
EasyMock: Dynamic Mock Objects for JUnit

 Tammo Freese
 OFFIS
 Escherweg 2
 26121 Oldenburg
 Germany
 +49 441 9722 215
 tammo.freese@offis.de

ABSTRACT
In Extreme Programming, unit testing is an integral activity
of everyday software development. For isolating units in
the tests, Mock Objects are often used to simulate collabo-
rators of the units under test. However, writing and main-
taining Mock Objects may become a tedious task. This
paper presents the Java library EasyMock that dynamically
generates Mock Objects for interfaces. This moves the
specification of the Mock Objects into the test methods,
avoids implementation mistakes, and eases refactoring.

Keywords
JUnit, Java, Mock Object, EasyMock, unit testing, test-
driven development, refactoring

1 UNIT TESTING AND MOCK OBJECTS
Unit testing is the testing of program units in isolation. In
practice, a unit often does not work in isolation, as it relies
on other units. For unit testing, these collaborating units
have to be simulated and controlled from within the test.

Mock Objects are replacements for domain code that emu-
late real behavior. In addition to this stub functionality,
they verify assertions about their usage [5]. Every method
call on the Mock Object is checked whether it was set as
expectation before. After using the Mock Object, the
method verify() checks whether the defined behavior
has been used by the object under test.

The Mock Objects package [6] contains classes which ease
the implementation of Mock Objects, and it provides ready-
to-use Mock Object implementations for several APIs.

2 TEST DRIVEN DEVELOPMENT WITH JUNIT
Extreme Programming [1] does not only focus on unit
testing, but advocates test-driven development. Every
change of the code's observable behavior has to be moti-
vated by a failing test.

JUnit [4] is a regression testing framework for Java written
by Erich Gamma and Kent Beck. Using JUnit has several
benefits. As the tests are written in Java, testing does not
break the programming session, but integrates into it. A
couple of assertions eases the construction of the tests. The
tests may be composed into test hierarchies, and graphical
and text interfaces provide immediate feedback.

Test-driven development includes refactoring, a technique
of small, behavior-preserving steps which improve the
design of the code [3].

As test-driven development is a central part of Extreme
Programming, tools and techniques should not hinder it.

3 MOCK OBJECTS EXAMPLE
To show an implementation of a Mock Object and its usage
with JUnit, we provide a test case for a search algorithm on
a simple storage. Listing 1 shows the Storage interface. It
has a method that returns a list of page titles as well a
method that returns the page for a given title.

We want to test a class Searcher that finds all pages in a
storage where the title contains a given string. Listing 2
shows a test case that uses a Mock Object to test the
searcher in isolation. First, the Mock Object is created
(Listing 2, part 1). Our test checks whether the search is
able to find a single page. So we configure the Mock Ob-
ject to return one page title when asked for the list of page
titles, and to return a certain page when asked for this title
(Listing 2, part 2). Then a searcher is configured to use the
Mock Object as storage, and a search is performed (Listing
2, part 3). It is expected to return the page that our mock
storage contains (Listing 2, part 4). Finally, we use the
verify() method on the Mock Object to check whether
the defined behavior has been used (Listing 2, part 5).

The implementation of the Mock Object is shown in
Listing 3. To store the expectation parameter for the
method getPage(), the class ExpectationValue from
the Mock Objects package [6] is used.

Such expectation classes allow adding expected and actual
values. If an actual value is added that was not specified as
expectation, the expectation class throws an exception.
Additionally, the verify() method of each expectation
class verifies that all expected values have been used. Oth-
erwise, it throws an exception.

As our Mock Object only verifies that the getPage()
parameter was called, the verify() method of the Mock
Object delegates to the verify() method of the expecta-
tion getPage.

public interface Storage {
 Page getPage(String name);
 String[] getPageNames();
}

Listing 1. Storage interface

public void testSearcher() {

 // (1)
 MockStorage mockStorage
 = new MockStorage();

 // (2)
 String[] pageNames=new String[] {"title"};
 Page page = new Page();

 mockStorage.setupPageNamesReturnValue
 (pageNames);
 mockStorage.setGetPageParameter("title");
 mockStorage.setGetPageReturnValue(page);

 // (3)
 Searcher searcher = new Searcher();
 searcher.setStorage(mockStorage);
 Page[] result = searcher.find("itl");

 // (4)
 assertEquals(1, result.length);
 assertEquals(page, result[0]);

 // (5)
 mockStorage.verify();
}

Listing 2. Test case using an implemented Mock Object

4 PROBLEMS WITH MOCK OBJECTS
Although Mock Objects are a big step towards isolated
testing of program units, there are some disadvantages
when they are implemented manually. Writing Mock Ob-
jects is not very difficult, but it is a tedious task that some-
times introduces errors. And as they are separate classes,
their code has to be read to understand the test.

Additional issues arise with respect to test-driven develop-
ment and refactoring. The interface that the unit under test
uses is neither directly visible nor used in the test case. It is
only visible as a substring in the Mock Object's name.

