communicate with processes with are running in
kernel mode, rather, communication within the kernel
is accomplished via scheduling states and
wait.queue structures

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 68

Passing Data Between Processes

The pipe mechanism allows a child process to inherit a
communication channel to its parent, data written to
one end of the pipe can be read a the other
Shared memory offers an extremely fast way of
communicating; any data written by one process to a
shared memory region can be read immediately by any
other process that has mapped that region into its
address space
To obtain synchronization, however, shared memory
must be used in conjunction with another Interprocess-
communication mechanism

35

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 69

Shared Memory Object

The shared-memory object acts as a backing store for
shared-memory regions in the same way as a file can
act as backing store for a memory-mapped memory
region

Shared-memory mappings direct page faults to map in
pages from a persistent shared-memory object

Shared-memory objects remember their contents even
if no processes are currently mapping them into virtual
memory

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 70

Network Structure

Networking is a key area of functionality for Linux.
It supports the standard Internet protocols for UNIX to
UNIX communications
It also implements protocols native to nonUNIX
operating systems, in particular, protocols used on PC
networks, such as Appletalk and IPX

Internally, networking in the Linux kernel is
implemented by three layers of software:

The socket interface
Protocol drivers
Network device drivers

36

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 71

Network Structure (Cont.)

The most important set of protocols in the Linux
networking system is the internet protocol suite

It implements routing between different hosts anywhere
on the network
On top of the routing protocol are built the UDP, TCP
and ICMP protocols

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 72

Security

The pluggable authentication modules (PAM) system is
available under Linux
PAM is based on a shared library that can be used by
any system component that needs to authenticate
users
Access control under UNIX systems, including Linux, is
performed through the use of unique numeric identifiers
(uid and gid)
Access control is performed by assigning objects a
protections mask, which specifies which access
modes—read, write, or execute—are to be granted to
processes with owner, group, or world access

37

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 73

Security (Cont.)

Linux augments the standard UNIX setuid mechanism
in two ways:

It implements the POSIX specification’s saved user-id
mechanism, which allows a process to repeatedly drop
and reacquire its effective uid
It has added a process characteristic that grants just a
subset of the rights of the effective uid

Linux provides another mechanism that allows a client
to selectively pass access to a single file to some
server process without granting it any other privileges

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 74

WinXP
SOP – CO023

38

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 75

Objectives

To explore the principles upon which Windows XP is
designed and the specific components involved in the
system
To understand how Windows XP can run programs
designed for other operating systems
To provide a detailed explanation of the Windows XP
file system
To illustrate the networking protocols supported in
Windows XP
To cover the interface available to system and
application programmers

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 76

Windows XP
32-bit preemptive multitasking operating system for
Intel microprocessors
Key goals for the system:

portability
security
POSIX compliance
multiprocessor support
extensibility
international support
compatibility with MS-DOS and MS-Windows applications.

Uses a micro-kernel architecture
Available in four versions, Professional, Server,
Advanced Server, National Server

39

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 77

History

In 1988, Microsoft decided to develop a “new
technology” (NT) portable operating system that
supported both the OS/2 and POSIX APIs

Originally, NT was supposed to use the OS/2 API as
its native environment but during development NT
was changed to use the Win32 API, reflecting the
popularity of Windows 3.0

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 78

Design Principles

Extensibility — layered architecture
Executive, which runs in protected mode, provides the basic
system services
On top of the executive, several server subsystems operate
in user mode
Modular structure allows additional environmental
subsystems to be added without affecting the executive

Portability —XP can be moved from on hardware
architecture to another with relatively few changes

Written in C and C++
Processor-dependent code is isolated in a dynamic link
library (DLL) called the “hardware abstraction layer” (HAL)

40

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 79

Design Principles (Cont.)
Reliability —XP uses hardware protection for virtual memory, and
software protection mechanisms for operating system resources
Compatibility — applications that follow the IEEE 1003.1 (POSIX)
standard can be complied to run on XP without changing the source
code
Performance —XP subsystems can communicate with one another
via high-performance message passing

