

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 About JUnit and EasyMock
n	 JUnit Lifecycle
n	 JUnit 4 Annotations
n	 EasyMock Object Lifecycle
n	 Recording Behavior in EasyMock
n	 Hot Tips and more...

Unit testing and test driven development are proven ways to
improve both the productivity of a developer and the quality of
their software. JUnit and EasyMock are the predominant choices
for testing tools in the Java space. This reference card will guide
you through the creation of unit tests with JUnit and EasyMock.
It contains detailed definitions for unit testing and mock objects
as well as a description of the lifecycle of each. The APIs for both
JUnit and EasyMock are covered thoroughly so you can utilize
these tools to their fullest extent.

AbOUT JUNIT AND EASyMOCk

UNIT TESTINg

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

By Michael T Minella

A unit test is a test of a single isolated component in a
repeatable way. A test consists of four phases:

Prepare Sets up a baseline for testing and defines the expected results.

Execute Running the test.

Validate Validates the results of the test against previously defined expectations.

Reset Resets the system to the way it was before Prepare.

JUnit is a popular framework for creating unit tests for Java. It
provides a simple yet effective API for the execution of all four
phases of a unit test.

public void testBar() {
 assertNotNull(“fooInstance was null”, fooInstance);

 String results = fooInstance.bar();
 assertNotNull(“Results was null”, results);
 assertEquals(“results was not ‘success’”,
 “success”, results);
 }

 @Override
 public void tearDown(){
 fooInstance.close();
 }
}

A test case is the basic unit of testing in JUnit and is defined by
extending junit.framework.TestCase. The TestCase class
provides a series of methods that are used over the lifecycle of a
test. When creating a test case, it is required to have one or more
test methods. A test method is defined by any method that fits
the following criteria:

n			It must be public.
n			It must return void.
n			The name must begin with “test”.

Optional lifecycle methods include public void setUp() and
public void tearDown(). setUp()is executed before each
test method, tearDown()is executed after each test method and
the execution of both setUp() and tearDown() are guaranteed.

Figure 1

import junit.framework.TestCase;
public class FooTest extends TestCase {
 private Foo fooInstance;

 @Override
 public void setUp() {
 fooInstance = new Foo();
 }

JUnit and EasyMock

JUNIT LIfECyCLE

TEST CASE

A JUnit test case can contain many test methods. Each method
identified as a test will be executed within the JUnit test lifecycle.
The lifecycle consists of three pieces: setup, test and teardown,
all executed in sequence.

Test Case, continued

Hot
Tip

Place test classes in the same package but dif-
ferent source folder as the class they are testing.
That allows the test to have access to protected
methods and attributes.

testsetUp

tearDown

TestCase

JU
ni

t
an

d
 E

a
sy

M
oc

k

 w
w

w
.d

zo
n

e.
co

m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#28

http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/struts2
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

JUnit and EasyMock

2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

JUNIT 4 ANNOTATIONS

ASSErTIONS

TESTS

JUnit Lifecycle, continued Tests, continued

Lifecycle stage Method called Method description

Setup public void
setUp()

Called to do any required preprocessing before a
test. Examples include instantiating objects and
inserting test data into a database

Test public void
testXYZ()

Each test method is called once within the test
lifecycle. It performs all required testing. Test
results are recorded by JUnit for reporting to the
test runner upon completion.

Teardown public void
tearDown()

Called to do any required post processing after
a test. Examples include cleaning up of database
tables and closing database connections.

All of the test methods are guaranteed to be executed. In JUnit 4
two more phases of the lifecycle were added, beforeClass() and
afterClass(). These methods are executed once per test class
(instead of once per test method as setUp and tearDown are),
before and after respectively.