If we add a method to the interface, we have to implement
it in the mock object before our code may be compiled
again. When we change a method name, we have to change
the names of related expectation setting methods, too.
When we delete a method, we have to care about deleting it
on the mock object and erasing its occurrences.

When we introduce a parameter object, we have to change
the expectation handling inside the Mock Object. And as a
Mock Object is often used in several test cases, it is diffi-
cult to see which of the Mock Object's methods are still
used.

These problems are not valid for standard API interfaces, as
they do not change often, if at all. However, they are valid
for iterative development, where interfaces inside our ap-
plications do change quite often. So the usage of manually
implemented Mock Objects may hinder refactoring.

import com.mockobjects.ExpectationValue;

class MockStorage implements Storage {
 private Page pageReturnValue;
 private ExpectationValue getPage
 = new ExpectationValue("getPage");
 private String[] pageNamesReturnValue;

 // interface methods
 public Page getPage(String name){
 getPage.setActual(name);
 return pageReturnValue;
 }
 public String[] getPageNames() {
 return pageNamesReturnValue;
 }

 // verify usage
 public void verify() {
 getPage.verify();
 }

 // methods that define the behavior
 public void setGetPageParameter(String n){
 getPage.setExpected(n);
 }
 public void setGetPageReturnValue(Page p){
 pageReturnValue = p;
 }
 public void setupPageNamesReturnValue
 (String[] n) {
 pageNamesReturnValue = n;
 }
}

Listing 3. Implemented Mock Object

5 EASYMOCK EXAMPLE
The EasyMock library [2] provides simple Mock Objects
without having to implement them. They are generated
dynamically at runtime.

The definition of the Mock Object behavior in EasyMock is
different to that using an implemented Mock Object. As an
example, Listing 4 shows a version of Listing 2 adapted to
use the EasyMock library. We will now explain all the
changes step by step.

As EasyMock builds Mock Objects at runtime, there cannot
be any additional implementation for the Mock Objects,
and methods like verify() cannot be defined on the
Mock Object itself. So the Mock Object is split in two
parts: The EasyMock Mock Object and the EasyMock
Mock Control. The EasyMock Mock Object (in short: the
mock) is an implementation of the interface to simulate. In
contrast to a Mock Object, it has no additional methods.

 2

The EasyMock Mock Control (in short: the control) has
methods for controlling its associated mock.

To get a Mock Object for our Storage, first we obtain a
control via a factory method mockControlFor() on
EasyMock:
 MockControl control
 = EasyMock.mockControlFor(Storage.class);

The mock is returned by the control:
 Storage mockStorage
 = (Storage) control.getMock();

To define a method call as an expectation, we simply call
the method on the mock, and define the return value via the
control:
 mockStorage.getPageNames();
 control.setReturnValue(pageNames);

We repeat this for every behavior that we want to specify:
 mockStorage.getPage("title");
 control.setReturnValue(page);

As the mock is used to record the expected method calls, it
does not behave like a Mock Object yet. To switch to the
Mock Object behavior, we have to activate the mock via its
control:
 control.activate();

Now we may use the mock in our test, just like an imple-
mented Mock Object. So parts 3 and 4 of the test case in
Listing 2 do not change.

As the mock only implements the interface, the verify()
method is not implemented there, but on the control. So
part 5 of Listing 2 changes from
 mock.verify();

to
 control.verify();

The test case got a little bit longer than before. To define
the Mock Object, we need two lines of code instead of one,
and we need the activation. However, by adding these two
lines of code, we have defined the Mock Object directly
within the test case. We do not need the Mock Object im-
plementation shown in Listing 3 anymore.

6 MORE EASYMOCK FEATURES
EasyMock allows more than setting return values for each
method call.

As a first example, we show how to set up the mock to
throw a Throwable instead of returning a value:
 mock.getPage(title);
 control.setThrowable(new Error());

If we expect a method call to occur not only once, we can
specify the behavior for any number of calls. In simple

cases where the return value does not change, we specify
the number of expected calls as a second parameter to the
return value definition:
 mock.getPage(title);
 control.setReturnValue(page, 3);

A similar approach is available for Throwables:
 mock.getPage(title);
 control.setThrowable(new Error(), 3);

A call to a void method may be expected to happen a de-
fined number of times, too:
 mock.update(); // a void method
 control.setVoidCallable(2);

If setVoidCallable() is omitted, exactly one call is
expected. Therefore an alternative way to specify the same
behavior as in the preceding example is:
 mock.update();
 mock.update();

In some cases, we want our mock to behave differently on
subsequent calls. As an example, we configure our mock
object to throw an error two times, and to return the page
the next three times:
 mock.getPage(title);
 control.setThrowable(new Error(), 2);
 mock.getPage(title);
 control.setReturnValue(page, 3);

There is a shortcut for this definition. As every behavior
definition on the control is mapped to the last method call
on the mock, the second call on the mock may be omitted:
 mock.getPage(title);
 control.setThrowable(new Error(), 2);
 control.setReturnValue(page, 3);

Setting a return value or Throwable without specifying a
number of times is interpreted as expecting it for exactly
one call. If we only care about a method call to happen, but
not about the number of calls, we may use
 control.setReturnValue(page,
 MockControl.ONE_OR_MORE_CALLS)

The method call is now allowed to happen an unlimited
number of times, but if it is never used, verify() will fail.

