
Introduction to Apache Maven 2
Skill Level: Intermediate

Sing Li (westmakaha@yahoo.com)
Author
Wrox Press

19 Dec 2006

Modern software projects are no longer solely monolithic creations of single local
project teams. With the increased availability of robust, enterprise-grade open source
components, today's software projects require dynamic collaboration among project
teams and often depend on a mix of globally created and maintained components.
Now in its second generation, the Apache Maven build system -- unlike legacy build
tools created before the Internet-enabled era of global software development -- was
designed from the ground up to take on these modern challenges. This tutorial gets
you started with Maven 2.

Section 1. Before you start

Modern software development based on robust, enterprise-grade open source
technologies requires a new breed of build and project collaboration tool. The engine
at the core of Apache Maven 2 works to simplify building and managing large and
often complex collaborative software projects. Yet Maven 2's design aims to be
friendly even to developers unfamiliar with the challenges of working in large project
team environments. Focusing initially on the beginner single developer, this tutorial
gradually introduces some of the collaborative concepts and features that are
available with Maven 2. You are encouraged to build on the introduction this tutorial
provides by exploring the advanced features of Maven 2 that are beyond its scope.

About this tutorial

This tutorial guides you step-by-step through the fundamental concepts and
hands-on exercises with Maven 2:

• Overview of Maven 2

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 33

mailto:westmakaha@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

• Understanding the Maven 2 dependency management model

• Maven 2 repository and Maven 2 coordinates

• Maven 2 life cycles, phases, plug-ins, and mojos

• Downloading and installing Maven 2

• Hands-on Maven 2 -- your first Maven 2 project

• Customizing the project object model (POM)

• Working with multiple projects

• Hands-on Maven 2 -- working with multiple project builds

• Installing the Maven 2.x Plug-in for Eclipse 3.2

• Working with the Maven 2.x Plug-in for Eclipse 3.2

As you complete this tutorial, you will gain an appreciation and understanding of the
philosophy behind the design of Maven 2. Furthermore, you will be familiar with the
fundamental skills required to work on projects built using Maven 2. This is a
passport to most of the large projects in the Apache and Codehaus communities.
Most important, you'll be ready to apply Maven 2 to your daily project build and
management activities.

Prerequisites

You should be familiar with Java™ development in general. This tutorial assumes
that you understand the value and basic operations of a build tool, including
dependency management and output packaging. You need to be able to work with
Eclipse 3.2 as an IDE to work through the Maven 2.x Plug-in for Eclipse section. An
exposure to large open source projects, such as those under the Apache Software
Foundation's management, is highly valuable. An understanding of Java 5 coding,
including generics, is helpful. Experience working with various project building
technologies such as Ant, autoconf, make, and nmake is beneficial but not
mandatory.

System requirements

To follow along and try out the code for this tutorial, you need a working installation
of Sun's JDK 1.5.0_09 (or later) or the IBM JDK 1.5.0 SR3.

For the sections on the Maven 2.x Plug-in for Eclipse, you need a working
installation of Eclipse 3.2.1 or later.

The recommended system configuration for the tutorial is:

• A system supporting the JDK/JRE mentioned above with at least 1GB of

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 2 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://java.sun.com/javase/downloads/index.jsp
http://www.ibm.com/developerworks/java/jdk/
http://www.eclipse.org/downloads/
http://www.ibm.com/legal/copytrade.shtml

main memory

• At least 20MB of disk space to install the software components and
examples

The instructions in the tutorial are based on a Microsoft Windows operating system.
All of the tools covered in the tutorial also work on Linux® and UNIX® systems.

Section 2. Overview of Maven 2

Maven is a top-level open source Apache Software Foundation project, created
originally to manage the complex build process of the Jakarta Turbine project. Since
this humble beginning, development projects in both the open source and the private
realm have embraced Maven as the project build system of choice. Rapidly evolving,
and now in version 2, Maven has grown from a customized build tool for a single
complex project to a generalized build management system with a cornucopia of
features applicable to most software development scenarios.

In a nutshell, Maven 2:

• Understands how a project is typically built.

• Makes use of its built-in project knowledge to simplify and facilitate project
builds.

• Leverages its built-in project knowledge to help users understand a
complex project's structure and potential variations in the build process.

• Prescribes and enforces a proven dependency management system that
is in tune with today's globalized and connected project teams.

• Provides a simple and unintrusive user experience for simple projects,
leveraging its internal knowledge.

• Is completely flexible for power users; the built-in models can be
overridden and adapted declaratively (via configuration, modification of
metadata, or creation of custom plug-ins) for specific application
scenarios.

• Is fully extensible for scenario details not yet covered by existing
behaviors.

• Is continuously improved by capturing any newfound best practices and
identified commonality between user communities and making them a
part of Maven's built-in project knowledge.