Assertion What it does

assertNull(Object x) Validates that the parameter is null

assertNotNull(Object x) Validates that the parameter is not null

assertTrue(boolean x) Validates that the parameter is true

assertFalse(boolean x) Validates that the parameter is false

assertEquals(Object x,
Object y)

Validates that the two objects passed are equal based
on the .equals(Object obj1, Object obj2) method

assertSame(Object x, Object
y)

Validates that the two objects passed are equal based
on the == operator

assertNotSame(Object x,
Object y)

Validates that the two objects passed are not equal
based on the == operator

fail() Programmatically fail the test.

error condition is handled correctly. In testBadResultsBar(),
foo.bar() is passed null expecting that a NullPointerException
will be thrown. If it is not thrown, the test is considered a failure
(indicated by the fail() call).

JUnit 4 added annotations to the framework and eliminated
the need to extend TestCase. You can direct both the lifecycle
events and other aspects of the test execution with the provided
annotations.

Annotation Parameters Use

@After None Method will be executed after each test
method (similar to the tearDown() method in
JUnit 3.x). Multiple methods may be tagged
with the @After annotation, however no order
is guaranteed.

@AfterClass None Method will be executed after all of the test
methods and teardown methods have been
executed within the class. Multiple methods
may be tagged with the @AfterClass
annotation, however no order is guaranteed.

@Before None Method will be executed before each test
method (similar to the setUp() method in
JUnit 3.x). Multiple methods may be tagged
with the @Before annotation, however no
order is guaranteed.

@BeforeClass None Executed before any other methods are
executed within the class. Multiple methods
may be tagged with the @BeforeClass
annotation, however no order is guaranteed.

@Ignore String (optional) Used to temporarily exclude a test method
from test execution. Accepts an optional
String reason parameter.

@Parameters None Indicates a method that will return a
Collection of objects that match the
parameters for an available constructor in
your test. This is used for parameter driven
tests.

@RunWith Class Used to tell JUnit the class to use as the test
runner. The parameter must implement the
interface junit.runner.Runner.

@SuiteClasses Class [] Tells JUnit a collection of classes to run. Used
with the @RunWith(Suite.class) annotation
is used.

@Test n Class(optional)

n Timeout(optional)

Used to indicate a test method. Same
functionality as naming a method public
void testXYZ() in JUnit 3.x. The class
parameter is used to indicate an exception
is expected to be thrown and what the
exception is. The timeout parameter specifies
in milliseconds how long to allow a single
test to run. If the test takes longer than the
timeout, it will be considered a failure.

Table 1. Lifecycle stage

Table 2. Assertions

Testing is about running code with a predictable set of inputs
and verifying that the set of outputs you receive are as expected.
JUnit is used to execute the code to be tested in an isolated
manor so that those validations can be made.

Figure 2

public void testGoodResultsBar() {
 String param1 = “parameter1”;

 String results = foo.bar(param1);

 assertNotNull(“results was null”, results);
 assertEquals(“results was not ‘good’”, “good”,

 results);
}

public void testBadResultsBar() {
 try {
 String results = foo.bar(null);
 } catch (NullPointerException npe) {
 return;
 }
 fail();
}

testGoodResultsBar() tests a positive scenario. It passes in an
expected value (“parameter1”) into the method to be tested
(foo.bar()) and validates that the results are as expected (the
String “good”).

The second test is an example of a negative test. It tests that an

Hot
Tip

Make private methods protected in cases where
you want to control access and yet still access
the method for testing.

Table 3. Annotations

Figure 3 shows two test cases, one using JUnit 3.x method
names and one using JUnit 4 annotations.