Preemption of low priority threads enables the system to
respond quickly to external events
Designed for symmetrical multiprocessing

International support — supports different locales via the national
language support (NLS) API

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 80

XP Architecture

Layered system of modules

Protected mode — HAL, kernel, executive

User mode — collection of subsystems
Environmental subsystems emulate different operating
systems
Protection subsystems provide security functions

41

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 81

Depiction of XP Architecture

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 82

Foundation for the executive and the subsystems
Never paged out of memory; execution is never
preempted
Four main responsibilities:

thread scheduling
interrupt and exception handling
low-level processor synchronization
recovery after a power failure

System Components — Kernel

42

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 83

Kernel is object-oriented, uses two sets of objects
dispatcher objects control dispatching and synchronization
(events, mutants, mutexes, semaphores, threads and
timers)
control objects (asynchronous procedure calls, interrupts,
power notify, power status, process and profile objects)

System Components — Kernel

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 84

Kernel — Process and Threads

The process has a virtual memory address space,
information (such as a base priority), and an affinity for
one or more processors
Threads are the unit of execution scheduled by the
kernel’s dispatcher
Each thread has its own state, including a priority,
processor affinity, and accounting information
A thread can be one of six states: ready, standby,
running, waiting, transition, and terminated

43

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 85

Kernel — Scheduling
The dispatcher uses a 32-level priority scheme to
determine the order of thread execution

Priorities are divided into two classes
The real-time class contains threads with priorities
ranging from 16 to 31
The variable class contains threads having priorities
from 0 to 15

Characteristics of XP’s priority strategy
Trends to give very good response times to interactive
threads that are using the mouse and windows
Enables I/O-bound threads to keep the I/O devices busy
Complete-bound threads soak up the spare CPU cycles
in the background

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 86

Kernel — Scheduling (Cont.)

Scheduling can occur when a thread enters the ready
or wait state, when a thread terminates, or when an
application changes a thread’s priority or processor
affinity

Real-time threads are given preferential access to the
CPU; but XP does not guarantee that a real-time thread
will start to execute within any particular time limit

This is known as soft realtime

44

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 87

Windows XP Interrupt Request
Levels

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 88

Kernel — Trap Handling

The kernel provides trap handling when exceptions and
interrupts are generated by hardware of software
Exceptions that cannot be handled by the trap handler
are handled by the kernel's exception dispatcher
The interrupt dispatcher in the kernel handles interrupts
by calling either an interrupt service routine (such as in
a device driver) or an internal kernel routine
The kernel uses spin locks that reside in global memory
to achieve multiprocessor mutual exclusion

45

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 89

Executive — Object Manager

XP uses objects for all its services and entities; the
object manger supervises the use of all the objects

Generates an object handle
Checks security
Keeps track of which processes are using each object

Objects are manipulated by a standard set of
methods, namely create, open, close,
delete, query name, parse and security

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 90

Executive — Naming Objects

The XP executive allows any object to be given a
name, which may be either permanent or temporary
Object names are structured like file path names in
MS-DOS and UNIX
XP implements a symbolic link object, which is
similar to symbolic links in UNIX that allow multiple
nicknames or aliases to refer to the same file
A process gets an object handle by creating an
object by opening an existing one, by receiving a
duplicated handle from another process, or by
inheriting a handle from a parent process
Each object is protected by an access control list

46

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 91

Executive — Virtual Memory
Manager

The design of the VM manager assumes that the
underlying hardware supports virtual to physical mapping
a paging mechanism, transparent cache coherence on
multiprocessor systems, and virtual addressing aliasing
The VM manager in XP uses a page-based management
scheme with a page size of 4 KB
The XP VM manager uses a two step process to allocate
memory

The first step reserves a portion of the process’s address
space
The second step commits the allocation by assigning space
in the 2000 paging file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 92

Virtual-Memory Layout

47

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 93

Virtual Memory Manager (Cont.)