Maven 2 -- A conceptual overview

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 33

http://www.ibm.com/legal/copytrade.shtml

To capture project-building knowledge, Maven 2 relies on an evolving set of
conceptual models of how things should work. These models, partially hardcoded as
part of the Maven 2 code base, are constantly refined through new Maven releases.
Figure 1 illustrates the key Maven 2 models:

Figure 1. Maven 2 object and operation models

The key components in Figure 1 are:

• Project object model (POM): The POM is a cornerstone model for
Maven 2. Part of this model is already built into the Maven engine (fondly
called the reactor), and you provide other parts declaratively through an
XML-based metadata file named pom.xml.

• Dependency management model: Maven is particular about how
project dependencies are managed. Dependency management is a gray
area that typical build-management tools and systems choose not to be
specific about. The Maven dependency management model is built into
Maven 2 and can be adapted to most requirements. This model is a
proven workable and productive model currently deployed by major open
source projects.

• Build life cycle and phases: Coupled to the POM are the notions of
build life cycle and phases. This is Maven 2's interface between its built-in
conceptual models and the real physical world. When you use Maven,
work is performed exclusively via plug-ins. Maven 2 orchestrates these
plug-ins, following a series of well-defined phases in a build cycle.

Don't worry if some of these concepts still seem a little fuzzy. The following sections
provide concrete examples solidifying the concepts behind these models.

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 4 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Maven 2 -- A physical overview

Figure 2 reveals the operation of and interactions with Maven 2, exposing its
physical composition. Figure 2 provides you with a view of how you might interact
with Maven 2:

Figure 2. Maven 2 operation and interaction model

In Figure 2, the POM is Maven's understanding of your particular project. This model
is formed by declarative descriptions contained in a series of pom.xml files. The
pom.xml files form a tree, and each can inherit attributes from its parent. Maven 2
provides a Super POM. The Super POM sits at the top the hierarchy tree and
contains default common attributes for all projects; every project POM inherits from
it.

Dependencies are specified as part of the pom.xml file. Maven resolves project
dependencies according to its dependency management model. Maven 2 looks for
dependent components (called artifacts in Maven terminology) in local and global
repositories. Artifacts resolved in remote repositories are downloaded to the local
repository for efficiency of subsequent access. The dependency resolver in Maven 2
can deal with transitive dependencies. That is, it works properly when resolving
dependencies that your dependencies depend on.

The Maven engine itself performs almost all its file-handling tasks through plug-ins.
Plug-ins are configured and described in the pom.xml file. The plug-ins themselves

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 33

http://www.ibm.com/legal/copytrade.shtml

are handled as artifacts by the dependency management system and are
downloaded on demand as they are needed for a build task. Each plug-in can be
associated with the various phases of a life cycle. The Maven engine has a state
machine that marches through the life-cycle phases and invokes plug-ins as
necessary.

Section 3. Understanding the Maven 2 dependency
management model

You need to understand how the Maven 2 dependency management model works
before you can make use of Maven 2 effectively.

The dependency management model is adapted for projects whose software
components (called modules) might be developed by different project teams. It
supports continuous independent development and refinement of all dependent
modules.

This team collaboration scenario is the norm with open source projects founded and
maintained over the Internet and is becoming more prevalent in corporate circles
where in-house development meets the open source or the outsourced world.

Resolving project dependencies

The Maven 2 dependency management engine helps resolve project dependencies
during the build process.

Maven local and remote repositories
Your Maven 2 local repository is a directory on your disk, typically
located at HomeDirectory/.m2/repository. This repository acts as a
high-performance local cache, storing any artifacts downloaded as a
result of dependency resolution. Remote repositories are accessed
over the network. You can maintain a list of remote repositories to
use in your settings.xml configuration file.

In practice, dependencies are specified in <dependencies> elements within a
pom.xml file and are fed into Maven as part of the POM.

Project dependencies are stored on repository servers (simply called repositories in
Maven terminology). Successful dependency resolution depends on finding the
required dependent artifact from a repository that contains the artifact.

Maven configuration through settings.xml
You can specify configuration properties that affect Maven operation
in a settings.xml file. The default settings file is
MavenInstallationDirectory/conf/settings.xml. Maven 2 users can

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 6 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

maintain UserHomeDirectory/.m2/settings.xml to override some
configuration properties. See the Maven settings reference for more
information on the configurable settings.

Based on the project dependency information in the POM, the dependencies
resolver attempts to resolve the dependencies in the following order:

1. Your local repository is checked for the dependency.

2. A list of remote repositories is checked for the dependency.

3. Failing 1 and 2, an error is reported.

By default, the first remote repository contacted in step 2 is a worldwide-accessible
centralized Maven 2 repository containing artifacts for most popular open source
projects. In the case of in-house development, you can set up additional remote
repositories containing release artifacts from in-house developed modules. The
<repositories> element in settings.xml can be used to configure these additional
remote repositories.

Single copy of artifact enforced

When you use Maven 2 for your project builds, the dependency resolution via a
centralized repository ensures that only a single copy of a dependent artifact exists,
regardless of how many projects or subprojects reference it. This is a vital property
for multimodule project builds because inclusion of multiple copies of artifacts can
lead to project consistency and integrity problems.