Figure 3
JUnit 3.x

import junit.framework.TestCase;

public class FooTestCase extends TestCase {

 private Foo foo;

 @Override

http://www.dzone.com
http://www.refcardz.com

JUnit and EasyMock

3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

 public void setUp() {
 foo = new Foo();
 }

 public void testGoodResultsBar() {
 String param1 = “parameter1”;

 String results = foo.bar(param1);

 assertNotNull(“results was null”, results);
 assertEquals(“results was not ‘good’”, “good”,

 results);
 }

 public void testBadResultsBar() {
 try {
 String results = foo.bar(null);
 } catch (NullPointerException npe) {
 return;
 }

 fail();
 }

 @Override
 public void tearDown() {
 foo.close();
 }
}

JUnit 4

public class FooTestCase {

 private Foo foo;

 @Before
 public void buildFoo() {
 foo = new Foo();
 }

 @Test
 public void testGoodResultsBar() {
 String param1 = “parameter1”;

 String results = foo.bar(param1);

 assertNotNull(“results was null”, results);
 assertEquals(“results was not ‘good’”, “good”,

 results);
 }

 @Test
 public void testBadResultsBar() {
 try {
 String results = foo.bar(null);
 } catch (NullPointerException npe) {
 return;
 }

 fail();
 }
 @After
 public void closeFoo() {
 foo.close();
 }
}

Unit testing is the testing of a component in isolation. However,
in most systems objects have many dependencies. In order to be
able to test code in isolation, those dependencies need to be
removed to prevent any impact on test code by the dependant
code. To create this isolation, mock objects are used to replace
the real objects.

Fixtures

A test fixture is a baseline environment used for testing. For
example, if the method bar is to be tested on the object foo, the
test should create a new instance of foo for each test. This will
prevent any state related issues from interfering with future tests
(variables left initialized from previous tests, objects left with
invalid data, etc). Figure 1 is an example of a fixture. It creates a
new instance of foo for each test and closes it after the execution
of each test. This prevents any carryover issues from affecting the
current test.

EasyMock is a framework for creating mock objects using the
java.lang.reflect.Proxy object. When a mock object is
created, a proxy object takes the place of the real object. The
proxy object gets its definition from the interface or class you
pass when creating the mock.

EasyMock has two sets of APIs. One is intended for creation and
manipulation of mock objects that are based on interfaces, the
other on classes (org.easymock.EasyMock and org.easymock.
classextensions.EasyMock respectively). Both provide the
same basic functionality; however classextensions does not have
quite as extensive as an API as the regular EasyMock does.

Programmatically:
TestSuite suite = new TestSuite();
suite.addTest(new MyFirstTest());
suite.addTest(new MySecondTest());
suite.addTest(new MyThirdTest());

suite.run();

Annotations:
@RunWith(Suite.class)
@SuiteClasses({FooTest.class, BarTest.class})
public class AllTests{
 public static Test suite() {
 return new JUnit4TestAdapter(AllTests.class);
 }
}

MOCk ObJECTS

EASyMOCk

JUnit 4 Annotations, continued Test Suites, continued

Test Suites
A test suite is a collection of tests cases. It is used to run a
collection of tests and aggregate the results. In JUnit 3.x., test
suites can be used to parameterize test cases (parameterized
tests are handled with annotations in JUnit 4) as well as group
test cases together (in functional groups for example). There
are two ways to create a test suite, programmatically and with
annotations.

Hot
Tip

When using JUnit 4, you do not need to extend
junit.framework.TestCase. Any plain old
java object (POJO) can be run as a test with the
appropriate annotations.

EasyMock has a lifecycle
similar to JUnit. It contains
four stages.

EASyMOCk MOCk ObJECT LIfECyCLE

expectcreateMock

replayverify

http://www.dzone.com
http://www.refcardz.com

JUnit and EasyMock

4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Method Description

EasyMock.createMock(MyInterface.class) Creates a mock object based
on the passed interface

EasyMock.createNiceMock(MyInterface.class) Creates a nice mock object
based on the passed interface

EasyMock.createStrictMock(MyInterface.class) Creates a strict mock object
based on the passed interface

Creating objects with EasyMock, continued

Stage Description

Create Mock This phase creates the mock object.

Expect This phase records the expected behaviors of the mock object. These
will be verified at the end.

Replay Replays the previously recorded expectations.

