
java.net > All Articles > http://today.java.net/pub/a/today/2007/03/01/building-web-applications-with-maven-2.html

Building Web Applications with Maven 2
by Will Iverson
03/01/2007

Contents
Getting Started
Maven 2 Commands
Maven 2 Versus Ant?
Adding Some Business Logic
Creating the WAR file
Tying Together the Logic and Web Application
Repositories
Summary
Resources

You may have heard of Maven 2--it's often touted by technologists as a replacement for Ant. You may have even taken some time to browse
around on the Maven 2 site, but maybe the documentation has left you a little bit unclear on where and how to go about getting started.

In this article, we will take a look at using Maven 2 to help build a simple web application (a bit of business logic in a JAR and a JSP-based web
application). By the end of this article, you should feel comfortable working with Maven 2, and ready to start using it as a much more satisfactory
tool than Ant (or even your IDE).

Getting Started
These instructions assume that you have installed Java 5 and Maven 2. The following two commands shown should work at your command line:

Everything else required for this project will be downloaded for you automatically by Maven 2 (obviously, a working internet connection is also
required). I used my Windows system to write this article, but everything here should work fine on Mac OS X, Linux, Solaris, etc.

From a high level, the project will be organized into two subprojects (one for the JAR and one for the WAR). Let's start by creating the base
directory for the project. This directory serves as the base for the other folders.

Now, let's create the two subprojects. Maven 2 supports the notion of creating a complete project template with a simple command. The project
templates (called “archetypes” in Maven) shown below are a subset of the full list of archetypes built in to Maven 2.

Project Template (Archetype) Purpose

maven-archetype-archetype Create your own project template (archetype).

maven-archetype-j2ee-simple Creates a J2EE project (EAR), with directories and subprojects for
the EJBs, servlets, etc.

maven-archetype-mojo Create your own Maven 2 plugins.

maven-archetype-quickstart Simple Java project, suitable for JAR generation. Maven 2 default.

maven-archetype-site Documentation-only site, with examples in several formats. You can
run this archetype on top of an existing Maven 2 project to add
integrated documentation.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

1 of 12 27/9/2008 06:13

maven-archetype-webapp Creates a web application project (WAR), with a simple Hello World
JSP.

These archetypes are analogous to the sample projects you might find in your IDE as defaults for standard "New Project…" options.

To create a simple Java project, you simply execute the command as shown.

The command invokes the Maven 2 system, in this case a request to run the plugin with the command. The
commands are simply setting Java system properties, thereby passing configuration information to Maven 2. Per the Maven 2 FAQ, the

 should follow the package name (reversed DNS of your website), and can contain subgroups as appropriate. For example, the sample
code for my books might use or . In this case, let's use the

.

The is specific to each artifact and by convention should be the filename, excluding extension. In this case, we would like to create
two artifacts, a JAR file containing the logic and a WAR file containing the web application. First, let's create the JAR file using the command as
shown below. Maven 2 tends to be quite verbose, and so I have trimmed the output shown here and and many of the other listings in this article
to focus on the elements of interest.

Looking at the resulting file structure, we can see that Maven 2 has done several things for us. It's created a fairly complete directory structure,
following many best practices for organizing code. The source code is broken into two directories, one for the code itself and one for the test
cases. The package structure is taken from the , and is mirrored in both the main code and the test case directory structure.

Figure 1. Source for JAR project layout

Clicking through the results, you will see folders and two Java source files--so far, nothing surprising.

In the root folder, however, we notice a file called pom.xml.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

2 of 12 27/9/2008 06:13

Figure 2. Maven 2 project file for JAR project

This file is essentially analogous to an IDE project file: it contains all of the information about a project, and is the file that Maven 2 uses to act
upon to execute commands. The contents of pom.xml:

There really isn't a lot in the standard pom.xml file. We can see the and , that the project is intended to build a JAR, and
that the current version is to 1.0-SNAPSHOT. The project uses JUnit 3.8.1 for unit tests. We could change the URL to point to our company or
project website and/or update the version number to something more appropriate, but for now this is fine. If you are curious, you can review the
schema for Maven pom.xml files.