The virtual address translation in XP uses several data
structures

Each process has a page directory that contains 1024 page
directory entries of size 4 bytes
Each page directory entry points to a page table which contains
1024 page table entries (PTEs) of size 4 bytes
Each PTE points to a 4 KB page frame in physical memory

A 10-bit integer can represent all the values form 0 to
1023, therefore, can select any entry in the page
directory, or in a page table
This property is used when translating a virtual address
pointer to a bye address in physical memory
A page can be in one of six states: valid, zeroed, free
standby, modified and bad

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 94

Virtual-to-Physical Address
Translation

10 bits for page directory entry, 20 bits for
page table entry, and 12 bits for byte offset in
page

48

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 95

Page File Page-Table Entry

5 bits for page protection, 20 bits for page frame address, 4 bits to
select a paging file, and 3 bits that describe the page state. V = 0

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 96

Executive — Process Manager

Provides services for creating, deleting, and using
threads and processes.

Issues such as parent/child relationships or process
hierarchies are left to the particular environmental
subsystem that owns the process.

49

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 97

Executive — Local Procedure Call
Facility

The LPC passes requests and results between client and server
processes within a single machine.
In particular, it is used to request services from the various XP
subsystems.
When a LPC channel is created, one of three types of message
passing techniques must be specified.

First type is suitable for small messages, up to 256 bytes;
port's message queue is used as intermediate storage, and the
messages are copied from one process to the other.
Second type avoids copying large messages by pointing to a
shared memory section object created for the channel.
Third method, called quick LPC was used by graphical display
portions of the Win32 subsystem.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 98

Executive — I/O Manager
The I/O manager is responsible for

file systems
cache management
device drivers
network drivers

Keeps track of which installable file systems are
loaded, and manages buffers for I/O requests
Works with VM Manager to provide memory-
mapped file I/O
Controls the XP cache manager, which handles
caching for the entire I/O system
Supports both synchronous and asynchronous
operations, provides time outs for drivers, and has
mechanisms for one driver to call another

50

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 99

File I/O

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 100

Executive — Security Reference
Monitor

The object-oriented nature of XP enables the use of
a uniform mechanism to perform runtime access
validation and audit checks for every entity in the
system

Whenever a process opens a handle to an object,
the security reference monitor checks the process’s
security token and the object’s access control list to
see whether the process has the necessary rights

51

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 101

Executive – Plug-and-Play
Manager

Plug-and-Play (PnP) manager is used to recognize
and adapt to changes in the hardware configuration

When new devices are added (for example, PCI or
USB), the PnP manager loads the appropriate driver

The manager also keeps track of the resources
used by each device

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 102

Environmental Subsystems

User-mode processes layered over the native XP
executive services to enable XP to run programs
developed for other operating system
XP uses the Win32 subsystem as the main operating
environment; Win32 is used to start all processes

It also provides all the keyboard, mouse and graphical
display capabilities

MS-DOS environment is provided by a Win32
application called the virtual dos machine (VDM), a
user-mode process that is paged and dispatched like
any other XP thread

52

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 103

Environmental Subsystems (Cont.)

16-Bit Windows Environment:
Provided by a VDM that incorporates Windows
on Windows
Provides the Windows 3.1 kernel routines and
sub routines for window manager and GDI
functions

The POSIX subsystem is designed to run
POSIX applications following the POSIX.1
standard which is based on the UNIX model

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 104

Environmental Subsystems (Cont.)

OS/2 subsystems runs OS/2 applications
Logon and Security Subsystems authenticates users
logging on to Windows XP systems

Users are required to have account names and
passwords
The authentication package authenticates users
whenever they attempt to access an object in the
system
Windows XP uses Kerberos as the default
authentication package

53

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 105

File System
The fundamental structure of the XP file system
(NTFS) is a volume

Created by the XP disk administrator utility
Based on a logical disk partition
May occupy a portions of a disk, an entire disk, or span
across several disks

All metadata, such as information about the volume, is
stored in a regular file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 106

File System (cont.)
NTFS uses clusters as the underlying unit of disk
allocation

A cluster is a number of disk sectors that is a power of
two
Because the cluster size is smaller than for the 16-bit
FAT file system, the amount of internal fragmentation is
reduced

NTFS uses logical cluster numbers (LCNs) as disk
addresses
A file in NTFS is not a simple byte stream, as in MS-
DOS or UNIX, rather, it is a structured object
consisting of attributes

54

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 107

File System — Internal Layout
Every file in NTFS is described by one or more records
in an array stored in a special file called the Master File
Table (MFT)
Each file on an NTFS volume has a unique ID called a
file reference.