Section 4. Repositories and coordinates

Maven 2 repositories store a collection of artifacts used by Maven during
dependency resolution for a project. Local repositories are accessed on the local
disk, and remote repositories are accessed through the network.

An artifact is usually bundled as a JAR file containing the binary library or
executable. This is known as an artifact's type. In practice, however, an artifact can
also be a WAR, EAR, or other code-bundling type.

Maven 2 takes advantage of an operating system's directory structure for quick
indexing of the collection of artifacts stored within a repository. This repository index
system relies on the ability to identify any artifact uniquely via its coordinate.

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 33

http://maven.apache.org/settings.html
http://www.ibm.com/legal/copytrade.shtml

Maven coordinates

A Maven coordinate is a tuple of values that uniquely identifies any artifact. A
coordinate comprises three pieces of information:

• The group ID: The entity or organization responsible for producing the
artifact. For example, com.ibm.devworks can be a group ID.

• The artifact ID: The name of the actual artifact. For example, a project
with a main class called OpsImp may use OpsImp as its artifact ID.

• The version: A version number of the artifact. The supported format is in
the form of mmm.nnn.bbb-qqqqqqq-dd , where mmm is the major
version number, nnn is the minor version number, and bbb is the bugfix
level. Optionally, either qqqqq (qualifier) or dd (build number) can also
be added to the version number.

Maven coordinates are used throughout Maven configuration and POM files. For
example, to specify a project dependency on a module entitled OpsImp at the
1.0-SNAPSHOT level, a pom.xml file includes the segment shown in Listing 1:

Listing 1. Maven coordinate for an example OpsImp module

<dependencies>
<dependency>

<groupId>com.ibm.devworks</groupId>
<artifactId>OpsImp</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>
</dependencies>

The special SNAPSHOT qualifier tells Maven 2 that the project or module is under
development and that it should fetch the latest copy of the artifact available.

To specify that the project depends on JUnit for unit testing, JUnit 3.8.1's
coordinates can be added as a dependency in the project's pom.xml, as shown in
Listing 2:

Listing 2. Maven coordinate for a JUnit dependency

<dependencies>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>

</dependency>
</dependencies>

Looking into a Maven repository

Because Maven repositories are ordinary directory trees, you can readily take a look

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 8 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

at how artifacts are stored on disk. Figure 3 is a portion of the local repository,
showing the location of the JUnit 3.8.1 artifact:

Figure 3. Inside a Maven 2 repository

In Figure 3, you can see that Maven maintains an artifact's POM file, together with

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 33

http://www.ibm.com/legal/copytrade.shtml

checksum hashes for both the artifact and its POM in the repository. These files help
ensure artifact integrity when artifacts are transferred between repositories. This
artifact has been downloaded from the central repository and placed into the local
repository by Maven's dependency management engine.

In Figure 4, the artifact with coordinates
com.ibm.devworks/OpsImp/1.0-SNAPSHOT is shown in the local repository.
The artifact is in the directory together with the POM file. In this case, the artifact is
installed locally.

Figure 4. OpsImp artifact in a local repository

Section 5. Maven 2 life cycles, phases, plug-ins, and
mojos

Maven accomplishes most of its build tasks through the action of plug-ins. You can
think of the Maven engine as an orchestrator of plug-in actions.

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 10 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Mojos in plug-ins

Plug-ins are software modules written to fit into Maven's plug-in framework.
Currently, custom plug-ins can be created using Java, Ant, or Beanshell. Each task
within a plug-in is called a mojo. Sometimes, plug-ins are viewed as a set of related
mojos. Creating custom Maven 2 plug-ins is beyond this tutorial's scope; see
Resources for more information.

Maven 2 comes prepackaged to download and work with many frequently used
plug-ins. Most typical development tasks do not require the use of additional
plug-ins.

Before you set out to write your own plug-ins, you should first consult the popular
Maven 2 plug-in listing Web sites (see Resources) to see if the plug-in you need is
already available. Figure 5 shows the Maven Plugin Matrix (see Resources), which
provides compatibility information for many available plug-ins:

Figure 5. Maven Plugin Matrix

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 33

http://www.ibm.com/legal/copytrade.shtml

Binding mojos to life cycle phases

A mojo (build task) within a plug-in is executed when the Maven engine executes the
corresponding phase on the build life cycle. The association between a plug-in's
mojo and a phase of the life cycle is called a binding. Plug-in developers can flexibly
associate one or more life-cycle phases with a plug-in.