MockControl.ONE_OR_MORE_CALLS is also the key to
use EasyMock for the definition of stubs where we do not
care about how often, if at all, the defined behavior is used.
To define a stub, MockControl.ONE_OR_MORE_CALLS
has to be used in all behavior definitions, and verify()
must not be called at the end of the test.

Finally, it is possible to reset a mock to its initial state for
reusing it in several test cases:
 control.reset();

 3

public void testSearcher() {

 //(1)
 MockControl control
 = EasyMock.mockControlFor(Storage.class);
 Storage mockStorage
 = (Storage) control.getMock();

 //(2)
 String[] pageNames=new String[] {"title"};
 Page page = new Page();

 mockStorage.getPageNames();
 control.setReturnValue(pageNames);
 mockStorage.getPage("title");
 control.setReturnValue(page);

 control.activate();

 //(3)
 Searcher searcher = new Searcher();
 searcher.setStorage(mockStorage);
 Page[] result = searcher.find("itl");

 //(4)
 assertEquals(1, result.length);
 assertEquals(page, result[0]);

 //(5)
 control.verify();
}

Listing 4. Test case using EasyMock

7 EXPERIENCES
Our experiences using EasyMock are positive. The time for
implementing the Mock Objects is saved, and implementa-
tion errors are avoided. All the information needed to un-
derstand a test case is available in the test code itself.

EasyMock is ideal for often-changing interfaces inside the
application, as it handles changes to the interface quite
well.

As the behavior definition is fixed, we cannot use Easy-
Mock in all cases. So we also use implemented Mock Ob-
jects where appropriate.

The only drawback of EasyMock is that tests using it are
harder to read than tests using implemented Mock Objects,
as there are no self-explaining method names for the behav-
ior definitions.

8 RELATED WORK
As mentioned in the previous section, EasyMock cannot be
used in all cases. Whenever more freedom and special
checks are needed, either a manual implementation or reus-
ing an existing Mock Object is recommended. For the im-
plementations, the Mock Objects library [6] should be used.

While EasyMock generates Mock Objects at runtime, it is
also possible to generate Mock Objects as source code. At
the time of writing, there are two code generators for Mock
Objects. MockMaker [8] has a command line interface as
well as a GUI. MockCreator [6] integrates into Visual Age
for Java.

Code generation shares some advantages with EasyMock:
Implementation errors are avoided, and as the behavior of
the generated implementation is known, all the information
that is needed to understand a test case is provided in the
test method itself.

However, code generation has some disadvantages regard-
ing refactoring. If a method is renamed, all the expectation
setting methods will be renamed in the next generation
steps, too. As the test code uses the old names of the expec-
tation setting methods, the code won't even compile.

9 FUTURE WORK
At the time of writing, EasyMock (internal release 0.85) is
only able to handle interfaces, and it does only work with
Java version 1.3.1 and above.

Our future plans are to allow EasyMocks for classes, and to
provide an sequence check for the method calls.

ACKNOWLEDGEMENTS
Thanks to Tim Mackinnon, Steve Freeman and Philip Craig
for the Mock Objects idea. Without it, EasyMock would
not exist. And thanks to all EasyMock users for their valu-
able feedback. Finally, thanks to Frank Westphal and Jür-
gen Schlegelmilch for their valuable comments on this
paper.

REFERENCES
1. Beck, Kent. Extreme Programming Explained. Addi-

son-Wesley, 2000.

2. EasyMock home page.
http://www.easymock.org.

3. Fowler, Martin. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

4. JUnit home page.
http://www.junit.org.

5. Mackinnon, T., Freeman, S., and Craig, P. Endo-
Testing: Unit Testing with Mock Objects. In: Extreme
Programming Examined, pages 287-301. Addison-
Wesley, 2001.

6. Mock Objects home page.
http://www.mockobjects.com.

7. MockCreator home page.
http://www.abstrakt.de/en/mockcreator.html

8. MockMaker home page.
http://mockmaker.sourceforge.net.

 4

	Keywords
	UNIT TESTING AND MOCK OBJECTS
	TEST DRIVEN DEVELOPMENT WITH JUNIT
	MOCK OBJECTS EXAMPLE
	PROBLEMS WITH MOCK OBJECTS
	EASYMOCK EXAMPLE
	MORE EASYMOCK FEATURES
	EXPERIENCES
	RELATED WORK
	FUTURE WORK
	ACKNOWLEDGEMENTS