64-bit quantity that consists of a 48-bit file number and a 16-bit
sequence number
Can be used to perform internal consistency checks

The NTFS name space is organized by a hierarchy of
directories; the index root contains the top level of the
B+ tree

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 108

File System — Recovery
All file system data structure updates are performed
inside transactions that are logged

Before a data structure is altered, the transaction writes a
log record that contains redo and undo information
After the data structure has been changed, a commit
record is written to the log to signify that the transaction
succeeded
After a crash, the file system data structures can be
restored to a consistent state by processing the log
records

55

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 109

File System — Recovery (Cont.)

This scheme does not guarantee that all the user file
data can be recovered after a crash, just that the file
system data structures (the metadata files) are
undamaged and reflect some consistent state prior to
the crash

The log is stored in the third metadata file at the
beginning of the volume

The logging functionality is provided by the XP log file
service

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 110

File System — Security
Security of an NTFS volume is derived from the XP
object model

Each file object has a security descriptor attribute
stored in this MFT record

This attribute contains the access token of the
owner of the file, and an access control list that
states the access privileges that are granted to
each user that has access to the file

56

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 111

Volume Management and Fault
Tolerance
FtDisk, the fault tolerant disk driver for XP, provides
several ways to combine multiple SCSI disk drives into
one logical volume
Logically concatenate multiple disks to form a large
logical volume, a volume set
Interleave multiple physical partitions in round-robin
fashion to form a stripe set (also called RAID level 0, or
“disk striping”)

Variation: stripe set with parity, or RAID level 5

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 112

Volume Management and Fault
Tolerance (cont.)
Disk mirroring, or RAID level 1, is a robust scheme that
uses a mirror set — two equally sized partitions on tow
disks with identical data contents

To deal with disk sectors that go bad, FtDisk, uses a
hardware technique called sector sparing and NTFS
uses a software technique called cluster remapping

57

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 113

Volume Set On Two Drives

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 114

Stripe Set on Two Drives

58

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 115

Stripe Set With Parity on Three
Drives

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 116

Mirror Set on Two Drives

59

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 117

File System — Compression
To compress a file, NTFS divides the file’s data into
compression units, which are blocks of 16 contiguous
clusters
For sparse files, NTFS uses another technique to save
space

Clusters that contain all zeros are not actually allocated
or stored on disk
Instead, gaps are left in the sequence of virtual cluster
numbers stored in the MFT entry for the file
When reading a file, if a gap in the virtual cluster
numbers is found, NTFS just zero-fills that portion of the
caller’s buffer

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 118

File System — Reparse Points

A reparse point returns an error code when accessed.
The reparse data tells the I/O manager what to do
next

Reparse points can be used to provide the
functionality of UNIX mounts

Reparse points can also be used to access files that
have been moved to offline storage

60

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 119

Networking
XP supports both peer-to-peer and client/server
networking; it also has facilities for network management
To describe networking in XP, we refer to two of the
internal networking interfaces:

NDIS (Network Device Interface Specification) —
Separates network adapters from the transport protocols
so that either can be changed without affecting the other
TDI (Transport Driver Interface) — Enables any session
layer component to use any available transport
mechanism

XP implements transport protocols as drivers that can be
loaded and unloaded from the system dynamically

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 120

Networking — Protocols
The server message block (SMB) protocol is used to send
I/O requests over the network. It has 4 message types:
- Session control - File
- Printer - Message

The network basic Input/Output system (NetBIOS) is a
hardware abstraction interface for networks