Phases of the default life cycle

Maven's built-in understanding of a build life cycle consists of many distinct phases.
Table 1 provides a brief description of each phase:

Table 1. Maven 2 default life-cycle phases
Life-cycle phase Description

validate Ensures that the current configuration
and the content of the POM is valid. This
includes validation of the tree of pom.xml
files.

initialize A chance to carry out any initialization
prior to the main tasks in a build cycle.

generate-sources A chance for code generators to start
generating source code that can be
processed or compiled in the later
phases.

process-sources Provided for the parsing, modification,
and transformation of the source. Both
regular and generated source code can
be processed here.

generate-resources A chance to generate non-source-code
resources. This typically includes
metadata files and configuration files.

process-resources Handles the processing of the
non-source-code resources.
Modifications, transformation, and
relocation of resources can occur during
this phase.

compile Compiles the source code. The compiled
classes are placed into a target directory
tree.

process-classes Handles any class file transformation and
enhancement steps. Bytecode weavers
and instrumentation tools often operate
during this phase.

generate-test-sources A chance for mojos that generate
unit-test code to operate.

process-test-sources Executes any processing necessary on
the test source code prior to compilation.
Source code can be modified,

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 12 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

transformed, or copied during this phase.

generate-test-resources Allows for the generation of test-related
(non-source-code) resources.

process-test-resources Enables processing, transformation, and
relocation of test-related resources.

test-compile Compiles the source code of the unit
tests.

test Runs the compiled unit tests and tallies
the results.

package Bundles the executable binaries into a
distribution archive, such as a JAR or
WAR.

pre-integration-test Prepares for integration testing.
Integration testing in this case refers to
testing of the code in (a controlled clone)
of the actual deployment environment.
This step can deploy the archive to a
server for execution.

integration-test Carries out actual integration tests.

post-integration-test Unprepares for integration testing. This
can involve reset or reinitialization of the
testing environment.

verify Verifies the validity and integrity of the
deployable archive. After this phase, the
archive will be installed.

install Adds the archive to the local Maven
directory. This makes it available for any
other modules that may depend on it.

deploy Adds the archive to a remote Maven
directory. This can make the artifact
available to a larger audience.

Maven captures more than a decade of project build management experience from
the open source community. You will be hard-pressed to find a software project
whose build cycle cannot fit into the life-cycle phases in Table 1.

When you start Maven 2's engine, it marches in order through each phase in Table 1
and executes any mojo that may be bound to that phase. Each mojo in turn can use
Maven 2's rich POM support, dependency management, and access to build-state
information in performing its dedicated task.

When you invoke the Maven 2 engine, you can specify a life-cycle phase as a
command-line argument. The engine works through all the phases up to and
including the specified phase. All mojos in the included phases are triggered.

This, in a nutshell, is how Maven 2 operates. You will see the operation first-hand in
the next section. With a background understanding of Maven's operation, its
dependency management model, and its POM, you'll find working hands-on with
Maven 2 to be a straightforward exercise.

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 33

http://www.ibm.com/legal/copytrade.shtml

Section 6. Downloading and installing Maven 2

Downloading and installing Maven 2 distills down to the following steps:

1. Download the Maven 2 binaries from the official Maven project site (see
Resources).

2. Unarchive the distribution binaries into a directory of your choice.

3. Add the InstallationDirectory\bin directory to your PATH variable.

To verify your installation, key the mvn -help command. You'll see the help page
shown in Listing 3:

Listing 3. Using the mvn -help command to verify installation

C:\>mvn -help

usage: mvn [options] [<goal(s)>] [<phase(s)>]

Options:
-C,--strict-checksums Fail the build if checksums
don't match
-c,--lax-checksums Warn if checksums don't match
-P,--activate-profiles Comma-delimited list of profiles
to

activate
-ff,--fail-fast Stop at first failure in
reactorized builds
-fae,--fail-at-end Only fail the build afterwards;
allow all

non-impacted builds to continue
-B,--batch-mode Run in non-interactive (batch)
mode
-fn,--fail-never NEVER fail the build, regardless
of project

result
-up,--update-plugins Synonym for cpu
-N,--non-recursive Do not recurse into sub-projects
-npr,--no-plugin-registry Don't use
~/.m2/plugin-registry.xml for

plugin versions
-U,--update-snapshots Update all snapshots regardless
of

repository policies
-cpu,--check-plugin-updates Force upToDate check for any
relevant

registered plugins
-npu,--no-plugin-updates Suppress upToDate check for any
relevant

registered plugins
-D,--define Define a system property
-X,--debug Produce execution debug output
-e,--errors Produce execution error messages
-f,--file Force the use of an alternate
POM file.
-h,--help Display help information
-o,--offline Work offline

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 14 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

-r,--reactor Execute goals for project found
in the

reactor
-s,--settings Alternate path for the user
settings file
-v,--version Display version information

Section 7. Hands-on Maven 2 : Your first Maven 2
project

In the first hands-on example, you'll see how you can build simple projects using
Maven 2 with minimal effort. Maven 2's built-in knowledge about Java projects
eliminates tedious configuration that may be necessary with other build tools.