Maven 2 makes heavy use of standard directory layouts to reduce clutter. It assumes that the source code and test code will be found in the
directory created by the project template. By specifying standard directory layouts, it easier to immediately start work on a project with spending
a lot of time relearning the build process. While it is possible to reconfigure Maven 2 to use custom directory layouts, I have found that it's
generally less work to simply use the Maven 2 layout. I have converted several projects of small to medium size from Ant to Maven 2, and found
that the size and complexity of my build files (from custom Ant build.xml files to Maven 2 pom.xml files) dropped by an order of magnitude. By
using Maven 2 templates (archetypes) and simply copying source files into the proper locations, I found that I wound up with much more
comprehensible project structures than the slowly accreted, custom Ant build.xml projects. While it is possible to force Maven 2 to fit into
arbitrary directory structures, that's probably not the place to start.

Maven 2 Commands
Maven 2 supports two kinds of commands that can be run on projects (pom.xml files). The first type of command is a plugin command. Plugin
commands include things like "copy a set of files," "compile a source tree," etc. The other type of command is a lifecycle command. A lifecycle
command is a series of plugin commands strung together. For example, the test lifecycle command might include several plugin commands in a
series.

Let's execute the lifecycle command on our pom.xml file. As can be seen in the following listing, this command executes several
plugins (additional output omitted for readability).

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

3 of 12 27/9/2008 06:13

What we can see is that the lifecycle command is bound to several plugins, including , , and .
These plugins in turn are called with different goals, such as or . So, by simply calling with a single lifecycle
command, we execute a number of plugins--no additional configuration necessary. If you want to specify a plugin directly, that's fine. For
example:

Now that we have seen both lifecycle commands and plugin commands in action, let's look at some of the typical lifecycle commands.

mvn clean Cleans out all Maven-2-generated files.

mvn compile Compiles Java sources.

mvn test-compile Compiles JUnit test classes.

mvn test Runs all JUnit tests in the project.

mvn package Builds the JAR or WAR file for the project.

mvn install Installs the JAR or WAR file in the local Maven repository (use this if you have
multiple interdependent local projects).

A complete list of lifecycle commands can be found at on the Maven 2 site.

Similarly, here is a list of some of the more popular plugin commands, analogous to the popular tasks in Ant or commands in an IDE. Note that a
lifecycle command name is a single word, whereas a plugin command name is broken into a plugin and a specific goal with a colon:

clean:clean Cleans up after the build.

compiler:compile Compiles Java sources.

surefire:test Runs the JUnit tests in an isolated classloader.

jar:jar Creates a JAR file.

eclipse:eclipse Generates an Eclipse project file from the pom.xml file.

You may want to take some time perusing the list of plugins that are available to Maven 2 by default. It is possible to add additional plugins by
either writing them yourself or by grabbing them from a repository (repositories are discussed later in this article).

You can configure plugins on a per-project basis by updating your pom.xml file. For example, if you wish to force compilation on Java 5, simply
pass in the following option under the build configuration in the pom.xml file:

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

4 of 12 27/9/2008 06:13

Each plugin listed on the Maven 2 site includes documentation on the various configuration options available.

Maven 2 Versus Ant?
If you are familiar with Ant, you may be wondering why lifecycles and plugins are an improvement over targets and tasks. While you can cleanly
separate your Ant targets from the various directories and artifacts, it's surprisingly difficult to do. For example, let's say that you have several
directories, with several artifacts (multiple JAR files, which get combined into a WAR, for example). Every command that you write for each Ant
target will require properties for the source, and various dependencies, typically passed around via a combination of Ant variables.
Dependencies in particular require a lot of custom handholding, with JAR files downloaded and managed by hand.