Used to:
Establish logical names on the network
Establish logical connections of sessions between two
logical names on the network
Support reliable data transfer for a session via NetBIOS
requests or SMBs

61

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 121

Networking — Protocols (Cont.)
NetBEUI (NetBIOS Extended User Interface): default
protocol for Windows 95 peer networking and Windows
for Workgroups; used when XP wants to share resources
with these networks
XP uses the TCP/IP Internet protocol to connect to a
wide variety of operating systems and hardware
platforms
PPTP (Point-to-Point Tunneling Protocol) is used to
communicate between Remote Access Server modules
running on XP machines that are connected over the
Internet
The XP NWLink protocol connects the NetBIOS to Novell
NetWare networks

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 122

Networking — Protocols (Cont.)

The Data Link Control protocol (DLC) is used to
access IBM mainframes and HP printers that are
directly connected to the network

XP systems can communicate with Macintosh
computers via the Apple Talk protocol if an XP Server
on the network is running the Windows XP Services
for Macintosh package

62

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 123

Networking — Dist. Processing
Mechanisms

XP supports distributed applications via named
NetBIOS, named pipes and mailslots, Windows
Sockets, Remote Procedure Calls (RPC), and Network
Dynamic Data Exchange (NetDDE)
NetBIOS applications can communicate over the
network using NetBEUI, NWLink, or TCP/IP
Named pipes are connection-oriented messaging
mechanism that are named via the uniform naming
convention (UNC)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 124

Networking — Dist. Processing
Mechanisms (cont.)

Mailslots are a connectionless messaging mechanism
that are used for broadcast applications, such as for
finding components on the network
Winsock, the windows sockets API, is a session-layer
interface that provides a standardized interface to many
transport protocols that may have different addressing
schemes

63

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 125

Distributed Processing Mechanisms
(Cont.)

The XP RPC mechanism follows the widely-used
Distributed Computing Environment standard for
RPC messages, so programs written to use XP
RPCs are very portable

RPC messages are sent using NetBIOS, or Winsock
on TCP/IP networks, or named pipes on LAN
Manager networks
XP provides the Microsoft Interface Definition
Language to describe the remote procedure names,
arguments, and results

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 126

Networking — Redirectors and
Servers

In XP , an application can use the XP I/O API to
access files from a remote computer as if they were
local, provided that the remote computer is running an
MS-NET server
A redirector is the client-side object that forwards I/O
requests to remote files, where they are satisfied by a
server
For performance and security, the redirectors and
servers run in kernel mode

64

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 127

Access to a Remote File

The application calls the I/O manager to request that a
file be opened (we assume that the file name is in the
standard UNC format)
The I/O manager builds an I/O request packet
The I/O manager recognizes that the access is for a
remote file, and calls a driver called a Multiple Universal
Naming Convention Provider (MUP)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 128

Access to a Remote File

The MUP sends the I/O request packet asynchronously
to all registered redirectors
A redirector that can satisfy the request responds to the
MUP

To avoid asking all the redirectors the same question in the
future, the MUP uses a cache to remember with redirector can
handle this file

65

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 129

Access to a Remote File (Cont.)

The redirector sends the network request to the
remote system
The remote system network drivers receive the
request and pass it to the server driver
The server driver hands the request to the proper local
file system driver
The proper device driver is called to access the data
The results are returned to the server driver, which
sends the data back to the requesting redirector

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 130

Networking — Domains
NT uses the concept of a domain to manage global
access rights within groups
A domain is a group of machines running NT server that
share a common security policy and user database
XP provides three models of setting up trust relationships

One way, A trusts B
Two way, transitive, A trusts B, B trusts C so A, B, C trust
each other
Crosslink – allows authentication to bypass hierarchy to cut
down on authentication traffic

66

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 131

Name Resolution in TCP/IP
Networks

On an IP network, name resolution is the process of
converting a computer name to an IP address
e.g., www.bell-labs.com resolves to 135.104.1.14

XP provides several methods of name resolution:
Windows Internet Name Service (WINS)
broadcast name resolution
domain name system (DNS)
a host file
an LMHOSTS file

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 132

Name Resolution (Cont.)