A class handling numeric operations

The example uses a class that handles numeric operations. The source code for the
main class, called NumOps, is shown in Listing 4:

Listing 4. The NumOps class

package com.ibm.devworks;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class NumOps {
private List <Operation> ops = new ArrayList

<Operation>();
public NumOps() {

ops.add(new AddOps());
}
public Operation getOp(int i)
{ Operation retval;
if (i > ops.size())

{ retval = null;
} else {

retval = (Operation) ops.get(i);
} return retval;

}
public int size() {

return ops.size();
}
public static void main(String[] args) {

NumOps nop = new NumOps();
for (int i=0; i < nop.size(); i++) {
System.out.println("2 " +

nop.getOp(i).getDesc() +
" 1 is " +
nop.getOp(i).op(2,1));

}
}

}

The NumOps class manages a set of objects capable of performing numeric

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 33

http://www.ibm.com/legal/copytrade.shtml

operations on two integers. The main method creates a NumOps instance and then
calls each of the objects managed by NumOps, calling its getDesc() method and
op() method respectively. All of the objects managed by NumOps implement the
Operation interface, defined in Operation.java and shown in Listing 5:

Listing 5. The Operation interface

package com.ibm.devworks;

public interface Operation {
int op(int a, int b);
String getDesc();

}

The only operation defined in this initial example is an AddOps class, shown in
Listing 6:

Listing 6. The AddOps class

package com.ibm.devworks;

public class AddOps implements Operation {
public int op(int a, int b) {

return a+b;
}
public String getDesc() {

return "plus";
}

}

When you execute the NumOps class, it prints the following output:

2 plus 1 is 3

Using Archetype to create the initial project

To create everything you need for a simple Java project that can be built using
Maven, you can use the Archetype plug-in, which comes standard with Maven 2.
Unlike the build-phase plug-ins, the Archetype plug-in runs outside of a Maven
project build life-cycle and is used to create Maven projects. Issue the following
command (type all of the command on one line) from the directory that you want to
contain the NumOps project:

mvn archetype:create -DarchetypeGroupId=org.apache.maven.archetypes
-DgroupId=com.ibm.devworks -DartifactId=NumOps

The command provides the Archetype plug-in with the coordinates of your module:
com.ibm.devworks/NumOps/1.0-SNAPSHOT. You don't need to specify the
version in this case because the Archetype plug-in always defaults to
1.0-SNAPSHOT. This command creates a starter pom.xml file for the project, along
with the conventional Maven 2 directory structure. You'll find the code in this

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 16 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

tutorial's source-code download under the example1 directory (see Download).

The output should be similar to Listing 7:

Listing 7. Using Maven Archetype to create the NumOps project

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] ---

[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:create] (aggregator-style)
[INFO] ---

[INFO] Setting property: classpath.resource.loader.class => 'org.codehaus.plexus

...

[INFO] [archetype:create]
[INFO] Defaulting package to group ID: com.ibm.devworks
[INFO] ---

[INFO] Using following parameters for creating Archetype: maven-archetype-quicks
tart:RELEASE
[INFO] ---

[INFO] Parameter: groupId, Value: com.ibm.devworks
[INFO] Parameter: packageName, Value: com.ibm.devworks
[INFO] Parameter: basedir, Value: C:\temp\maven
[INFO] Parameter: package, Value: com.ibm.devworks
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: NumOps
[INFO] ********************* End of debug info from resources from generated POM

[INFO] Archetype created in dir: C:\temp\maven\NumOps
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 second
[INFO] Finished at: Sat Dec 02 22:04:02 EST 2006
[INFO] Final Memory: 4M/8M
[INFO] --

The Archetype plug-in creates a directory tree, a pom.xml file, and a placeholder
App.java application. It also creates a directory tree for unit-test source code and a
placeholder AppTest.java unit test. This project is ready to go. Figure 6 shows the
directory and files created by the Archetype plug-in:

Figure 6. Archetype-generated directory and files

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 33

http://www.ibm.com/legal/copytrade.shtml

All you need to do is to move the NumOps.java, Operation.java, and AddOps.java
files into the location where App.java is and remove App.java. In the next section,
you'll make some changes to customize the generated pom.xml.

Section 8. Customizing the POM

Maven 2 learns about your project via the pom.xml file. The file generated by the
Archetype for NumOps is shown in Listing 8:

Listing 8. The Archetype-generated POM - pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ibm.devworks</groupId>
<artifactId>NumOps</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>Maven Quick Start Archetype</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 18 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Note how the Archetype has defined the module's coordinates, defined the type as a
JAR archive, and also specified JUnit as a dependency during the test phase (via
the <scope> tag). To customize this pom.xml file for the new project, make the
minor modifications highlighted in Listing 9:

Listing 9. Customizing the generated pom.xml for the NumOps project

<project xmlns=http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ibm.devworks</groupId>
<artifactId>NumOps</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>Intro to Maven 2 Example 1</name>

<url>http://www.ibm.com/java</url>
<build>
<plugins>

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

The additional <build> tag is necessary to override the source and target the Java
code level. By default, JDK 1.4 is assumed, but your code uses generics and
requires JDK 5.0 compilation.

Compiling the customized project

You can now compile the NumOps project using the mvn compile command. This
command causes the Maven 2 engine to march through the build life cycle to the
compile phase, executing mojos along the way. You should see the report of a
successful build, creating three class files in the target tree (shown in Listing 10).
This can take a little while if it is the first time you run it because some dependencies
might need to be downloaded from the central repository over the Internet.