Verify In order for a test to pass, the expected behaviors must have been
executed. The verify phase confirms the execution of the expected
calls.

Table 4. EasyMock stages Table 6. EasyMock method

Table 5. Types of mock objects in EasyMock

Type Description

Regular A test fails if a method is called that is not expected or if a method that is
expected is not called. Order of method calls does not matter.

Nice A test fails if a method is expected but not called. Methods that are called
but are not expected are returned with a type appropriate default value (0,
null or false). Order of method calls does not matter.

Strict A test fails if a method is called that is not expected or if a method that is
expected is not called. Order of method calls does matter.

ObJECTS IN EASyMOCk rECOrDINg bEhAvIOr IN EASyMOCk

Creating objects with EasyMock

There are two main ways to create a mock object using
EasyMock, directly and thru a mock control. When created
directly, mock objects have no relationship to each other and the
validation of calls is independent. When created from a control,
all of the mock objects are related to each other. This allows for
validation of method calls across mock objects (when created
with the EasyMock.createStrictControl() method).

Direct creation of mock objects
…
@Override
public void setUp() {
 UserDAO userDAO = EasyMock.createMock(UserDAO.class);
 CustomerDAO customerDAO =
 EasyMock.createMock(CustomerDAO.class);
}
…

Creation of a mock object thru a control
…
@Override
public void setUp() {
 IMocksControl mockCreator = EasyMock.createControl();

 UserDAO userDAO = mockCreator.createMock(UserDAO.
 class);

 CustomerDAO customerDAO =
mockCreator.createMock(CustomerDAO.class);
}
…

Table 6 describes the API available for creating mock
objects. These are static methods that are available on
both versions of EasyMock (regular and classextension).
createMock(MyInterface.class) is also available from a mock
control.

There are three groups of scenarios that exist when recording
behavior: void methods, non void methods and methods that
throw exceptions. Each of which is handled slightly different.

Void methods

Void methods are the easiest behavior to record. Since they do
not return anything, all that is required is to tell the mock object
what method is going to be called and with what parameters.
This is done by calling the method just as you normally would.

Code being tested
…
foo.bar();
String string = “Parameter 2”;
foo.barWithParameters(false, string);
…

Mocking the behavior
…
Foo fooMock = EasyMock.createMock(Foo.class);

fooMock.bar();
fooMock.barWithParameters(false, “Parameter 2”);
…

Methods that return values
When methods return values a mock object needs to be told the
method call and parameters passed as well as what to return.
The method EasyMock.expect() is used to tell a mock object to
expect a method call.

Code to be tested
…
String results = foo.bar();
String string = “Parameter 2”;
BarWithParametersResults bwpr = foo.
barWithParameters(false, string);
…

Mocking the behavior
…
Foo fooMock = EasyMock.createMock(Foo.class);

EasyMock.expect(foo.bar()).andReturn(“results”);
EasyMock.expect(foo.barWithParameters(false, “Parameter
2”))
 .andReturn(new BarWithParametersResults());
…

Methods that throw Exceptions
Negative testing is an important part of unit testing. In order to
be able to test that a method throws the appropriate exceptions
when required, a mock object must be able to throw an
exception when called.

Use strict mocks if the order of processing
matters.

Hot
Tip

EasyMock mock object lifecycle, continued

http://www.dzone.com
http://www.refcardz.com

JUnit and EasyMock

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Methods that throw Exceptions, continued Matchers In EasyMock, continued

Repeated Calls

There are times where a method will be called multiple times
or even an unknown number of times. EasyMock provides
the ability to indicate those scenarios with the .times(),
.atleastOnce() and .anyTimes() methods.