Maven 2, on the other hand, assumes that given a pom.xml file, you are probably always going to be doing the same general kind of things with
your code. You are probably going to want to build a JAR file from that lump of code over there. You are probably going to want to build a WAR
file from that set of files over there. So those actions (or goals) are written in Java as reusable chunks of code (plugins). Instead of complicated
lumps of thousands of lines of custom build.xml files, you just call a plugin with a specific goal.

There are several advantages to this approach. For one, the Maven 2 Java-based plugins are a lot smarter than the lower-level commands
found in Ant tasks. You don't have to write custom tasks that handle compilation, and then have to worry about keeping your clean task in sync
with your compile and packaging tasks; Maven 2 just takes care of this stuff for you.

Another advantage of this model is that it encourages reuse of plugins in a much more robust way than Ant tasks. Later in this article, we will
show how simply adding a few lines to a pom.xml file will automatically download and launch Jetty (a lightweight servlet/JSP container),
seamlessly installing and running the WAR file.

Adding Some Business Logic
Let's add a tiny bit of pseudo-business logic to our application. First, we write a simple test cast that looks for a String, updating
C:\maven2example\maven2example_logic\src\test\java\com\attainware\maven2example\AppTest.java.

Opening the file C:\maven2example\maven2example_logic\src\main\java\com\attainware\maven2example\App.java, we update the contents to:

Running the command , as shown below, causes several plugins to run (status messages omitted for readability).

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

5 of 12 27/9/2008 06:13

By running the lifecycle command, Maven 2 finishes by installing the JAR file into the local repository, making this resulting JAR
file available to other projects on this system. This allows this JAR file to be available for inclusion in our WAR file.

Creating the WAR file
Now that we have created our JAR file, creating the WAR file is straightforward--we just pass in a different archetype ID.

As shown in Figure 3, we now have a directory structure you would expect to see for a WAR. Note that the JAR file is automatically pulled into
the WAR file from the local repository.

Figure 3. WAR project directory structure

Simply executing the command creates our WAR file (again, omitting most of the status messages besides the plugin list).

In this case, the command builds the WAR file but does not install it into the local repository (repositories will be discussed later).
As you build larger, more sophisticated projects with more complex dependencies, you may wish to be more deliberate about using the

 and commands to control inter-project dependencies. Because the WAR file is the final artifact we are creating, we can
save a few compute cycles merely by packaging the WAR file in the local target directory.

As we can see in Figure 4, we now have a WAR file.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

6 of 12 27/9/2008 06:13

Figure 4. Resulting WAR file

Now that we have a WAR file, we would like to be able to run the application. To do this, we simply add the Jetty plugin to the pom.xml for this
web application as shown:

By adding the plugins entry with the Jetty information, we can now run our web application by simply typing the command as shown below.

We can now open our web browser to localhost:8080/maven2example_webapp to see our web application (as shown in Figure 5). Type -
in the console window to shut down the server. Note that we didn't have to download and install Jetty separately--Maven 2 automatically
downloads and configures Jetty.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

7 of 12 27/9/2008 06:13

Figure 5. Hello World Web Application

Tying Together the Logic and Web Application
Now, we simply have to tie together the logic in our JAR file and the web application. First, we want to set up a dependency between our JAR
and the web application. This will tell Maven 2 that we want to use this JAR file in our WAR, which will cause Maven 2 to automatically copy the
JAR file when we package our WAR file.

First, we add the dependency on this other JAR file to our pom.xml for the web application as shown below.

We then update our JSP file to use our fancy new business logic.

Next, we run the command to rebuild the WAR file.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

8 of 12 27/9/2008 06:13

Notice that the JAR file is now copied into WAR file, as shown in Figure 6.

Figure 6. Verifying the JAR copied into the WAR

When we execute the command and view the results in our browser, we see the results as shown in Figure 7.

Figure 7. WAR running with business logic from JAR

To recap, we now have two independent projects running on our system. When we run on the logic, the JAR file installed in the
local repository will be updated. When we run on the web application, it will pick up the latest copy installed into the local
repository.

We would like to be able to run a single command to update both the JAR file and the WAR file. To do this, we create another pom.xml file that
invokes both projects.

This pom.xml file lives right above the other projects and serves as a "master" project file.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

9 of 12 27/9/2008 06:13

Figure 8. Location of master project file

Now, we can simply execute a single command, , and do a full build on both projects.

To summarize, we now have a project that now compiles and tests a JAR, which is then built and installed into a WAR, which is then in turn
installed into a local web server (which is downloaded and automatically configured). All of this with a few tiny pom.xml files.

Repositories
You may be wondering about the use of the term "repository." We have glossed over the use of the term, but in brief, Maven 2 makes use of two
kinds of repository: local and remote. These repositories serve as locations for Maven 2 to automatically pull dependencies. For example, our
pom.xml file above makes use the local repository for managing the dependency on the JAR file, and the default Maven 2 remote repository for
managing the dependencies on JUnit and Jetty.

Generally speaking, dependencies come from either the local repository or remote repositories. The local repository is used by Maven 2 to store
downloaded artifacts from other repositories. The default location is based on your system. Figure 9 shows the local repository on my laptop as
of the writing of this article.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

10 of 12 27/9/2008 06:13

Figure 9. Local repository example

If Maven 2 can't resolve a dependency in the local repository, it will try to resolve the dependency using a remote repository.

The default remote repository, known as Ibiblio, includes many of the most popular open source packages. You can browse the wide range of
packages on Ibiblio with the URL above and add dependencies as needed. For example, let's say that you would like to use Hibernate in your
project. Navigating to www.ibiblio.org/maven/org.hibernate/poms, we can see there are a wide number of releases of Hibernate available.
Opening up a sample Hibernate pom file, we can see that we simply need to add the appropriate , , and entries
to our business logic pom.xml file (the scope flag tells Maven 2 which lifecycle is interested in the dependency).

Simply adding this dependency to the pom.xml file will cause Maven 2 to automatically download Hibernate and make the appropriate JAR files
available to both the business logic JAR file and the WAR file.

You can set up your own remote repository, and add an entry to the pom.xml file to look in that repository for artifacts. This is extremely useful
for enterprises that make use of shared resources (for example, one group may wish to publish JAR files that are used to access a particular
piece of middleware).

Finally, you may instead wish to install your own JARs into the local repository. For example, if you have a Simple.jar file that someone gave
you, use the command shown below (choosing and values that are highly likely to be unique to avoid a namespace
collision).

Summary
In this article, we looked at how a few commands and some tiny XML files allow us to create, compile, test, bundle, and manage project
dependencies. We built a simple web application and deployed it to a web server with just a few commands, and we still haven't touched on
many of the features of Maven 2. For example, additional commands generate integrated Javadocs across multiple projects, code coverage
reports, or even a complete website with documentation. With luck, this orientation to Maven 2 has given you enough information to begin the
transition. Eventually, tools such as Eclipse and NetBeans will almost certainly support Maven 2 (or something like it) natively. In the meantime,
you can dramatically reduce your use of raw Ant (and spend a lot less time fighting XML build scripts) by switching even small projects over to
Maven 2.

Resources
Source code shown in this article is available for download from www.cascadetg.com/maven.
The main Maven 2 site

Will Iverson is the practice director, Software Development for SolutionsIQ, a Pacific Northwest service provider.

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

11 of 12 27/9/2008 06:13

 java.net RSS Feeds

Feedback | FAQ | Press | Terms of Use
Privacy | Trademarks | Site Map

Your use of this web site or any of its content or software indicates
your agreement to be bound by these Terms of Participation.

Copyright © 1995-2008 Sun Microsystems, Inc.

Powered by Sun Microsystems, Inc.,
O'Reilly and CollabNet

Java.net - the Source for Java(tm) Technology Collaboration http://today.java.net/lpt/a/355

12 of 12 27/9/2008 06:13