Listing 10. Output from mvn compile on the NumOps project

[INFO] Scanning for projects...
[INFO] ---

[INFO] Building Intro to Maven 2 Example 1
[INFO] task-segment: [compile]

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 33

http://www.ibm.com/legal/copytrade.shtml

[INFO] ---

[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
Compiling 3 source files to C:\temp\maven\NumOps\target\classes
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 second
[INFO] Finished at: Sat Dec 02 22:52:16 EST 2006
[INFO] Final Memory: 3M/7M
[INFO] --

Adding a unit test

Development best practices require unit tests on all code modules. Maven 2 created
a placeholder AppTest.java unit test for you. Now rename the file to
NumOpsTest.java and make the highlighted changes shown in Listing 11 to the
generated unit test. You can also copy the unit test source code from the source
code download (see Download).

Listing 11. Adding the NumOpsTest unit test to the project

package com.ibm.devworks;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

/**
* Unit test for simple App.
*/
public class NumOpsTest

extends TestCase
{

/**
* Create the test case
*
* @param testName name of the test case
*/

public NumOpsTest(String testName)
{

super(testName);
}

...

public void testNumOps()
{
NumOps nops = new NumOps();
assertTrue(nops.size() == 1);

assertTrue(
nops.getOp(0).getDesc().equals("plus"));

assertTrue(nops.getOp(0).op(2,1) == 3);

}
}

You can now run all the mojos up to the test phase using the mvn test command.

Maven 2 compiles the source and the unit test. It then runs the tests, reporting on
the number of successes, failures, and errors, as shown in Listing 12:

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 20 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 12. Executing mvn test to compile the project and run unit tests

[INFO] Scanning for projects...
[INFO] ---

[INFO] Building Intro to Maven 2 Example 1
[INFO] task-segment: [test]
[INFO] ---

[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
Compiling 1 source file to C:\temp\maven\NumOps\target\test-classes
[INFO] [surefire:test]
[INFO] Surefire report directory: C:\temp\maven\NumOps\target\surefire-reports

T E S T S

Running com.ibm.devworks.NumOpsTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.031 sec

Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 2 seconds
[INFO] Finished at: Sat Dec 02 23:04:27 EST 2006
[INFO] Final Memory: 3M/6M
[INFO] --

Section 9. Hands-on Maven 2: Working with multiple
project builds

Building and testing simple projects using Maven 2 is straightforward. This section
examines a second example demonstrating the more realistic and common case of
a multiple-modules project.

Extending the NumOps example

The NumOps example is extended in this second example. A new SubOps class is
added to support subtraction, and a new MulOps class is added to support
multiplication.

However, the Operation interface and the AddOps class are now removed from
the NumOps project. Instead, they are placed together with the new SubOps and
MulOps classes in a new project called OpsImp. Figure 7 shows this relationship
between the NumOps and OpsImp projects:

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 33

http://www.ibm.com/legal/copytrade.shtml

Figure 7. Relationship between NumOps and OpsImp

Dependencies among subprojects and submodules within a larger project is a
frequently occurring scenario in software development. You can apply the technique
shown here to any multimodule Maven project with interdependencies.

SubOps, shown in Listing 13, is coded similarly to AddOps. MulOps, not shown
here, is similar; you can take a look at the code distribution for details (see
Download).

Listing 13. The new SubOps class implementing the Operation interface

package com.ibm.devworks;

public class SubOps implements Operation {
public int op(int a, int b) {

return a-b;
}
public String getDesc() {

return "minus";
}

}

The constructor of NumOps has now been modified to create an instance of SubOps
and an instance of MulOps. See the source code distribution for details.

Creating a master project

To work with these two projects, a master project has been created one directory
above the NumOps and the OpsImp project directories. Both the NumOps and
OpsImp projects use the standard Maven project directory layout. At the top level,
the project directory consists of only a pom.xml file. Figure 8 shows the new
sub-directory structure, immediately under the master directory:

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 22 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 8. Directory structure for a multimodule project

You can find the code for this multimodule project in the example2 subdirectory of
the code distribution (see Download). The top-level pom.xml file is shown in Listing
14:

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 33

http://www.ibm.com/legal/copytrade.shtml

Listing 14. The top level pom.xml for the multimodule project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ibm.devworks</groupId>
<artifactId>mavenex2</artifactId>
<packaging>pom</packaging>
<version>1.0-SNAPSHOT</version>
<name>Maven Example 2</name>
<url>http://maven.apache.org</url>

<modules>
<module>NumOps</module>
<module>OpsImp</module>
</modules>

<build>
<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

<dependencyManagement>
<dependencies>

<dependency>
<groupId>com.ibm.devworks</groupId>
<artifactId>OpsImp</artifactId>
<version>${project.version}</version>

</dependency>
</dependencies>

</dependencyManagement>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

The new code is highlighted in bold. First, the artifact ID of this master project is
mavenex2, and its packaging type is pom. This signals to Maven 2 that this is a
multimodule project.

The <modules> tag then specifies the two modules that this project comprises:
NumOps and OpsImp.

The submodules of this master project can inherit properties from this pom.xml file.
More specifically, none of the submodules needs to declare JUnit as a dependency,
even though they both contain unit tests. This is because they inherit the JUnit
dependency defined at this top level.

The <dependencyManagement> tag does not specify dependencies that this
module depends on. Instead, it is used mainly by submodules. Submodules can
specify a dependency on any of the entries within the <dependencyManagement>
tag without specifying a specific version number. This is useful for minimizing the
number of edits required when a tree of projects changes dependency version

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 24 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

numbers. In this case, the OpsImp project's version number is specified using
${project.version} This is a parameter that will be filled with the appropriate
value during Maven execution.

Inheriting from a master POM

Descending one level to the OpsImp directory, the pom.xml file for this module is
shown in Listing 15:

Listing 15. The pom.xml file for the new OpsImp project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<parent>
<groupId>com.ibm.devworks</groupId>
<artifactId>mavenex2</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>OpsImp</artifactId>
<packaging>jar</packaging>

</project>

The <parent> element specifies the master POM that this module inherits from.
Inheriting from the parent module simplifies this pom.xml greatly. All that is
necessary is to override the artifact ID and packaging. This module inherits the
parent's dependency: the JUnit module.

The NumOps pom.xml also inherits from the parent and is also quite simple. This
pom.xml is shown in Listing 16:

Listing 16. The pom.xml for the NumOps project showing POM inheritance

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<parent>
<groupId>com.ibm.devworks</groupId>
<artifactId>mavenex2</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>NumOps</artifactId>
<packaging>jar</packaging>
<dependencies>

<dependency>
<groupId>com.ibm.devworks</groupId>
<artifactId>OpsImp</artifactId>

</dependency>
</dependencies>

</project>

Discovering the effective POM
Whenever you are inheriting from a higher-level POM, you can
always find out what your equivalent pom.xml looks like after all the

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 33

http://www.ibm.com/legal/copytrade.shtml

inherited elements have been accounted for. The command to show
the "effective POM" is mvn help:effective-pom. You'll see
some elements that you have not specified yourself. These are
inherited from the Super POM. Every project pom.xml inherits
implicitly from Maven's built-in Super POM.

The interesting item in the NumOps POM is the specification of the OpsImp project
as a dependency. Note that no version number is specified in this dependency. The
preferred version number is already specified within the parent's
<dependencyManagement> element.

At the top-level project, you can now issue the mvn compile command to compile
both modules or mvn test to run the unit tests of both modules. You can also run
mvn install to install the packaged modules to your local directory. This allows
any modules that depend on it to resolve the dependency without requiring access
to the source code.

Section 10. Installing the Maven 2.x Plug-in for Eclipse
3.2

If you use the Eclipse IDE for your daily development, you should download and
install the Maven 2.x Plug-in for Eclipse. This plug-in facilitates your work with
Maven projects within the IDE. See Resources for project information on this plug-in.

You can use Eclipse's software update wizard to install the Maven 2.X Plug-in for
Eclipse:

1. From Eclipse's Help menu, select Software Updates>Find and Install....

2. Select Search for new features to install and click Next. You'll see the
update sites wizard, shown in Figure 9:
Figure 9. Eclipse update sites wizard

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 26 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

3. Click the New Remote Site button.

4. In the pop-up dialog, enter the Maven 2.x Plug-in for Eclipse updates site,
as shown in Figure 10:
Figure 10. Eclipse new remote site entry

5. Select the plug-in for installation and let the installation wizard restart the
workspace. After the restart, you are ready to use the features of the
Maven Plug-in for Eclipse.

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 33

http://www.ibm.com/legal/copytrade.shtml

Section 11. Working with the Maven 2 Plug-in for Eclipse
3.2

This section covers some of the frequently used features of the Maven 2.x Plug-in
for Eclipse.

You need to enable Maven nature on an Eclipse project before the Maven 2 plug-in
features are available with your project. Right-click on the project that you want to
add Maven support to and select Maven2>Enable.

To ensure your project's directory structure reflects Maven's expectations, you
should create your Maven directory structure (either manually or using an
Archetype) first and then add the project to Eclipse.

Live repository search for dependencies

Adding dependencies to a pom.xml is easy using the plug-in. Right-click on the
project's pom.xml and select Maven2>Add Dependency. This starts the Repository
Search wizard. Type the first few characters of the name of the dependency you're
looking for, and the wizard searches the central repository for any matching artifacts.
All details of the matching artifacts are presented to you to help you select the
dependency. Figure 11 shows the results of a search for JUnit artifacts:

Figure 11. Maven Repository Search wizard

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 28 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Once you have selected the artifact version you want and click OK, a new
<dependency> element is added to the pom.xml by the plug-in automatically.

Invoking a Maven build

A build involving any of the life-cycle phases can be started from Eclipse. First, make
sure the Maven-enabled project is currently open. Then, from the Eclipse menu,
select Run>External Tools>External Tools.... This displays the External Tools
wizard, as shown in Figure 12:

Figure 12. Building via Maven using the Eclipse External Tool wizard

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 29 of 33

http://www.ibm.com/legal/copytrade.shtml

Give this configuration a name and then select a life-cycle phase by clicking the
Goals... button. Click Run to run Maven.

The Maven output is displayed on Eclipse's Console tab.

Section 12. Summary

In this tutorial, you have:

• Explored the models and motivations behind Maven 2's design

• Gained an understanding of the all-important Maven POM

• Observed how the Maven repository and coordinate system simplifies
complex dependency management

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 30 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Worked with Maven 2 for quick and simple projects

• Learned how Maven 2 can help in larger, multimodule projects

• Experimented with the Maven 2 Eclipse Plug-in

• Had a first-hand look at how Maven 2 can facilitate part of your daily
project build and source/binary management activities

As software-development collaboration evolves, so will Maven evolve and adapt to
its needs. As the backbone build facility for most large open source projects, it is
guaranteed to benefit from continuous suggestions for improvement from the
developer communities.

Learning Maven 2 need not be difficult, once you understand its motivation and the
challenges that it aims to overcome. As a build tool, Maven 2 is usable productively
even by rank beginners developing projects in an isolated silo. Start using Maven 2
in your own development project or join one of the many open source development
communities, and soon you too will be influencing the course toward which Maven 2
will evolve.

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 31 of 33

http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download method

Sample code for this tutorial j-mavenv2.zip 34.1KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Introduction to Apache Maven 2
Page 32 of 33 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/java/j-mavenv2.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Maven project Web site: Get up-to-date detailed information on Maven 2,
including the settings reference and details on how to create custom plug-ins.

• Maven Plugin Matrix: Check this resource for plug-in compatibility information.

• Better Builds with Maven : An excellent and thorough book on Maven 2, written
by the creators and key committers from the Maven 2 open source project.

• The Java technology zone: Hundreds of articles about every aspect of Java
programming.

• Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

• Apache Maven 2: Download Maven 2 from the project site.

• Eclipse: Download the Eclipse SDK.

• Maven 2.x Plug-in for Eclipse : Download the latest version of the plug-in.

• Codehaus Mojo Project and the Apache Maven plug-ins list: Need more Maven
mojos? These sites hold entire catalogs of available Maven plug-ins.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

Sing Li
Sing Li is a consultant and an active author with more than two decades of industry
experience. He has contributed to Professional Apache Geronimo, Beginning
JavaServer Pages, Professional Apache Tomcat 5, Pro JSP - Third Edition, Early
Adopter JXTA, Professional Jini, Beginning J2ME: From Novice to Professional,
Third Edition, Professional Apache Geronimo, and numerous other books. Sing also
writes for technical magazines and participates in open source communities. He is an
evangelist of the open source, VOIP, and P2P movements. You can reach Sing at
westmakaha@yahoo.com.

ibm.com/developerWorks developerWorks®

Introduction to Apache Maven 2
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 33 of 33

http://maven.apache.org/
http://docs.codehaus.org/display/MAVEN/Maven+Plugin+Matrix
http://www.mergere.com/m2book_download.jsp
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://maven.apache.org/download.html
http://www.eclipse.org/downloads/
http://m2eclipse.codehaus.org/
http://mojo.codehaus.org/
http://maven.apache.org/plugins/index.html
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0471785431.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-076457485X.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-076457485X.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764559028.html
http://www.apress.com/book/bookDisplay.html?bID=256
http://www.apress.com/book/bookDisplay.html?bID=426
http://www.apress.com/book/bookDisplay.html?bID=426
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0471785431.html
mailto:westmakaha@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	 About this tutorial

	 Prerequisites

	System requirements

	Overview of Maven 2
	 Maven 2 -- A conceptual overview
	 Maven 2 -- A physical overview

	Understanding the Maven 2 dependency management model
	Resolving project dependencies
	Single copy of artifact enforced

	Repositories and coordinates
	Maven coordinates

	Looking into a Maven repository

	Maven 2 life cycles, phases, plug-ins, and mojos

	Mojos in plug-ins
	Binding mojos to life cycle phases
	Phases of the default life cycle

	Downloading and installing Maven 2

	Hands-on Maven 2 : Your first Maven 2 project
	
A class handling numeric operations

	
Using Archetype to create the initial project

	Customizing the POM
	
Compiling the customized project

	 Adding a unit test

	Hands-on Maven 2: Working with multiple project builds

	
Extending the NumOps example

	
Creating a master project

	
Inheriting from a master POM

	Installing the Maven 2.x Plug-in for Eclipse 3.2

	Working with the Maven 2 Plug-in for Eclipse 3.2

	Live repository search for dependencies
	Invoking a Maven build

	Summary
	Downloads
	Resources
	About the author