…
Foo fooMock = EasyMock.createMock(Foo.class);

EasyMock.expect(foo.bar()).andReturn(“results”).
anyTimes();
EasyMock.expect(foo.barWithParameters(false, “Parameter
2”))
 .andReturn(new BarWithParametersResults()).
atLeastOnce();
…

Once the behavior of the mock objects has been recorded with
expectations, the mock objects must be prepared to replay
those expectations. Mock objects are prepared by calling the
replay() method and passing it all of the mock objects to be
replayed.

Replaying expectations in EasyMock
…
Foo fooMock = EasyMock.createMock(Foo.class);
EasyMock.expect(fooMock.doSomething(parameter1,
parameter2)).andReturn(new Object());

EasyMock.replay(fooMock);
…

Matchers in EasyMock

When replaying recorded behavior in EasyMock, EasyMock uses
the .equals() to compare if the passed parameters are what are
expected or not. On many objects, this may not be the desired
behavior (arrays are one example). EasyMock has a collection
of matchers to solve this issue. Matchers are used to compare
things in ways other than the .equals() method. Custom
matchers can be created by implementing the org.easymock.
IArgumentMatcher interface.

Matcher in action
...
String [] array1 = {“one”, “two”, “three”};

Foo fooMock = EasyMock.createMock(Foo.class);

EasyMock.expect(fooMock.getMiddleElement(
EasyMock.aryEq(array1)).andReturn(“two”);
…

Code to be tested
…
try {
 String fileName = “C:\tmp\somefile.txt”;
 foo.bar(fileName);
} catch (IOException ioe) {
 foo.close();
}
…

Mocking the behavior
…
Foo fooMock = EasyMock.createMock(Foo.class);

EasyMock.expect(fooMock.bar(“C:\tmp\somefile.txt”))
 .andThrow(new IOException());

foo.close();
…

rEpLAyINg bEhAvIOr WITh EASyMOCk

Method Description

.atLeastOnce() Requires that the method call be executed 1 or more times.

.times(int min,
int max)

The number of times the method is called must fall within the
specified range (inclusive).

.anyTimes() Requires that the method be called 0 or more times.

Table 7. Time methods

Table 8. Matcher in action

Method Description

eq(float x, float range),
eq(double x, double range)

Accepts any value of a float or double within
the appropriate ± range.

aryEq(Array x) Compares the array based on the Array.
equals() method.

isNull() Accepts only null

notNull() Accepts any object that is not null

same(Object x) Compares x based on the == method instead
of .equals()

isA(Class clazz) Accepts any object if it is an instance of,
descendant of or implements clazz.

lt(NumericPrimitave x),
leq(NumericPrimitave x),
geq(NumericPrimitave x),
gt(NumericPrimitave x)

Accepts a numeric primitive <, ≤, ≥, > the
number provided.

startsWith(String x),
contains(String x),
endsWith(String x)

Accepts any String that starts with, contains or
ends with the specified String. x is an actual
value not a regular expression.

and(x, y), or(x, y), not(x) Accepts an object that is either equal to x and
y, x or y, or not x respectively

vALIDATION Of ExpECTATIONS
WITh EASyMOCk

The final step in the mock object lifecycle is to validate that
all expectations were met. That includes validating that all
methods that were expected to be called were called and that
any calls that were not expected are also noted. To do that,
EasyMock.verify() is called after the code to be tested has
been executed. The verify() method takes all of the mock
objects that were created as parameters, similar to the replay()
method.

Validating method call expectations
…
Foo fooMock = EasyMock.createMock(Foo.class);
EasyMock.expect(fooMock.doSomething(parameter1,
Parameter2)).andReturn(new Object());

EasyMock.replay(fooMock);
Bar bar = new Bar();
bar.setFoo(fooMock);

EasyMock.replay(fooMock);
bar.runFoo();
EasyMock.verify(fooMock);
…

Method Description

eq(Object obj) Accepts a value that is equal to obj

anyBooelan(),anyByte(),
anyChar(), anyDouble(),
anyFloat(), anyInt(),
anyLong(), anyObject,
anyShort()

Accepts any value of the corresponding type.