WINS consists of two or more WINS servers that
maintain a dynamic database of name to IP
address bindings, and client software to query the
servers

WINS uses the Dynamic Host Configuration
Protocol (DHCP), which automatically updates
address configurations in the WINS database,
without user or administrator intervention

67

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 133

Programmer Interface — Access to
Kernel Obj.

A process gains access to a kernel object named XXX
by calling the CreateXXX function to open a handle to
XXX; the handle is unique to that process

A handle can be closed by calling the CloseHandle
function; the system may delete the object if the count
of processes using the object drops to 0

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 134

Programmer Interface — Access to
Kernel Obj. (cont.)

XP provides three ways to share objects between
processes

A child process inherits a handle to the object
One process gives the object a name when it is created
and the second process opens that name
DuplicateHandle function:

Given a handle to process and the handle’s value a
second process can get a handle to the same object, and
thus share it

68

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 135

Programmer Interface — Process
Management
Process is started via the CreateProcess routine
which loads any dynamic link libraries that are used
by the process, and creates a primary thread

Additional threads can be created by the
CreateThread function

Every dynamic link library or executable file that is
loaded into the address space of a process is
identified by an instance handle

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 136

Process Management (Cont.)

Scheduling in Win32 utilizes four priority classes:
- IDLE_PRIORITY_CLASS (priority level 4)
- NORMAL_PRIORITY_CLASS (level8 — typical for most

processes
- HIGH_PRIORITY_CLASS (level 13)
- REALTIME_PRIORITY_CLASS (level 24)

69

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 137

Process Management (Cont.)

To provide performance levels needed for interactive
programs, XP has a special scheduling rule for
processes in the NORMAL_PRIORITY_CLASS

XP distinguishes between the foreground process that is
currently selected on the screen, and the background
processes that are not currently selected
When a process moves into the foreground, XP
increases the scheduling quantum by some factor,
typically 3

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 138

Process Management (Cont.)
The kernel dynamically adjusts the priority of a thread
depending on whether it is I/O-bound or CPU-bound
To synchronize the concurrent access to shared
objects by threads, the kernel provides synchronization
objects, such as semaphores and mutexes

In addition, threads can synchronize by using the
WaitForSingleObject or WaitForMultipleObjects functions
Another method of synchronization in the Win32 API is
the critical section

70

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 139

Process Management (Cont.)
A fiber is user-mode code that gets scheduled
according to a user-defined scheduling algorithm

Only one fiber at a time is permitted to execute, even on
multiprocessor hardware
XP includes fibers to facilitate the porting of legacy
UNIX applications that are written for a fiber execution
model

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 140

Programmer Interface — Interprocess
Comm.

Win32 applications can have interprocess
communication by sharing kernel objects
An alternate means of interprocess communications is
message passing, which is particularly popular for
Windows GUI applications

One thread sends a message to another thread or to a
window
A thread can also send data with the message

71

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 141

Programmer Interface — Interprocess
Comm. (cont.)

Every Win32 thread has its own input queue from
which the thread receives messages
This is more reliable than the shared input queue of 16-
bit windows, because with separate queues, one stuck
application cannot block input to the other applications

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 142

Programmer Interface — Memory
Management

Virtual memory:
VirtualAlloc reserves or commits virtual memory
VirtualFree decommits or releases the memory
These functions enable the application to determine the
virtual address at which the memory is allocated

An application can use memory by memory mapping a
file into its address space

Multistage process
Two processes share memory by mapping the same file
into their virtual memory

72

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 143

Memory Management (Cont.)
A heap in the Win32 environment is a region of reserved
address space

A Win 32 process is created with a 1 MB default heap
Access is synchronized to protect the heap’s space
allocation data structures from damage by concurrent
updates by multiple threads

Because functions that rely on global or static data
typically fail to work properly in a multithreaded
environment, the thread-local storage mechanism
allocates global storage on a per-thread basis

The mechanism provides both dynamic and static methods
of creating thread-local storage