http://www.dzone.com
http://www.refcardz.com

6
JUnit and EasyMock

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-28-8
ISBN-10: 1-934238-28-7

9 781934 238288

5 0 7 9 5

AbOUT ThE AUThOr

JUnit in Action, Second Edition is an up-to-date
guide to unit testing Java applications (including
Java EE applications) using the JUnit framework and
its extensions. This book provides techniques for
solving real-world problems such as testing AJAX
applications, using mocks to achieve testing isola-
tion, in-container testing for Java EE and database

applications, and test automation.

rECOMMENDED bOOk

Michael T Minella
Michael Minella’s technical background runs the gambit.

From the first programming language he ever learned, main-

frame Assembler, to the languages he is using now (Java and

Ruby) he has been all over the map. His passion is in quality

software development and the sharing of knowledge with

others thru mentoring and formal teaching.

Blog and Tutorials
http://www.michaelminella.com bUy NOW

books.dzone.com/books/junit

USEfUL ONLINE rESOUrCES

Technology URL

Mock Objects http://www.mockobjects.com

EasyMock http://www.easymock.org

JUnit http://www.junit.org

JUnit http://junit.sourceforge.net

Test Driven Development http://www.testdriven.com

Yahoo EasyMock Group http://groups.yahoo.com/group/easymock

Yahoo JUnit Group http://tech.groups.yahoo.com/group/junit

The internet holds a large collection of resources on test driven
development, JUnit and EasyMock. Table 10 lists just a few of the
more popular resources.

Table 10. Resources

JUnit provides a basic set of functionality that is applicable to
all types of testing. JUnit extensions are projects that add on
features that are specific to a particular type of testing. Table 9
shows a list of the more popular extensions.
Add-on URL Use

DbUnit http://dbunit.
sourceforge.net/

Provides functionality relevant to database testing
including data loading and deleting, validation of data
inserted, updated or removed from a database, etc.

HttpUnit http://httpunit.
sourceforge.net/

Impersonates a browser for web based testing.
Emulation of form submission, JavaScript, basic http
authentication, cookies and page redirection are all
supported.

EJB3Unit http://ejb3unit.
sourceforge.net/

Provides necessary features and mock objects to be
able to test EJB 3 objects out of container.

JUnitPerf http://clarkware.
com/software/
JUnitPerf.html

Extension for creating performance and load tests with
JUnit.

JUNIT ExTENSIONS

Table 9. JUnit Extensions

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
MySQL

Agile Methodologies

Seam

Core CSS: Part III

Ruby

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Spring Annotations

Getting Started with MyEclipse

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

IntelliJ IDEA

jQuerySelectors

Flexible Rails: Flex 3 on Rails 2

Windows PowerShell

Dependency Injection in EJB 3

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

frEE

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
books.dzone.com/books/junit
books.dzone.com/books/junit
books.dzone.com/books/junit
http://www.mockobjects.com
http://www.easymock.org
http://www.junit.org
http://junit.sourceforge.net
http://www.testdriven.com
http://groups.yahoo.com/group/easymock
http://tech.groups.yahoo.com/group/junit
http://dbunit.sourceforge.net/
http://dbunit.sourceforge.net/
http://httpunit.sourceforge.net/
http://httpunit.sourceforge.net/
http://ejb3unit.sourceforge.net/
http://ejb3unit.sourceforge.net/
http://clarkware.com/software/JUnitPerf.html
http://clarkware.com/software/JUnitPerf.html
http://clarkware.com/software/JUnitPerf.html
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com/refcardz/silverlight2
http://refcardz.dzone.com/refcardz/intellij-idea
http://refcardz.dzone.com/refcardz/jquery-selectors
http://refcardz.dzone.com/refcardz/flexible-rails
http://refcardz.dzone.com/refcardz/windows-powershell
http://refcardz.dzone.com/refcardz/dependency-injection-in-ejb3
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns

