
Evolving a language in and for the real world: C++ 1991-2006

Bjarne Stroustrup

Texas A&M University

www.research.att.com/~bs

Abstract
This paper outlines the history of the C++ programming lan-
guage from the early days of its ISO standardization (1991),
through the 1998 ISO standard, to the later stages of the
C++0x revision of that standard (2006). The emphasis is on
the ideals, constraints, programming techniques, and people
that shaped the language, rather than the minutiae of lan-
guage features. Among the major themes are the emergence
of generic programming and the STL (the C++ standard li-
brary’s algorithms and containers). Specific topics include
separate compilation of templates, exception handling, and
support for embedded systems programming. During most
of the period covered here, C++ was a mature language with
millions of users. Consequently, this paper discusses various
uses of C++ and the technical and commercial pressures that
provided the background for its continuing evolution.

Categories and Subject Descriptors K.2 [History of Com-
puting]: systems

General Terms Design, Programming Language, History

Keywords C++, language use, evolution, libraries, stan-
dardization, ISO, STL, multi-paradigm programming

1. Introduction
In October 1991, the estimated number of C++ users was
400,000 [121]. The corresponding number in October 2004
was 3,270,000 [61]. Somewhere in the early ’90s C++ left its
initial decade of exponential growth and settled into a decade
of steady growth. The key efforts over that time were to

1. use the language (obviously)

2. provide better compilers, tools, and libraries

3. keep the language from fragmenting into dialects

4. keep the language and its community from stagnating

[Copyright notice will appear here once ’preprint’ option is removed.]

Obviously, the C++ community spent the most time and
money on the first of those items. The ISO C++ standards
committee tends to focus on the second with some concern
for the third. My main effort was on the third and the fourth.
The ISO committee is the focus for people who aim to
improve the C++ language and standard library. Through
such change they (we) hope to improve the state of the
art in real-world C++ programming. The work of the C++
standards committee is the primary focus of the evolution of
C++ and of this paper.

Thinking of C++ as a platform for applications, many
have wondered why — after its initial success — C++ didn’t
shed its C heritage to “move up the food chain” and be-
come a “truly object-oriented” applications programming
language with a “complete” standard library. Any tendencies
in that direction were squelched by a dedication to systems
programming, C compatibility, and compatibility with early
versions of C++ in most of the community associated with
the standards committee. Also, there were never sufficient
resources for massive projects in that community. Another
important factor was the vigorous commercial opportunism
by the major software and hardware vendors who each saw
support for application building as their opportunity to dis-
tinguish themselves from their competition and to lock in
their users. Minor players saw things in much the same light
as they aimed to grow and prosper. However, there was no
lack of support for the committee’s activities within its cho-
sen domain. Vendors rely on C++ for their systems and for
highly demanding applications. Therefore, they have pro-
vided steady and most valuable support for the standards ef-
fort in the form of hosting and — more importantly — of
key technical people attending.

For good and bad, ISO C++ [66] remains a general-
purpose programming language with a bias towards systems
programming that

• is a better C

• supports data abstraction

• supports object-oriented programming

• supports generic programming

An explanation of the first three items from a historical
perspective can be found in [120, 121]; the explanation of

Evolving C++ 1991-2006 1 2007/5/25

“supports generic programming” is a major theme of this
paper. Bringing aspects of generic programming into the
mainstream is most likely C++’s greatest contribution to the
software development community during this period.

The paper is organized in loose chronological order:

§1 Introduction

§2 Background: C++ 1979-1991 — early history, design
criteria, language features.

§3 The C++ world in 1991 — the C++ standards process,
chronology.

§4 Standard library facilities 1991-1998 — the C++ stan-
dard library with a heavy emphasis on its most impor-
tant and innovative component: the STL (containers, al-
gorithms, and iterators).

§5 Language features 1991-1998 — focusing on separate
compilation of templates, exception safety, run-time type
information and namespaces.

§6 Standards maintenance 1997-2003 — for stability, no
additions were made to the C++ standard. However, the
committee wasn’t idle.

§7 C++ in real-world use — application areas; applications
programming vs. systems programming; programming
styles; libraries, Application Binary Interfaces (ABIs),
and environments; tools and research; Java, C#, and C;
dialects.

§8 C++0x — aims, constraints, language features, and li-
brary facilities.

§9 Retrospective — influences and impact; beyond C++.

The emphasis is on the early and later years: The early years
shaped current C++ (C++98). The later ones reflect the re-
sponse to experience with C++98 as represented by C++0x.
It is impossible to discuss how to express ideas in code with-
out code examples. Consequently, code examples are used to
illustrate key ideas, techniques, and language facilities. The
examples are explained to make them accessible to non-C++
programmers. However, the focus of the presentation is the
people, ideas, ideals, techniques, and constraints that shape
C++ rather than on language-technical details. For a descrip-
tion of what ISO C++ is today, see [66, 126]. The emphasis
is on straightforward questions: What happened? When did
it happen? Who were there? What were their reasons? What
were the implications of what was done (or not done)?

C++ is a living language. The main aim of this paper
is to describe its evolution. However, it is also a language
with a great emphasis on backwards compatibility. The code
that I describe in this paper still compiles and runs today.
Consequently, I tend to use the present tense to describe it.
Given the emphasis on compatibility, the code will probably
also run as described 15 years from now. Thus, my use of
the present tense emphasizes an important point about the
evolution of C++.

2. Background: C++ 1979-1991
The early history of C++ (up until 1991) is covered by my
HOPL-II paper [120]. The standard reference for the first 15
years of C++ is my book The Design and Evolution of C++,
usually referred to as D&E [121]. It tells the story from the
pre-history of C++ until 1994. However, to set the scene for
the next years of C++, here is a brief summary of C++’s early
history.

C++ was designed to provide Simula’s facilities for pro-
gram organization together with C’s efficiency and flexibility
for systems programming. It was intended to deliver that to
real projects within half a year of the idea. It succeeded.

At the time, I realized neither the modesty nor the pre-
posterousness of that goal. The goal was modest in that it
did not involve innovation, and preposterous in both its time
scale and its Draconian demands on efficiency and flexibil-
ity. While a modest amount of innovation did emerge over
the early years, efficiency and flexibility have been main-
tained without compromise. While the goals for C++ have
been refined, elaborated, and made more explicit over the
years, C++ as used today directly reflects its original aims.

Starting in 1979, while in the Computer Science Research
Center of Bell Labs, I first designed a dialect of C called “C
with Classes”. The work and experience with C with Classes
from 1979 to 1983 determined the shape of C++. In turn, C
with Classes was based on my experiences using BCPL and
Simula as part of my PhD studies (in distributed systems)
in the University of Cambridge, England. For challenging
systems programming tasks I felt the need for a “tool” with
the following properties:

• A good tool would have Simula’s support for program
organization – that is, classes, some form of class hi-
erarchies, some form of support for concurrency, and
compile-time checking of a type system based on classes.
This I saw as support for the process of inventing pro-
grams; that is, as support for design rather than just sup-
port for implementation.

• A good tool would produce programs that ran as fast as
BCPL programs and share BCPL’s ability to combine
separately compiled units into a program. A simple link-
age convention is essential for combining units written
in languages such as C, Algol68, Fortran, BCPL, assem-
bler, etc., into a single program and thus not to suffer the
handicap of inherent limitations in a single language.

• A good tool should allow highly portable implementa-
tions. My experience was that the “good” implementa-
tion I needed would typically not be available until “next
year” and only on a machine I couldn’t afford. This im-
plied that a tool must have multiple sources of implemen-
tations (no monopoly would be sufficiently responsive to
users of “unusual” machines and to poor graduate stu-
dents), that there should be no complicated run-time sup-
port system to port, and that there should be only very

Evolving C++ 1991-2006 2 2007/5/25

limited integration between the tool and its host operat-
ing system.

During my early years at Bell Labs, these ideals grew into a
set of “rules of thumb” for the design of C++.

• General rules:

C++’s evolution must be driven by real problems.

Don’t get involved in a sterile quest for perfection.

C++ must be useful now.

Every feature must have a reasonably obvious imple-
mentation.

Always provide a transition path.

C++ is a language, not a complete system.

Provide comprehensive support for each supported
style.

Don’t try to force people to use a specific program-
ming style.

• Design support rules:

Support sound design notions.

Provide facilities for program organization.

Say what you mean.

All features must be affordable.

It is more important to allow a useful feature than to
prevent every misuse.

Support composition of software from separately de-
veloped parts.

• Language-technical rules:

No implicit violations of the static type system.

Provide as good support for user-defined types as for
built-in types.

Locality is good.

Avoid order dependencies.

If in doubt, pick the variant of a feature that is easiest
to teach.

Syntax matters (often in perverse ways).

Preprocessor usage should be eliminated.

• Low-level programming support rules:

Use traditional (dumb) linkers.

No gratuitous incompatibilities with C.

Leave no room for a lower-level language below C++
(except assembler).

What you don’t use, you don’t pay for (zero-overhead
rule).

If in doubt, provide means for manual control.

These criteria are explored in detail in Chapter 4 of D&E
[121]. C++ as defined at the time of release 2.0 in 1989
strictly fulfilled these criteria; the fundamental tensions in
the effort to design templates and exception-handling mech-
anisms for C++ arose from the need to depart from some
aspects of these criteria. I think the most important property
of these criteria is that they are only loosely connected with
specific programming language features. Rather, they spec-
ify constraints on solutions to design problems.

Reviewing this list in 2006, I’m struck by two design
criteria (ideals) that are not explicitly stated:

• There is a direct mapping of C++ language constructs to
hardware

• The standard library is specified and implemented in C++

Coming from a C background and being deep in the devel-
opment of the C++98 standard (§3.1), these points (at the
time, and earlier) seemed so obvious that I often failed to
emphasize them. Other languages, such as Lisp, Smalltalk,
Python, Ruby, Java, and C#, do not share these ideals. Most
languages that provide abstraction mechanisms still have to
provide the most useful data structures, such as strings, lists,
trees, associative arrays, vectors, matrices, and sets, as built-
in facilities, relying on other languages (such as assembler,
C, and C++) for their implementation. Of major languages,
only C++ provides general, flexible, extensible, and efficient
containers implemented in the language itself. To a large ex-
tent, these ideals came from C. C has those two properties,
but not the abstraction mechanisms needed to define nontriv-
ial new types.

The C++ ideal – from day one of C with Classes (§2.1)
– was that the language should allow optimal implementa-
tion of arbitrary data structures and operations on them. This
constrained the design of abstraction mechanisms in many
useful ways [121] and led to new and interesting implemen-
tation techniques (for example, see §4.1). In turn, this ideal
would have been unattainable without the “direct mapping
of C++ language constructs to hardware” criterion. The key
idea (from C) was that the operators directly reflected hard-
ware operations (arithmetic and logical) and that access to
memory was what the hardware directly offered (pointers
and arrays). The combination of these two ideals is also what
makes C++ effective for embedded systems programming
[131] (§6.1).

2.1 The Birth of C with Classes

The work on what eventually became C++ started with an
attempt to analyze the UNIX kernel to determine to what
extent it could be distributed over a network of computers
connected by a local area network. This work started in April
of 1979 in the Computing Science Research Center of Bell
Laboratories in Murray Hill, New Jersey. Two subproblems
soon emerged: how to analyze the network traffic that would
result from the kernel distribution and how to modularize the

Evolving C++ 1991-2006 3 2007/5/25

kernel. Both required a way to express the module structure
of a complex system and the communication pattern of the
modules. This was exactly the kind of problem that I had
become determined never to attack again without proper
tools. Consequently, I set about developing a proper tool
according to the criteria I had formed in Cambridge.

In October of 1979, I had the initial version of a pre-
processor, called Cpre, that added Simula-like classes to
C. By March of 1980, this pre-processor had been refined
to the point where it supported one real project and sev-
eral experiments. My records show the pre-processor in use
on 16 systems by then. The first key C++ library, called
“the task system”, supported a coroutine style of program-
ming [108, 115]. It was crucial to the usefulness of “C with
Classes,” as the language accepted by the pre-processor was
called, in most early projects.

During the April to October period the transition from
thinking about a “tool” to thinking about a “language” had
occurred, but C with Classes was still thought of primar-
ily as an extension to C for expressing modularity and con-
currency. A crucial decision had been made, though. Even
though support of concurrency and Simula-style simulations
was a primary aim of C with Classes, the language contained
no primitives for expressing concurrency; rather, a combina-
tion of inheritance (class hierarchies) and the ability to de-
fine class member functions with special meanings recog-
nized by the pre-processor was used to write the library that
supported the desired styles of concurrency. Please note that
“styles” is plural. I considered it crucial — as I still do —
that more than one notion of concurrency should be express-
ible in the language.

Thus, the language provided general mechanisms for or-
ganizing programs rather than support for specific applica-
tion areas. This was what made C with Classes and later
C++ a general-purpose language rather than a C variant
with extensions to support specialized applications. Later,
the choice between providing support for specialized appli-
cations or general abstraction mechanisms has come up re-
peatedly. Each time, the decision has been to improve the
abstraction mechanisms.

2.2 Feature Overview

The earliest features included

• classes

• derived classes

• constructors and destructors

• public/private access control

• type checking and implicit conversion of function argu-
ments.

In 1981, a few more features were added based on perceived
need:

• inline functions

• default arguments

• overloading of the assignment operator.

Since a pre-processor was used for the implementation
of C with Classes, only new features, that is features not
present in C, needed to be described and the full power
of C was directly available to users. Both of these aspects
were appreciated at the time. In particular, having C as a
subset dramatically reduced the support and documentation
work needed. C with Classes was still seen as a dialect of C.
Furthermore, classes were referred to as “An Abstract Data
Type Facility for the C Language” [108]. Support for object-
oriented programming was not claimed until the provision
of virtual functions in C++ in 1983 [110].

A common question about “C with Classes” and later
about C++ was “Why use C? Why didn’t you build on, say,
Pascal?” One version of my answer can be found in [114]:

C is clearly not the cleanest language ever designed
nor the easiest to use, so why do so many people use
it?

• C is flexible: It is possible to apply C to most every
application area, and to use most every program-
ming technique with C. The language has no in-
herent limitations that preclude particular kinds of
programs from being written.

• C is efficient: The semantics of C are ‘low level’;
that is, the fundamental concepts of C mirror the
fundamental concepts of a traditional computer.
Consequently, it is relatively easy for a compiler
and/or a programmer to efficiently utilize hardware
resources for a C program.

• C is available: Given a computer, whether the tini-
est micro or the largest super-computer, the chance
is that there is an acceptable-quality C compiler
available and that that C compiler supports an ac-
ceptably complete and standard C language and
library. There are also libraries and support tools
available, so that a programmer rarely needs to de-
sign a new system from scratch.

• C is portable: A C program is not automatically
portable from one machine (and operating system)
to another nor is such a port necessarily easy to
do. It is, however, usually possible and the level
of difficulty is such that porting even major pieces
of software with inherent machine dependences is
typically technically and economically feasible.

Compared with these ‘first-order’ advantages, the
‘second-order’ drawbacks like the curious C declara-
tor syntax and the lack of safety of some language
constructs become less important.

Pascal was considered a toy language [78], so it seemed
easier and safer to add type checking to C than to add

Evolving C++ 1991-2006 4 2007/5/25

the features considered necessary for systems programming
to Pascal. At the time, I had a positive dread of making
mistakes of the sort where the designer, out of misguided
paternalism or plain ignorance,makes the language unusable
for real work in important areas. The ten years that followed
clearly showed that choosing C as a base left me in the
mainstream of systems programming where I intended to
be. The cost in language complexity has been considerable,
but (just barely) manageable. The problem of maintaining
compatibility with an evolving C language and standard
library is a serious one to this day (see §7.6).

In addition to C and Simula, I considered Modula-2, Ada,
Smalltalk, Mesa, and Clu as sources for ideas for C++ [111],
so there was no shortage of inspiration.

2.3 Work Environment

C with Classes was designed and implemented by me as a re-
search project in the Computing Science Research Center of
Bell Labs. This center provided a possibly unique environ-
ment for such work. When I joined in 1979, I was basically
told to “do something interesting,” given suitable computer
resources, encouraged to talk to interesting and competent
people, and given a year before having to formally present
my work for evaluation.

There was a cultural bias against “grand projects” requir-
ing many people, against “grand plans” like untested paper
designs for others to implement, and against a class distinc-
tion between designers and implementers. If you liked such
things, Bell Labs and other organizations had many places
where you could indulge such preferences. However, in the
Computing Science Research Center it was almost a require-
ment that you — if you were not into theory — personally
implemented something embodying your ideas and found
users who could benefit from what you built. The environ-
ment was very supportive for such work and the Labs pro-
vided a large pool of people with ideas and problems to chal-
lenge and test anything built. Thus I could write in [114]:
“There never was a C++ paper design; design, documenta-
tion, and implementation went on simultaneously. Naturally,
the C++ front-end is written in C++. There never was a “C++
project” either, or a “C++ design committee”. Throughout,
C++ evolved, and continues to evolve, to cope with problems
encountered by users, and through discussions between the
author and his friends and colleagues”.

2.4 From C with Classes to C++

During 1982, it became clear to me that C with Classes was
a “medium success” and would remain so until it died. The
success of C with Classes was, I think, a simple consequence
of meeting its design aim: C with Classes helped organize
a large class of programs significantly better than C. Cru-
cially, this was achieved without the loss of run-time effi-
ciency and without requiring unacceptable cultural changes
in development organizations. The factors limiting its suc-
cess were partly the limited set of new facilities offered over

C and partly the pre-processor technology used to implement
C with Classes. C with Classes simply didn’t provide sup-
port for people who were willing to invest significant effort
to reap matching benefits: C with Classes was an important
step in the right direction, but only one small step. As a result
of this analysis, I began designing a cleaned-up and extended
successor to C with Classes and implementing it using tradi-
tional compiler technology.

In the move from C with Classes to C++, the type check-
ing was generally improved in ways that are possible only
using a proper compiler front-end with full understanding of
all syntax and semantics. This addressed a major problem
with C with Classes. In addition,

• virtual functions

• function name and operator overloading

• references

• constants (const)

• many minor facilities

were added. To many, virtual functions were the major ad-
dition, as they enable object-oriented programming. I had
been unable to convince my colleagues of their utility, but
saw them as essential for the support of a key programming
style (“paradigm”).

After a couple of years of use, release 2.0 was a major
release providing a significantly expanded set of features,
such as

• type-safe linkage,

• abstract classes

• multiple inheritance.

Most of these extensions and refinements represented expe-
rience gained with C++ and could not have been added ear-
lier without more foresight than I possessed.

2.5 Chronology

The chronology of the early years can be summarized:

1979 Work on C with Classes starts; first C with Classes use

1983 1st C++ implementation in use

1984 C++ named

1985 Cfront Release 1.0 (first commercial release); The
C++ Programming Language (TC++PL) [112]

1986 1st commercial Cfront PC port (Cfront 1.1, Glocken-
spiel)

1987 1st GNU C++ release

1988 1st Oregon Software C++ release; 1st Zortech C++
release;

1989 Cfront Release 2.0; The Annotated C++ Reference
Manual [35]; ANSI C++ committee (J16) founded
(Washington, D.C.)

Evolving C++ 1991-2006 5 2007/5/25

1990 1st ANSI X3J16 technical meeting (Somerset, New
Jersey); templates accepted (Seattle, WA); exceptions ac-
cepted (Palo Alto, CA); 1st Borland C++ release

1991 1st ISO WG21 meeting (Lund, Sweden); Cfront Re-
lease 3.0 (including templates); The C++ Programming
Language (2nd edition) [118]

On average, the number of C++ users doubled every 7.5
months from 1 in October 1979 to 400,000 in October of
1991 [121]. It is of course very hard to count users, but dur-
ing the early years I had contacts with everyone who shipped
compilers, libraries, books, etc., so I’m pretty confident of
these numbers. They are also consistent with later numbers
from IDC [61].

3. The C++ World in 1991
In 1991, the second edition of my The C++ Programming
Language [118] was published to complement the 1989
language definition The Annotated C++ Reference Manual
(“the ARM”) [35]. Those two books set the standard for C++
implementation and to some extent for programming tech-
niques for years to come. Thus, 1991 can be seen as the
end of C++’s preparations for entry into the mainstream.
From then on, consolidation was a major issue. That year,
there were five C++ compilers to choose from (AT&T, Bor-
land, GNU, Oregon, and Zortech) and three more were to
appear in 1992 (IBM, DEC, and Microsoft). The October
1991 AT&T release 3.0 of Cfront (my original C++ compiler
[121]) was the first to support templates. The DEC and IBM
compilers both implemented templates and exceptions, but
Microsoft’s did not, thus seriously setting back efforts to en-
courage programmers to use a more modern style. The effort
to standardize C++, which had begun in 1989, was officially
converted into an international effort under the auspices of
ISO. However, this made no practical difference as even the
organizational meeting in 1989 had large non-US participa-
tion. The main difference is that we refer to ISO C++ rather
than ANSI C++. The C++ programmer — and would-be
C++ programmer — could now choose from among about
100 books of greatly varying aim, scope, and quality.

Basically, 1991 was an ordinary, successful year for the
C++ community. It didn’t particularly stand out from the
years before or after. The reason to start our story here is
that my HOPL-II paper [120] left off in 1991.

3.1 The ISO C++ Standards Process

For the C++ community, the ISO standards process is cen-
tral: The C++ community has no other formal center, no
other forum for driving language evolution, no other orga-
nization that cares for the language itself and for the com-
munity as a whole. C++ has no owner corporation that de-
termines a path for the language, finances its development,
and provides marketing. Therefore, the C++ standards com-
mittee became the place where language and standard library
evolution is seriously considered. To a large extent, the 1991-

2006 evolution of C++ was determined by what could be
done by the volunteer individuals in the committee and how
far the dreaded “design by committee” could be avoided.

The American National Standards Institute committee for
C++ (ANSI J16) was founded in 1989; it now works under
the auspices of INCITS (InterNational Committee for Infor-
mation Technology Standards, a US organization). In 1991,
it became part of an international effort under the auspices of
ISO. Several other countries (such as France, Japan, and the
UK) have their own national committees that hold their own
meetings (in person or electronically) and send representa-
tives to the ANSI/ISO meetings. Up until the final vote on
the C++98 standard [63] in 1997, the committee met three
times a year for week-long meetings. Now, it meets twice
a year, but depends far more on electronic communications
in between meetings. The committee tries to alternate meet-
ings between the North American continent and elsewhere,
mostly Europe.

The members of the J16 committee are volunteers who
have to pay (about $800 a year) for the privilege of doing
all the work. Consequently, most members represent com-
panies that are willing to pay fees and travel expenses, but
there is always a small number of people who pay their own
way. Each company participating has one vote, just like each
individual, so a company cannot stuff the committee with
employees. People who represent their nations in the ISO
(WG21) and participate in the national C++ panels pay or
not according to their national standards organization rules.
The J16 convener runs the technical sessions and does for-
mal votes. The voting procedures are very democratic. First
come one or more “straw votes” in a working group as part
of the process to improve the proposal and gain consen-
sus. Then come the more formal J16 votes in full committee
where only accredited members vote. The final (ISO) votes
are done on a per-nation basis. The aim is for consensus, de-
fined as a massive majority, so that the resulting standard is
good enough for everybody, if not necessarily exactly what
any one member would have preferred. For the 1997/1998
final standards ballot, the ANSI vote was 43-0 and the ISO
vote 22-0. We really did reach consensus, and even unanim-
ity. I’m told that such clear votes are unusual.

The meetings tend to be quite collegial, though obviously
there can be very tense moments when critical and contro-
versial decisions must be made. For example, the debate
leading up to the export vote strained the committee (§5.2).
The collegiality has been essential for C++. The committee
is the only really open forum where implementers and users
from different — and often vigorously competing — organi-
zations can meet and exchange views. Without a committee
with a dense web of professional, personal, and organiza-
tional connections, C++ would have broken into a mess of
feuding dialects. The number of people attending a meet-
ing varies between 40 and 120. Obviously, the attendance
increases when the meeting is in a location with many C++

Evolving C++ 1991-2006 6 2007/5/25

programmers (e.g., Silicon Valley) or something major is be-
ing decided (e.g., should we adopt the STL?). At the Santa
Cruz meeting in 1996, I counted 105 people in the room at
the same time.

Most technical work is done by individuals between
meetings or in working groups. These working groups are
officially “ad hoc” and have no formal standing. However,
some lasts for many years and serve as a focus for work
and as the institutional memory of the committee. The main
long-lived working groups are:

• Core — chairs: Andrew Koenig, Josée Lajoie, Bill Gib-
bons, Mike Miller, Steve Adamczyk.

• Evolution (formerly extensions) — chair: Bjarne Strous-
trup.

• Library — chairs: Mike Vilot, Beman Dawes, Matt
Austern, Howard Hinnant.

When work is particularly hectic, these groups split into sub-
working-groups focussed on specific topics. The aim is to
increase the degree of parallelism in the process and to better
use the skills of the many people present.

The official “chair” of the whole committee whose pri-
mary job is the ensure that all formal rules are obeyed and
to report back to SC22 is called the convener. The original
convener was Steve Carter (BellCore). Later Sam Harbin-
son (Tartan Labs and Texas Instruments), Tom Plum (Plum
Hall), and Herb Sutter (Microsoft) served.

The J16 chairman conducts the meeting when the whole
committee is gathered. Dmitri Lenkov (Hewlett-Packard)
was the original J16 chair and Steve Clamage (Sun) took
over after him.

The draft standard text is maintained by the project editor.
The original project editor was Jonathan Shopiro (AT&T).
He was followed by Andrew Koenig (AT&T) whose served
1992-2004, after which Pete Becker (Dinkumware) took
over “the pen”.

The committee consists of individuals of diverse interests,
concerns, and backgrounds. Some represent themselves,
some represent giant corporations. Some use PCs, some use
UNIX boxes, some use mainframes, etc. Some would like
C++ to become more of an object-oriented language (ac-
cording to a variety of definitions of “object-oriented”), oth-
ers would have been more comfortable had ANSI C been
the end point of C’s evolution. Many have a background
in C, some do not. Some have a background in standards
work, many do not. Some have a computer science back-
ground, some do not. Most are programmers, some are not.
Some are language lawyers, some are not. Some serve end-
users, some are tools suppliers. Some are interested in large
projects, some are not. Some are interested in C compati-
bility, some are not. It is hard to find a generalization that
covers them all.

This diversity of backgrounds has been good for C++;
only a very diverse group could represent the diverse in-

terests of the C++ community. The end results — such as
the 1998 standard and the Technical Reports (§6.1, §6.2) —
are something that is good enough for everyone represented,
rather than something that is ideal for any one subcommu-
nity. However, the diversity and size of the membership do
make constructive discussion difficult and slow at times. In
particular, this very open process is vulnerable to disruption
by individuals whose technical or personal level of maturity
doesn’t encourage them to understand or respect the views of
others. Part of the consideration of a proposal is a process of
education of the committee members. Some members have
claimed — only partly in jest — that they attend to get that
education. I also worry that the voice of C++ users (that
is, programmers and designers of C++ applications) can be
drowned by the voices of language lawyers, would-be lan-
guage designers, standards bureaucrats, implementers, tool
builders, etc.

To get an idea about what organizations are represented,
here are some names from the 1991-2005 membership
lists: Apple, AT&T, Bellcore, Borland, DEC, Dinkumware,
Edison Design Group (EDG), Ericsson, Fujitsu, Hewlett-
Packard, IBM, Indiana University, Los Alamos National
Labs, Mentor Graphics, Microsoft, NEC, Object Design,
Plum Hall, Siemens Nixdorf, Silicon Graphics, Sun Mi-
crosystems, Texas Instruments, and Zortech.

Changing the definition of a widely used language is very
different from simple design from first principles. Whenever
we have a “good idea”, however major or minor, we must
remember that

• there are hundreds of millions of lines of code “out there”
— most will not be rewritten however much gain might
result from a rewrite

• there are millions of programmers “out there” — most
won’t take out time to learn something new unless they
consider it essential

• there are decade-old compilers still in use — many pro-
grammers can’t use a language feature that doesn’t com-
pile on every platform they support

• there are many millions of outdated textbooks out there
— many will still be in use in five years’ time

The committee considers these factors and obviously that
gives a somewhat conservative bias. Among other things,
the members of the committee are indirectly responsible for
well over 100 million lines of code (as representatives of
their organizations). Many of the members are on the com-
mittee to promote change, but almost all do so with a great
sense of caution and responsibility. Other members feel that
their role is more along the lines of avoiding unnecessary
and dangerous instability. Compatibility with previous ver-
sions of C++ (back to ARM C++ [35]), previous versions of
C (back to K&R C [76]), and generations of corporate di-
alects is a serious issue for most members. We (the members
of the committee) try to face future challenges, such as con-

Evolving C++ 1991-2006 7 2007/5/25

currency, but we do so remembering that C++ is at the base
of many tool chains. Break C++ and the major implementa-
tions of Java and C# would also break. Obviously, the com-
mittee couldn’t “break C++” by incompatibilities even if it
wanted to. The industry would simply ignore a seriously in-
compatible standard and probably also start migrating away
from C++.

3.2 Chronology

Looking forward beyond 1991, we can get some idea of the
process by listing some significant decisions (votes):

1993 Run-time type identification accepted (Portland, Ore-
gon) §5.1.2; namespaces accepted (Munich, Germany)
§5.1.1

1994 string (templatized by character type) (San Diego,
California)

1994 The STL (San Diego, California) §4.1

1996 export (Stockholm, Sweden) §5.2

1997 Final committee vote on the complete standard (Mor-
ristown, New Jersey)

1998 ISO C++ standard [63] ratified

2003 Technical Corrigendum (“mid-term bug-fix release”)
[66]; work on C++0x starts

2004 Performance technical report [67] §6.1; Library Tech-
nical Report (hash tables, regular expressions, smart
pointers, etc.) [68] §6.2

2005 1st votes on features for C++0x (Lillehammer, Nor-
way); auto, static_assert, and rvalue references ac-
cepted in principle; §8.3.2

2006 1st full committee (official) votes on features for
C++0x (Berlin, Germany)

The city names reflect the location of the meeting where the
decision was taken. They give a flavor of the participation.
When the committee meets in a city, there are usually a
dozen or more extra participants from nearby cities and
countries. It is also common for the host to take advantage of
the influx of C++ experts — many internationally known —
to arrange talks to increase the understanding of C++ and its
standard in the community. The first such arrangement was
in Lund in 1991 when the Swedish delegation collaborated
with Lund University to put on a two-day C++ symposium.

This list gives a hint of the main problem about the pro-
cess from the point of view of someone trying to produce a
coherent language and library, rather than a set of unrelated
“neat features”. At any time, the work focused on a number
of weakly related specific topics, such as the definition of
“undefined”, whether it is possible to resume from an excep-
tion (it isn’t), what functions should be provided for string,
etc. It is extremely hard to get the committee to agree on an
overall direction.

3.3 Why Change?

Looking at the list of decisions and remembering the com-
mittee’s built-in conservative bias, the obvious question is:
“Why change anything?” There are people who take the
position that “standardization is to document existing prac-
tice”. They were never more than a tiny fraction of the com-
mittee membership and represent an even smaller proportion
of the vocal members of the C++ committee. Even people
who say that they want “no change” ask for “just one or two
improvements”. In this, the C++ committee strongly resem-
bles other language standardization groups.

Basically, we (the members of the committee) desire
change because we hold the optimistic view that better lan-
guage features and better libraries lead to better code. Here,
“better” means something like “more maintainable”, “easier
to read”, “catches more errors”, “faster”, “smaller”, “more
portable”, etc. People’s criteria differ, sometimes drastically.
This view is optimistic because there is ample evidence that
people can — and do — write really poor code in every lan-
guage. However, most groups of programmers — including
the C++ committee — are dominated by optimists. In partic-
ular, the conviction of a large majority of the C++ commit-
tee has consistently been that the quality of C++ code can
be improved over the long haul by providing better language
features and standard-library facilities. Doing so takes time:
in some cases we may have to wait for a new generation
of programmers to get educated. However, the committee is
primarily driven by optimism and idealism — moderated by
vast experience — rather than the cynical view of just giving
people what they ask for or providing what “might sell”.

An alternative view is that the world changes and a living
language will change — whatever any committee says. So,
we can work on improvements — or let others do it for us.
As the world changes, C++ must evolve to meet new chal-
lenges. The most obvious alternative would not be “death”
but capture by a corporation, as happened with Pascal and
Objective C, which became Borland and Apple corporate
languages, respectively.

After the Lund (Sweden) meeting in 1991, the following
cautionary tale became popular in the C++ community:

We often remind ourselves of the good ship Vasa. It
was to be the pride of the Swedish navy and was
built to be the biggest and most beautiful battleship
ever. Unfortunately, to accommodate enough statues
and guns, it underwent major redesigns and extension
during construction. The result was that it only made
it halfway across Stockholm harbor before a gust of
wind blew it over and it sank, killing about 50 people.
It has been raised and you can now see it in a museum
in Stockholm. It is a beauty to behold — far more
beautiful at the time than its unextended first design
and far more beautiful today than if it had suffered the
usual fate of a 17th century battleship — but that is

Evolving C++ 1991-2006 8 2007/5/25

no consolation to its designer, builders, and intended
users.

This story is often recalled as a warning against adding fea-
tures (that was the sense in which I told it to the committee).
However, to complicate matters, there is another side to the
story: Had the Vasa been completed as originally designed,
it would have been sent to the bottom full of holes the first
time it encountered a “modern two-deck” battleship. Ignor-
ing changes in the world isn’t an option (either).

4. The Standard Library: 1991-1998
After 1991, most major changes to the draft C++ standard
were in the standard library. Compared to that, the language
features were little changed even though we made an ap-
parently infinite number of improvements to the text of the
standard. To gain a perspective, note that the standard is 718
pages: 310 define the language and 366 define the standard
library. The rest are appendices, etc. In addition, the C++
standard library includes the C standard library by reference;
that’s another 81 pages. To compare, the base document
for the standardization, the reference manual of TC++PL2
[118], contained 154 pages on the language and just one on
the standard library.

By far the most innovative component of the standard
library is “the STL” — the containers, iterators, and algo-
rithms part of the library. The STL influenced and contin-
ues to influence not only programming and design tech-
niques but also the direction of new language features. Con-
sequently, this is treated first here and in far greater detail
than other standard library components.

4.1 The STL

The STL was the major innovation to become part of the
standard and the starting point for much of the new thinking
about programming techniques that have occurred since.
Basically, the STL was a revolutionary departure from the
way the C++ community had been thinking about containers
and their use.

4.1.1 Pre-STL containers

From the earliest days of Simula, containers (such as lists)
had been intrusive: An object could be put into a container
if and only if its class had been (explicitly or implicitly) de-
rived from a specific Link and/or Object class. This class
contains the link information needed for management of ob-
jects in a container and provides a common type for ele-
ments. Basically, such a container is a container of refer-
ences (pointers) to links/objects. We can graphically repre-
sent such a list like this:

list

link���
��

��
��

��
��

�

link�� link�� ��

The links come from a base class Link.
Similarly, an “object-oriented” vector is a basically an

array of references to objects. We can graphically represent
such a vector like this:

vector

����
���

��

object���
��

��
��

��
�

object���
��

��
��

��
��

�

object�����������������

The references to objects in the vector data structure point
to objects of an Object base class. This implies that objects
of a fundamental type, such as int and double, can’t be
put directly into containers and that the array type, which
directly supports fundamental types, must be different from
other containers:

array

int��������

int int

Furthermore, objects of really simple classes, such as
complex and Point, can’t remain optimal in time and space
if we want to put them into a container. In other words,
Simula-style containers are intrusive, relying on data fields
inserted into their element types, and provide indirect ac-
cess to objects through pointers (references). Furthermore,
Simula-style containers are not statically type safe. For ex-
ample, a Circle may be added to a list, but when it is ex-
tracted we know only that it is an Object and need to apply
a cast (explicit type conversion) to regain the static type.

Thus, Simula containers provide dissimilar treatment of
built-in and user-defined types (only some of the latter can
be in containers). Similarly, arrays are treated differently
from user-defined containers (only arrays can hold funda-
mental types). This is in direct contrast to two of the clearest
language-technical ideals for C++:

• Provide the same support for built-in and user-defined
types

• What you don’t use, you don’t pay for (zero-overhead
rule).

Smalltalk has the same fundamental approach to containers
as Simula, though it makes the base class universal and thus
implicit. The problems also appear in later languages, such
as Java and C# (though they – like Smalltalk – make use of a
universal class and C# 2.0 applies C++-like specialization to
optimize containers of integers). Many early C++ libraries
(e.g. the NIHCL [50], early AT&T libraries [5]) also fol-
lowed this model. It does have significant utility and many
designers were familiar with it. However, I considered this
double irregularity and the inefficiency (in time and space)
that goes with it unacceptable for a truly general-purpose li-
brary (you can find a summary of my analysis in §16.2 of
TC++PL3 [126]).

Evolving C++ 1991-2006 9 2007/5/25

The lack of a solution to these logical and performance
problems was the fundamental reason behind my “biggest
mistake” of not providing a suitable standard library for
C++ in 1985 (see D&E [121] §9.2.3): I didn’t want to ship
anything that couldn’t directly handle built-in types as el-
ements and wasn’t statically type safe. Even the first “C
with Classes” paper [108] struggled with that problem, un-
successfully trying to solve it using macros. Furthermore, I
specifically didn’t want to provide something with covariant
containers. Consider a Vector of some “universal” Object
class:

void f(Vector& p)
{

p[2] = new Pear;
}

void g()
{

Vector apples(10); // container of apples
for(int i=0; i<10; ++i)

apples[i] = new Apple;
f(apples);
// now apples contains a pear

}

The author of g pretends that apples is a Vector of Apples.
However, Vector is a perfectly ordinary object-oriented
container, so it really contains (pointers to) Objects. Since
Pear is also an Object, f can without any problems put a
Pear into it. It takes a run-time check (implicit or explicit)
to catch the error/misconception. I remember how shocked I
was when this problem was first explained to me (sometime
in the early 1980s). It was just too shoddy. I was determined
that no container written by me should give users such nasty
surprises and significant run-time checking costs. In mod-
ern (i.e. post-1988) C++ the problem is solved using a con-
tainer parameterized by the element type. In particular, Stan-
dard C++ offers vector<Apple> as a solution. Note that a
vector<Apple> does not convert to a vector<Fruit> even
when Apple implicitly converts to Fruit.

4.1.2 The STL emerges

In late 1993, I became aware of a new approach to contain-
ers and their use that had been developed by Alex Stepanov.
The library he was building was called “The STL”. Alex
then worked at HP Labs but he had earlier worked for a
couple of years at Bell Labs, where he had been close to
Andrew Koenig and where I had discussed library design
and template mechanisms with him. He had inspired me
to work harder on generality and efficiency of some of the
template mechanisms, but fortunately he failed to convince
me to make templates more like Ada generics. Had he suc-
ceeded, he wouldn’t have been able to design and implement
the STL!

Alex showed the latest development in his decades-long
research into generic programming techniques aiming for

“the most general and most efficient code” based on a rigor-
ous mathematical foundation. It was a framework of contain-
ers and algorithms. He first explained his ideas to Andrew,
who after playing with the STL for a couple of days showed
it to me. My first reaction was puzzlement. I found the STL
style of containers and container use very odd, even ugly and
verbose. For example, you sort a vector of doubles, vd, ac-
cording to their absolute value like this:

sort(vd.begin(), vd.end(), Absolute<double>());

Here, vd.begin() and vd.end() specify the beginning
and end of the vector’s sequence of elements and
Absolute<double>() compares absolute values.

The STL separates algorithms from storage in a way
that’s classical (as in math) but not object oriented. Further-
more, it separates policy decisions of algorithms, such as
sorting criteria and search criteria, from the algorithm, the
container, and the element class. The result is unsurpassed
flexibility and — surprisingly — performance.

Like many programmers acquainted with object-oriented
programming, I thought I knew roughly how code using con-
tainers had to look. I imagined something like Simula-style
containers augmented by templates for static type safety and
maybe abstract classes for iterator interfaces. The STL code
looked very different. However, over the years I had devel-
oped a checklist of properties that I considered important for
containers:

1. Individual containers are simple and efficient.

2. A container supplies its “natural” operations (e.g., list
provides put and get and vector provides subscripting).

3. Simple operators, such as member access operations, do
not require a function call for their implementation.

4. Common functionality can be provided (maybe through
iterators or in a base class)

5. Containers are by default statically type-safe and homo-
geneous (that is, all elements in a container are of the
same type).

6. A heterogeneous container can be provided as a homoge-
neous container of pointers to a common base.

7. Containers are non-intrusive (i.e., an object need not have
a special base class or link field to be a member of a
container).

8. A container can contain elements of built-in types

9. A container can contain structs with externally im-
posed layouts.

10. A container can be fitted into a general framework (of
containers and operations on containers).

11. A container can be sorted without it having a sort mem-
ber function.

Evolving C++ 1991-2006 10 2007/5/25

12. “Common services” (such as persistence) can be pro-
vided in a single place for a set of containers (in a base
class?).

A slightly differently phrased version can be found in [124].
To my amazement the STL met all but one of the cri-

teria on that list! The missing criterion was the last. I had
been thinking of using a common base class to provide ser-
vices (such as persistence) for all derived classes (e.g., all
objects or all containers). However, I didn’t (and don’t) con-
sider such services intrinsic to the notion of a container. In-
terestingly, some “common services” can be expressed us-
ing “concepts” (§8.3.3) that specifically address the issue of
what can be required of a set of types, so C++0x (§8) is
likely to bring the STL containers even closer to the ideals
expressed in that list.

It took me some time — weeks — to get comfortable with
the STL. After that, I worried that it was too late to introduce
a completely new style of library into the C++ community.
Considering the odds to get the standards committee to ac-
cept something new and revolutionary at such a late stage of
the standards process, I decided (correctly) that those odds
were very low. Even at best, the standard would be delayed
by a year — and the C++ community urgently needed that
standard. Also, the committee is fundamentally a conserva-
tive body and the STL was revolutionary.

So, the odds were poor, but I plodded on hoping. After
all, I really did feel very bad about C++ not having a suf-
ficiently large and sufficiently good standard library [120]
(D&E [121] §9.2.3). Andrew Koenig did his best to build
up my courage and Alex Stepanov lobbied Andy and me
as best he knew how to. Fortunately, Alex didn’t quite ap-
preciate the difficulties of getting something major through
the committee, so he was less daunted and worked on the
technical aspects and on teaching Andrew and me. I began
to explain the ideas behind the STL to others; for example,
the examples in D&E §15.6.3.1 came from the STL and I
quoted Alex Stepanov: “C++ is a powerful enough language
— the first such language in our experience — to allow the
construction of generic programming components that com-
bine mathematical precision, beauty, and abstractness with
the efficiency of non-generic hand-crafted code”. That quote
is about generic programming in general (§7.2.1) and the
STL in particular.

Andrew Koenig and I invited Alex to give an evening pre-
sentation at the October 1993 standards committee meeting
in San Jose, California: “It was entitled The Science of C++
Programming and dealt mostly with axioms of regular types
— connecting construction, assignment and equality. I also
described axioms of what is now called Forward Iterators. I
did not at all mention any containers and only one algorithm:
find”. [105]. That talk was an audacious piece of rabble
rousing that to my amazement and great pleasure basically
swung the committee away from the attitude of “it’s impos-

sible to do something major at this stage” to “well, let’s have
a look”.

That was the break we needed! Over the next four
months, we (Alex, his colleague Meng Lee, Andrew, and
I) experimented, argued, lobbied, taught, programmed, re-
designed, and documented so that Alex was able to present
a complete description of the STL to the committee at the
March 1994 meeting in San Diego, California. Alex ar-
ranged a meeting for C++ library implementers at HP later
in 1994. The participants were Tom Keffer (Rogue Wave),
Meng Lee (HP), Nathan Myers (Rogue Wave), Larry Pod-
molik (Anderson Consulting), Mike Vilot, Alex, and I. We
agreed on many principles and details, but the size of the
STL emerged as the major obstacle. There was no consen-
sus about the need for large parts of the STL, there was a
(realistic) worry that the committee wouldn’t have the time
to properly review and more formally specify something that
large, and people were simply daunted by the sheer number
of things to understand, implement, document, teach, etc. Fi-
nally, at Alex’s urging, I took a pen and literally crossed out
something like two thirds of all the text. For each facility,
I challenged Alex and the other library experts to explain
— very briefly — why it couldn’t be cut and why it would
benefit most C++ programmers. It was a horrendous exer-
cise. Alex later claimed that it broke his heart. However,
what emerged from that slashing is what is now known as
the STL [103] and it made it into the ISO C++ standard
at the October 1994 meeting in Waterloo, Canada — some-
thing that the original and complete STL would never have
done. Even the necessary revisions of the “reduced STL” de-
layed the standard by more than a year. The worries about
size and complexity (even after my cuts) were particularly
acute among library implementers concerned about the cost
of providing a quality implementation. For example, I re-
member Roland Hartinger (representing Siemens and Ger-
many) worrying that acceptance of the STL would cost his
department one million marks. In retrospect, I think that I
did less damage than we had any right to hope for.

Among all the discussions about the possible adoption of
the STL one memory stands out: Beman Dawes calmly ex-
plaining to the committee that he had thought the STL too
complex for ordinary programmers, but as an exercise he had
implemented about 10% of it himself so he no longer con-
sidered it beyond the standard. Beman was (and is) one of
the all too rare application builders in the committee. Unfor-
tunately, the committee tends to be dominated by compiler,
library, and tools builders.

I credit Alex Stepanov with the STL. He worked with the
fundamental ideals and techniques for well over a decade
before the STL, unsuccessfully using languages such as
Scheme and Ada [101]. However, Alex is always the first
to insist that others took part in that quest. David Musser
(a professor at Rensselaer Polytechnic Institute) has been
working with Alex on generic programming for almost two

Evolving C++ 1991-2006 11 2007/5/25

decades and Meng Lee worked closely with him at HP help-
ing to program the original STL. Email discussions between
Alex and Andrew Koenig also helped. Apart from the slash-
ing exercise, my technical contributions were minor. I sug-
gested that various information related to memory be col-
lected into a single object — what became the allocators. I
also drew up the initial requirement tables on Alex’s black-
board, thus creating the form in which the standard spec-
ifies the requirements that STL templates place on their ar-
guments. These requirements tables are actually an indicator
that the language is insufficiently expressive — such require-
ments should be part of the code; see §8.3.3.

Alex named his containers, iterators, and algorithm li-
brary “the STL”. Usually, that’s considered an acronym for
“Standard Template Library”. However, the library existed
— with that name — long before it was any kind of standard
and most parts of the standard library rely on templates. Wits
have suggested “STepanov and Lee” as an alternative expla-
nation, but let’s give Alex the final word: “ ‘STL’ stands for
‘STL’ ”. As in many other cases, an acronym has taken on a
life of its own.

4.1.3 STL ideals and concepts

So what is the STL? It comes from an attempt to apply the
mathematical ideal of generality to the problem of data and
algorithms. Consider the problem of storing objects in con-
tainers and writing algorithms to manipulate such objects.
Consider this problem in the light of the ideals of direct, in-
dependent, and composable representation of concepts:

• express concepts directly in code

• express relations among concepts directly in code

• express independent concepts in independent code

• compose code representing concepts freely wherever the
composition makes sense

We want to be able to

• store objects of a variety of types (e.g. ints, Points, and
pointers to Shapes)

• store those objects in a variety of containers (e.g. list,
vector, and map),

• apply a variety of algorithms (e.g. sort, find, and
accumulate) to the objects in the containers, and

• use a variety of criteria (comparisons, predicates, etc.) for
those algorithms

Furthermore, we want the use of these objects, containers,
and algorithms to be statically type safe, as fast as possible,
as compact as possible, not verbose, and readable. Achieving
all of this simultaneously is not easy. In fact, I spent more
than ten years unsuccessfully looking for a solution to this
puzzle (§4.1.2).

The STL solution is based on parameterizing containers
with their element types and on completely separating the

algorithms from the containers. Each type of container pro-
vides an iterator type and all access to the elements of the
container can be done using only iterators of that type. The
iterator defines the interface between the algorithm and the
data on which it operates. That way, an algorithm can be
written to use iterators without having to know about the
container that supplied them. Each type of iterator is com-
pletely independent of all others except for supplying the
same semantics to required operations, such as * and ++.

Algorithms use iterators and container implementers im-
plement iterators for their containers:

algorithms: find() sort() accumulate()

iterators: * ++ !=

containers: vector list array

Let’s consider a fairly well-known example, the one that
Alex Stepanov initially showed to the committee (San Jose,
California, 1993). We want to find elements of various types
in various containers. First, here are a couple of containers:

vector<int> vi; // vector of ints
list<string> ls; // list of strings

The vector and list are the standard library versions of the
notions of vector and list implemented as templates. An STL
container is a non-intrusive data structure into which you can
copy elements of any type. We can graphically represent a
(doubly linked) list<string> like this:

list

link���
��

��
��

��
��

�

link

string

link��

link��

string

link��

link��

string

��

Note that the link information is not part of the element type.
An STL container (here, list) manages the memory for its
elements (here, strings) and supplies the link information.

Similarly, we can represent a vector<int> like this:

vector

int����
���

��

int int

Note that the elements are stored in memory managed by the
vector and list. This differs from the Simula-style con-
tainers in §4.1.1 in that it minimizes allocation operations,
minimizes per-object memory, and saves an indirection on
each access to an element. The corresponding cost is a copy
operation when an object is first entered into a container; if

Evolving C++ 1991-2006 12 2007/5/25

a copy is expensive, programmers tend to use pointers as el-
ements.

Assume that the containers vi and ls have been suit-
ably initialized with values of their respective element types.
It then makes sense to try to find the first element with
the value 777 in vi and the first element with the value
"Stepanov" in ls:

vector<int>::iterator p
= find(vi.begin(),vi.end(),777);

list<string>::iterator q
= find(ls.begin(),ls.end(),"Stepanov");

The basic idea is that you can consider the elements of any
container as a sequence of elements. A container “knows”
where its first element is and where its last element is. We
call an object that points to an element “an iterator”. We
can then represent the elements of a container by a pair of
iterators, begin() and end(), where begin() points to the
first element and end() to one-beyond-the-last element. We
can represent this general model graphically:

begin() end()

The end() iterator points to one-past-the-last element rather
than to the last element to allow the empty sequence not to
be a special case:

begin() end()

What can you do with an iterator? You can get the value of
the element pointed to (using * just as with a pointer), make
the iterator point to the next element (using ++ just as with a
pointer) and compare two iterators to see if they point to the
same element (using == or != of course). Surprisingly, this
is sufficient for implementing find():

template<class Iter, class T>
Iter find(Iter first, Iter last, const T& val)
{

while (first!=last && *first!=val)
++first;

return first;
}

This is a simple — very simple, really — function tem-
plate. People familiar with C and C++ pointers should find
the code easy the read: first!=last checks whether we
reached the end and *first!=val checks whether we found
the value that we were looking for (val). If not, we incre-
ment the iterator first to make it point to the next ele-
ment and try again. Thus, when find() returns, its value
will point to either the first element with the value val or
one-past-the-last element (end()). So we can write:

vector<int>::iterator p =
find(vi.begin(),vi.end(),7);

if (p != vi.end()) { // we found 7
// ...

}
else { // no 7 in vi

// ...
}

This is very, very simple. It is simple like the first couple
of pages in a math book and simple enough to be really
fast. However, I know that I wasn’t the only person to take
significant time figuring out what really is going on here and
longer to figure out why this is actually a good idea. Like
simple math, the first STL rules and principles generalize
beyond belief.

Consider first the implementa-
tion: In the call find(vi.begin(),vi.end(),7), the iter-
ators vi.begin() and vi.end() become first and last,
respectively, inside. To find(), first is simply “some-
thing that points to an int”. The obvious implementation of
vector<int>::iterator is therefore a pointer to int, an
int*. With that implementation, * becomes pointer derefer-
ence, ++ becomes pointer increment, and != becomes pointer
comparison. That is, the implementation of find() is obvi-
ous and optimal.

Please note that the STL does not use function calls to ac-
cess the operations (such as * and !=) that are effectively ar-
guments to the algorithm because they depend on a template
argument. In this, templates differ radically from most mech-
anisms for “generics”, relying on indirect function calls (like
virtual functions), as provided by Java and C#. Given a good
optimizer, vector<int>::iterator can without overhead
be a class with * and ++ provided as inline functions. Such
optimizers are now not uncommon and using a iterator class
rather than a pointer improves type checking by catching
unwarranted assumptions, such as that the iterator for a
vector is a pointer:

int* p = find(vi.begin(),vi.end(),7); // error

// verbose, but correct:
vector<int>::iterator q =

find(vi.begin(),vi.end(),7);

Evolving C++ 1991-2006 13 2007/5/25

C++0x will provide ways of dealing with the verbosity; see
§8.3.2.

In addition, not defining the interface between an algo-
rithm and its type arguments as a set of functions with unique
types provides a degree of flexibility that proved very impor-
tant [130] (§8.3.3). For example, the standard library algo-
rithm copy can copy between different container types:

void f(list<int>& lst, vector<int>& v)
{

copy(lst.begin(), lst.end(), v.begin());
// ...
copy(v.begin(), v.end(), lst.end());

}

So why didn’t we just dispense with all that “it-
erator stuff” and use pointers? One reason is that
vector<int>::iterator could have been a class provid-
ing range checked access. For a less subtle explanation, have
a look at another call of find():

list<string>::iterator q =
find(ls.begin(),ls.end(),"McIlroy");

if (q != ls.end()) { // we found "McIlroy"
// ...

}
else { // no "McIlroy" in ls

// ...
}

Here, list<string>::iterator isn’t going to be a
string*. In fact, assuming the most common implementa-
tion of a linked list, list<string>::iterator is going to
be a Link<string>* where Link is a link node type, such
as:

template<class T> struct Link {
T value;
Link* suc;
Link* pre;

};

That implies that * means p->value (“return the value
field”), ++ means p->suc (“return a pointer to the next
link”), and != pointer comparison (comparing Link*s).
Again the implementation is obvious and optimal. How-
ever, it is completely different from what we saw for
vector<int>::iterator.

We used a combination of templates and overload resolu-
tion to pick radically different, yet optimal, implementations
of operations used in the definition of find() for each use
of find(). Note that there is no run-time dispatch, no virtual
function calls. In fact, there are only calls of trivially inlined
functions and fundamental operations, such as * and ++ for
a pointer. In terms of execution time and code size, we have
hit the absolute minimum!

Why not use “sequence” or “container” as the fundamen-
tal notion rather than “pair of iterators”? Part of the rea-

son is that “pair of iterators” is simply a more general con-
cept than “container”. For example, given iterators, we can
sort the first half of a container only: sort(vi.begin(),
vi.begin()+vi.size()/2). Another reason is that the
STL follows the C++ design rules that we must provide tran-
sition paths and support built-in and user-defined types uni-
formly. What if someone kept data in an ordinary array? We
can still use the STL algorithms. For example:

int buf[max];
// ... fill buf ...
int* p = find(buf,buf+max,7);

if (p != buf+max) { // we found 7
// ...

}
else { // no 7 in buf

// ...
}

Here, the *, ++, and != in find() really are pointer oper-
ations! Like C++ itself, the STL is compatible with older
notions such as C arrays. Thus, the STL meets the C++ ideal
of always providing a transition path (§2). It also meets the
ideal of providing uniform treatment to user-defined types
(such as vector) and built-in types (in this case, array) (§2).

Another reason for basing algorithms on iterators, rather
than on containers or an explicit sequence abstraction, was
the desire for optimal performance: using iterators directly
rather than retrieving a pointer or an index from another
abstraction eliminates a level of indirection.

As adopted as the containers and algorithms framework
of the ISO C++ standard library, the STL consists of a
dozen containers (such as vector, list, and map) and data
structures (such as arrays) that can be used as sequences.
In addition, there are about 60 algorithms (such as find,
sort, accumulate, and merge). It would not be reasonable
to present all of those here. For details, see [6, 126].

So, we can use simple arithmetic to see how the STL
technique of separating algorithms from containers reduces
the amount of source code we have to write and maintain.
There are 60*12 (that is, 720) combinations of algorithm and
container in the standard but just 60+12 (that is, 72) defini-
tions. The separation reduces the combinatorial explosion to
a simple addition. If we consider element types and policy
parameters (function objects, see §4.1.4) for algorithms we
see an even more impressive gain: Assume that we have N
algorithms with M alternative criteria (policies) and X con-
tainers with Y element types. Then, the STL approach gives
us N+M+X+Y definitions whereas “hand-crafted code” re-
quires N*M*X*Y definitions. In real designs, the difference
isn’t quite that dramatic because typically designers attack
that huge N*M*X*Y figure with a combination of conver-
sions (one container to another, one data type to another),
class derivations, function parameters, etc., but the STL ap-

Evolving C++ 1991-2006 14 2007/5/25

proach is far cleaner and more systematic than earlier alter-
natives.

The key to both the elegance and the performance of the
STL is that it — like C++ itself — is based directly on the
hardware model of memory and computation. The STL no-
tion of a sequence is basically that of the hardware’s view of
memory as a set of sequences of objects. The basic semantics
of the STL map directly into hardware instructions allowing
algorithms to be implemented optimally. The compile-time
resolution of templates and the perfect inlining they support
is then key to the efficient mapping of the high-level expres-
sion using the STL to the hardware level.

4.1.4 Function objects

The STL and generic programming in general owes a —
freely and often acknowledged (e.g., [124]) — debt to func-
tional programming. So where are the lambdas and higher-
order functions? C++ doesn’t directly support anything like
that (though there are always proposals for nested functions,
closures, lambdas, etc.; see §8.2). Instead, classes that de-
fine the application operator, called function objects (or even
“functors”), take that role and have become the main mech-
anism of parameterization in modern C++. Function objects
build on general C++ mechanisms to provide unprecedented
flexibility and performance.

The STL framework, as described so far, is somewhat
rigid. Each algorithm does exactly one thing in exactly the
way the standard specifies it to. For example, using find(),
we find an element that is equal to the value we give as
the argument. It is actually more common to look for an
element that has some desired property, such as matching
strings without case sensitivity or matching floating-point
values allowing for very slight differences.

As an example, instead of finding a value 7, let’s look for
a value that meets some predicate, say, being less than 7:

vector<int>::iterator p =
find_if(v.begin(),v.end(),Less_than<int>(7));

if (p != vi.end()) { // element < 7
// ...

}
else { // no such element

// ...
}

What is Less_than<int>(7)? It is a function object; that
is, it is an object of a class that has the application operator,
(), defined to perform an action:

template<class T> struct Less_than {
T value;
Less_than(const T& v) :value(v) { }
bool operator()(const T& v) const

{ return v<value; }
};

For example:

Less_than<double> f(3.14); // f holds 3.14
bool b1 = f(3); // true: 3<3.14 is true
bool b2 = f(4); // false: 4<3.14 is false

From the vantage point of 2005, it seems odd that function
objects are not mentioned in D&E or TC++PL1. They de-
serve a whole section. Even the use of a user-defined appli-
cation operator, (), isn’t mentioned even though it has had
a long and distinguished career. For example, it was among
the initial set of operators (after =; see D&E §3.6) that I al-
lowed to be overloaded and was among many other things
used to mimic Fortran subscript notation [112].

We used the STL algorithm find_if to apply
Less_than<int>(7) to the elements of the vector. The
definition of find_if differs from find()’s definition in us-
ing a user-supplied predicate rather than equality:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{

while (first!=last && !pred(*first))
++first;

return first;
}

We simply replaced *first!=val with !pred(*first).
The function template find_if() will accept any object
that can be called given an element value as its argument.
In particular, we could call find_if() with an ordinary
function as its third argument:

bool less_than_7(int a)
{

return a<7;
}

vector<int>::iterator p =
find_if(v.begin(),v.end(),less_than_7);

However, this example shows why we often prefer a function
object over a function: The function object can be initialized
with one (or more) arguments and carry information along
for later use. A function object can carry a state. That makes
for more general and more elegant code. If needed, we can
also examine that state later. For example:

template<class T>
struct Accumulator { // keep the sum of n values

T value;
int count;
Accumulator() :value(), count(0) { }
Accumulator(const T& v) :value(v), count(0) { }
void operator()(const T& v)

{ ++count; value+=v; }
};

An Accumulator object can be passed to an algorithm that
calls it repeatedly. The partial result is carried along in the
object. For example:

int main()
{

Evolving C++ 1991-2006 15 2007/5/25

vector<double> v;
double d;
while (cin>>d) v.push_back(d);

Accumulator<double> ad;
ad = for_each(v.begin(),v.end(), ad);
cout << "sum==" << ad.value

<< ", mean==" << ad.value/ad.count
<< ’\n’;

return 0;
}

The standard library algorithm for_each simply applies its
third argument to each element of its sequence and returns
that argument as its return value. The alternative to using
a function object would be a messy use of global variables
to hold value and count. In a multithreaded system, such
use of global variables is not just messy, but gives incorrect
results.

Interestingly, simple function objects tend to perform bet-
ter than their function equivalents. The reason is that they
tend to be simple classes without virtual functions, so that
when we call a member function the compiler knows ex-
actly which function we are calling. That way, even a simple-
minded compiler has all the information needed to inline. On
the other hand, a function used as a parameter is passed as
a pointer, and optimizers have traditionally been incapable
of performing optimizations involving pointers. This can be
very significant (e.g. a factor of 50 in speed) when we pass
an object or function that performs a really simple operation,
such as the comparison criteria for a sort. In particular, inlin-
ing of function objects is the reason that the STL (C++ stan-
dard library) sort() outperforms the conventional qsort()
by several factors when sorting arrays of types with sim-
ple comparison operators (such as int and double) [125].
Spurred on by the success of function objects, some com-
pilers now can do inlining for pointers to functions as long
as a constant is used in the call. For example, today, some
compilers can inline calls to compare from within qsort:

bool compare(double* a, double* b) { /* ... */ }
// ...
qsort(p,max,sizeof(double),compare);

In 1994, no production C or C++ compiler could do that.
Function objects are the C++ mechanism for higher-order

constructs. It is not the most elegant expression of high-order
ideas, but it is surprisingly expressive and inherently effi-
cient in the context of a general purpose language. To get the
same efficiency of code (in time and space) from a general
implementation of conventional functional programming fa-
cilities requires significant maturity from an optimizer. As
an example of expressiveness, Jaakko Järvi and Gary Powell
showed how to provide and use a lambda class that made the
following example legal with its obvious meaning [72]:

list<int> lst;
// ...

Lambda x;
list<int>::iterator p =

find_if(lst.begin(),lst.end(),x<7);

Note how overload resolution enables us to make the ele-
ment type, int, implicit (deduced). If you want just < to
work, rather than building a general library, you can add def-
initions for Lambda and < in less than a dozen lines of code.
Using Less_than from the example above, we can simply
write:

class Lambda {};

template<class T>
Less_than<T> operator<(Lambda,const T& v)
{

return Less_than<T>(v);
}

So, the argument x<7 in the call of find_if becomes a
call of operator<(Lambda,const int&), which generates
a Less_than<int> object. That’s exactly what we used
explicitly in the first example in this section. The difference
here is just that we have achieved a much simpler and more
intuitive syntax. This is a good example of the expressive
power of C++ and of how the interface to a library can be
simpler than its implementation. Naturally, there is no run-
time or space overhead compared to a laboriously written
loop to look for an element with a value less than 7.

The closest that C++ comes to higher-order functions is
a function template that returns a function object, such as
operator< returning a Less_than of the appropriate type
and value. Several libraries have expanded that idea into
quite comprehensive support for functional programming
(e.g., Boost’s Function objects and higher-order program-
ming libraries [16] and FC++ [99]).

4.1.5 Traits

C++ doesn’t offer a general compile-time way of asking for
properties of a type. In the STL, and in many other libraries
using templates to provide generic type-safe facilities for di-
verse types, this became a problem. Initially, the STL used
overloading to deal with this (e.g., note the way the type
int is deduced and used in x<7; §4.1.4). However, that use
of overloading was unsystematic and therefore unduly dif-
ficult and error prone. The basic solution was discovered
by Nathan Myers during the effort to templatize iostream
and string [88]. The basic idea is to provide an auxiliary
template, “a trait”, to contain the desired information about
a set of types. Consider how to find the type of the ele-
ments pointed to by an iterator. For a list_iterator<T>
it is list_iterator<T>::value_type and for an ordinary
pointer T* it is T. We can express that like this:

template<class Iter>
struct iterator_trait {

typedef Iter::value_type value_type;
};

Evolving C++ 1991-2006 16 2007/5/25

template<class T>
struct iterator_trait<T*> {

typedef T value_type;
};

That is, the value_type of an iterator is its member type
value_type. However, pointers are a common form of iter-
ators and they don’t have any member types. So, for point-
ers we use the type pointed to as value_type. The language
construct involved is called partial specialization (added to
C++ in 1995; §5). Traits can lead to somewhat bloated
source code (though they have no object code or run-time
cost) and even though the technique is very extensible it
often requires explicit programmer attention when a new
type is added. Traits are now ubiquitous in template-based
C++ libraries. However, the “concepts” mechanism (§8.3.3)
promises to make many traits redundant by providing di-
rect language support for the idea of expressing properties
of types.

4.1.6 Iterator categories

The result of the STL model as described so far could easily
have become a mess with each algorithm depending on the
peculiarities of the iterators offered by specific containers.
To achieve interoperability, iterator interfaces have to be
standardized. It would have been simplest to define a single
set of operators for every iterator. However, to do so would
have been doing violence to reality: From an algorithmic
point of view lists, vectors, and output streams really do
have different essential properties. For example, you can
efficiently subscript a vector, you can add an element to a
list without disturbing neighboring elements, and you can
read from an input stream but not from an output stream.
Consequently the STL provides a classification of iterators:

• input iterator (ideal for homogeneous stream input)

• output iterator (ideal for homogeneous stream output)

• forward iterator (we can read and write an element re-
peatedly, ideal for singly-linked lists)

• bidirectional iterator (ideal for doubly-linked lists)

• random access iterator (ideal for vectors and arrays)

This classification acts as a guide to programmers who care
about interoperability of algorithms and containers. It allows
us to minimize the coupling of algorithms and containers.
Where different algorithms exist for different iterator cate-
gories, the most suitable algorithm is automatically chosen
through overloading (at compile time).

4.1.7 Complexity requirements

The STL included complexity measures (using the big-O
notation) for every standard library operation and algorithm.
This was novel in the context of a foundation library for a
language in major industrial use. The hope was and still is

that this would set a precedent for better specification of
libraries. Another — less innovative — aspect of this is a
fairly systematic use of preconditions and postconditions in
the specification of the library.

4.1.8 Stepanov’s view

The description of the STL here is (naturally) focused on
language and library issues in the context of C++. To get
a complementary view, I asked Alexander Stepanov for his
perspective [106]:

In October of 1976 I observed that a certain algorithm
— parallel reduction — was associated with monoids:
collections of elements with an associative operation.
That observation led me to believe that it is possi-
ble to associate every useful algorithm with a math-
ematical theory and that such association allows for
both widest possible use and meaningful taxonomy.
As mathematicians learned to lift theorems into their
most general settings, so I wanted to lift algorithms
and data structures. One seldom needs to know the
exact type of data on which an algorithm works since
most algorithms work on many similar types. In or-
der to write an algorithm one needs only to know the
properties of operations on data. I call a collection of
types with similar properties on which an algorithm
makes sense the underlying concept of the algorithm.
Also, in order to pick an efficient algorithm one needs
to know the complexity of these operations. In other
words, complexity is an essential part of the interface
to a concept.

In the late ’70s I became aware of John Backus’s work
on FP [7]. While his idea of programming with func-
tional forms struck me as essential, I realized that his
attempt to permanently fix the number of functional
forms was fundamentallywrong. The number of func-
tional forms — or, as I call them now, generic al-
gorithms — is always growing as we discover new
algorithms. In 1980 together with Dave Musser and
Deepak Kapur I started working on a language Tecton
to describe algorithms defined on algebraic theories.
The language was functional since I did not realize at
the time that memory and pointers were a fundamen-
tal part of programming. I also spent time studying
Aristotle and his successors which led me to better un-
derstanding of fundamental operations on objects like
equality and copying and the relation between whole
and part.

In 1984 I started collaborating with Aaron Kershen-
baum who was an expert on graph algorithms. He was
able to convince me to take arrays seriously. I viewed
sequences as recursively definable since it was com-
monly perceived to be the “theoretically sound” ap-
proach. Aaron showed me that many fundamental al-
gorithms depended on random access. We produced a

Evolving C++ 1991-2006 17 2007/5/25

large set of components in Scheme and were able to
implement generically some complicated graph algo-
rithms.

The Scheme work led to a grant to produce a generic
library in Ada. Dave Musser and I produced a generic
library that dealt with linked structures. My attempts
to implement algorithms that work on any sequential
structure (both lists and arrays) failed because of the
state of Ada compilers at the time. I had equivalences
to many STL algorithms, but could not compile them.
Based on this work, Dave Musser and I published
a paper where we introduced the notion of generic
programming insisting on deriving abstraction from
useful efficient algorithms. The most important thing
I learned from Ada was the value of static typing as
a design tool. Bjarne Stroustrup had learned the same
lesson from Simula.

In 1987 at Bell Labs Andy Koenig taught me seman-
tics of C. The abstract machine behind C was a reve-
lation. I also read lots of UNIX and Plan 9 code: Ken
Thompson’s and Rob Pike’s code certainly influenced
STL. In any case, in 1987 C++ was not ready for STL
and I had to move on.

At that time I discovered the works of Euler and my
perception of the nature of mathematics underwent
a dramatic transformation. I was de-Bourbakized,
stopped believing in sets, and was expelled from the
Cantorian paradise. I still believe in abstraction, but
now I know that one ends with abstraction, not starts
with it. I learned that one has to adapt abstractions
to reality and not the other way around. Mathematics
stopped being a science of theories but reappeared to
me as a science of numbers and shapes.

In 1993, after five years working on unrelated
projects, I returned to generic programming. Andy
Koenig suggested that I write a proposal for includ-
ing my library into the C++ standard, Bjarne Strous-
trup enthusiastically endorsed the proposal and in less
than a year STL was accepted into the standard. STL
is the result of 20 years of thinking but of less than
two years of funding.

STL is only a limited success. While it became a
widely used library, its central intuition did not get
across. People confuse generic programming with us-
ing (and abusing) C++ templates. Generic program-
ming is about abstracting and classifying algorithms
and data structures. It gets its inspiration from Knuth
and not from type theory. Its goal is the incremental
construction of systematic catalogs of useful, efficient
and abstract algorithms and data structures. Such an
undertaking is still a dream.

You can find references to the work leading to STL at
www.stepanovpapers.com.

I am more optimistic about the long-term impact of Alex’s
ideas than he is. However, we agree that the STL is just the
first step of a long journey.

4.1.9 The impact of the STL

The impact of the STL on the thinking on C++ has been im-
mense. Before the STL, I consistently listed three fundamen-
tal programming styles (“paradigms”) as being supported by
C++ [113]:

• Procedural programming

• Data abstraction

• Object-oriented programming

I saw templates as support for data abstraction. After playing
with the STL for a while, I factored out a fourth style:

• Generic programming

The techniques based on the use of templates and largely in-
spired by techniques from functional programming are qual-
itatively different from traditional data abstraction. People
simply think differently about types, objects, and resources.
New C++ libraries are written — using templates — to be
statically type safe and efficient. Templates are the key to
embedded systems programming and high-performance nu-
meric programming where resource management and cor-
rectness are key [67]. The STL itself is not always ideal in
those areas. For example, it doesn’t provide direct support
for linear algebra and it can be tricky to use in hard-real-time
systems where free store use is banned. However, the STL
demonstrates what can be done with templates and gives ex-
amples of effective techniques. For example, the use of itera-
tors (and allocators) to separate logical memory access from
actual memory access is key to many high-performance nu-
meric techniques [86, 96] and the use of small, easily in-
lined, objects is key to examples of optimal use of hardware
in embedded systems programming. Some of these tech-
niques are documented in the standards committee’s tech-
nical report on performance (§6.1). The emphasis on the
STL and on generic programming in the C++ community
in the late 1990s and early 2000s is to a large extent a re-
action — and a constructive alternative — to a trend in the
larger software-development community towards overuse of
“object-oriented” techniques relying excessively on class hi-
erarchies and virtual functions.

Obviously, the STL isn’t perfect. There is no one “thing”
to be perfect relative to. However, it broke new ground
and has had impact even beyond the huge C++ community
(§9.3). It also inspired many to use templates both in more
disciplined and more adventurous ways. People talk about
“template meta-programming” (§7.2.2) and generative pro-
gramming [31] and try to push the techniques pioneered by
the STL beyond the STL. Another line of attack is to con-
sider how C++ could better support effective uses of tem-
plates (concepts, auto, etc.; see §8).

Evolving C++ 1991-2006 18 2007/5/25

Inevitably, the success of STL brought its own prob-
lems. People wanted to write all kinds of code in the STL
style. However, like any other style or technique, the STL
style or even generic programming in general isn’t ideal
for every kind of problem. For example, generic program-
ming relying on templates and overloading completely re-
solves all name bindings at compile time. It does not pro-
vide a mechanism for bindings that are resolved at run time;
that’s what class hierarchies and their associated object-
oriented design techniques are for. Like all successful lan-
guage mechanisms and programming techniques, templates
and generic programming became fashionable and severely
overused. Programmers built truly baroque and brittle con-
structs based on the fact that template instantiation and de-
duction is Turing complete. As I earlier observed for C++’s
object-oriented facilities and techniques: “Just because you
can do it, doesn’t mean that you have to”. Developing a
comprehensive and simple framework for using the differ-
ent programming styles supported by C++ is a major chal-
lenge for the next few years. As a style of programming,
“multi-paradigm programming” [121] is underdeveloped. It
often provides solutions that are more elegant and outper-
forms alternatives [28], but we don’t (yet) have a simple and
systematic way of combining the programming styles. Even
its name gives away its fundamental weakness.

Another problem with the STL is that its containers are
non-intrusive. From the point of view of code clarity and
independence of concepts, being non-intrusive is a huge ad-
vantage. However, it does mean that we need to copy el-
ements into containers or insert objects with default values
into containers and later give them the desired values. Some-
times that’s inefficient or inconvenient. For example, people
tend not to insert large objects into a vector for that reason;
instead, they insert pointers to such large objects. Similarly,
the implicit memory management that the standard contain-
ers provide for their elements is a major convenience, but
there are applications (e.g., in some embedded and high-
performance systems) where such implicit memory manage-
ment must be avoided. The standard containers provide fea-
tures for ensuring that (e.g., reserve), but they have to be
understood and used to avoid problems.

4.2 Other Parts of the Standard Library

From 1994 onwards, the STL dominated the work on the
standard library and provided its major area of innovation.
However, it was not the only area of work. In fact, the
standard library provides several components:

• basic language run-time support (memory management,
run-time type information (RTTI), exceptions, etc.)

• the C standard library

• the STL (containers, algorithms, iterators, function ob-
jects)

• iostreams (templatized on character type and implicitly
on locale)

• locales (objects characterizing cultural preferences in
I/O)

• string (templatized on character type)

• bitset (a set of bits with logical operations)

• complex (templatized on scalar type)

• valarray (templatized on scalar type)

• auto_ptr (a resource handle for objects templatized on
type)

For a variety of reasons, the stories of the other library com-
ponents are less interesting and less edifying than the story
of the STL. Most of the time, work on each of these com-
ponents progressed in isolation from work on the others.
There was no overall design or design philosophy. For ex-
ample, bitset is range checked whereas string isn’t. Fur-
thermore, the design of several components (such as string,
complex, and iostream) was constrained by compatibility
concerns. Several (notably iostream and locale) suffered
from the “second-system effect” as their designers tried to
cope with all kinds of demands, constraints, and existing
practice. Basically, the committee failed to contain “design
by committee” so whereas the STL reflects a clear philoso-
phy and coherent style, most of the other components suf-
fered. Each represents its own style and philosophy, and
some (such as string) manage simultaneously to present
several. I think complex is the exception here. It is basically
my original design [91] templatized to allow for a variety of
scalar types:

complex<double> z; // double-precision
complex<float> x; // single-precision
complex<short> point; // integer grid

It is hard to seriously mess up math.
The committee did have some serious discussions about

the scope of the standard library. The context for this discus-
sion was the small and universally accepted C standard li-
brary (which the C++ standard adopted with only the tiniest
of modification) and the huge corporate foundation libraries.
During the early years of the standards process, I articulated
a set of guidelines for the scope of the C++ standard library:

First of all, the key libraries now in almost universal
use must be standardized. This means that the exact
interface between C++ and the C standard libraries
must be specified and the iostreams library must be
specified. In addition, the basic language support must
be specified. ...

Next, the committee must see if it can respond to
the common demand for “more useful and standard
classes,” such as string, without getting into a mess
of design by committee and without competing with
the C++ library industry. Any libraries beyond the

Evolving C++ 1991-2006 19 2007/5/25

C libraries and iostreams accepted by the committee
must be in the nature of building blocks rather than
more ambitious frameworks. The key role of a stan-
dard library is to ease communication between sepa-
rately developed, more ambitious libraries.

The last sentence delineated the scope of the committee’s
efforts. The elaboration of the requirement for the standard
library to consist of building blocks for more ambitious li-
braries and frameworks emphasized absolute efficiency and
extreme generality. One example I frequently used to illus-
trate the seriousness of those demands was that a container
where element access involved a virtual function call could
not be sufficiently efficient and that a container that couldn’t
hold an arbitrary type could not be sufficiently general (see
also §4.1.1). The committee felt that the role of the standard
library was to support rather than supplant other libraries.

Towards the end of the work on the 1998 standard, there
was a general feeling in the committee that we hadn’t done
enough about libraries, and also that there had been insuffi-
cient experimentation and too little attention to performance
measurement for the libraries we did approve. The question
was how to address those issues in the future. One — classi-
cal standards process — approach was to work on technical
reports (see §6.2). Another was initiated by Beman Dawes
in 1998, called Boost [16]. To quote from boost.org (August
2006):

“Boost provides free peer-reviewed portable C++
source libraries. We emphasize libraries that work
well with the C++ Standard Library. Boost libraries
are intended to be widely useful, and usable across a
broad spectrum of applications. The Boost license en-
courages both commercial and non-commercial use.
We aim to establish “existing practice” and provide
reference implementations so that Boost libraries are
suitable for eventual standardization. Ten Boost li-
braries are already included in the C++ Standards
Committee’s Library Technical Report (TR1) as a step
toward becoming part of a future C++ Standard. More
Boost libraries are proposed for the upcoming TR2”.

Boost thrived and became a significant source of libraries
and ideas for the standards committee and the C++ commu-
nity in general.

5. Language Features: 1991-1998
By 1991, the most significant C++ language features for
C++98 had been accepted: templates and exceptions as spec-
ified in the ARM were officially part of the language. How-
ever, work on their detailed specification went on for another
several years. In addition, the committee worked on many
new features, such as

1992 Covariant return types — the first extension beyond
the features described in the ARM

1993 Run-time type identification (RTTI: dynamic_cast,
typeid, and type_info); §5.1.2

1993 Declarations in conditions; §5.1.3

1993 Overloading based on enumerations

1993 Namespaces; §5.1.1

1993 mutable

1993 New casts (static_cast, reinterpret_cast, and
const_cast)

1993 A Boolean type (bool); §5.1.4

1993 Explicit template instantiation

1993 Explicit template argument specification in function
template calls

1994 Member templates (“nested templates”)

1994 Class templates as template arguments

1996 In-class member initializers

1996 Separate compilation of templates (export); §5.2

1996 Template partial specialization

1996 Partial ordering of overloaded function templates

I won’t go into detail here; the history of these features can
be found in D&E [121] and TC++PL3 [126] describes their
use. Obviously, most of these features were proposed and
discussed long before they were voted into the standard.

Did the committee have overall criteria for acceptance
of new features? Not really. The introduction of classes,
class hierarchies, templates, and exceptions each (and in
combination) represented a deliberate attempt to change the
way people think about programming and write code. Such a
major change was part of my aims for C++. However, as far
as a committee can be said to think, that doesn’t seem to be
the way it does it. Individuals bring forward proposals, and
the ones that make progress through the committee and reach
a vote tend to be of limited scope. The committee members
are busy and primarily practical people with little patience
for abstract goals and a liking of concrete details that are
amenable to exhaustive examination.

It is my opinion that the sum of the facilities added gives
a more complete and effective support of the programming
styles supported by C++, so we could say that the overall
aim of these proposals is to “provide better support for pro-
cedural, object-oriented, and generic programming and for
data abstraction”. That’s true, but it is not a concrete crite-
rion that can be used to select proposals to work on from a
long list. To the extent that the process has been successful in
selecting new “minor features”, it has been the result of deci-
sions by individuals on a proposal-by-proposal basis. That’s
not my ideal, but the result could have been much worse. ISO
C++ (C++98) is a better approximation to my ideals than the
previous versions of C++ were. C++98 is a far more flexible
(powerful) programming language than “ARM C++” (§3).

Evolving C++ 1991-2006 20 2007/5/25

The main reason for that is the cumulative effect of the re-
finements, such as member templates.

Not every feature accepted is in my opinion an improve-
ment, though. For example, “in-class initialization of static
const members of integral type with a constant expression”
(proposed by John "Max" Skaller representing Australia
and New Zealand) and the rule that void f(T) and void
f(const T) denote the same function (proposed by Tom
Plum for C compatibility reasons) share the dubious distinc-
tion of having been voted into C++ “over my dead body”.

5.1 Some “Minor Features”

The “minor features” didn’t feel minor when the committee
worked on them, and may very well not look minor to a
programmer using them. For example, I refer to namespaces
and RTTI as “major” in D&E [121]. However, they don’t
significantly change the way we think about programs, so
I will only briefly discuss a few of the features that many
would deem “not minor”.

5.1.1 Namespaces

C provides a single global namespace for all names that
don’t convenientlyfit into a single function, a single struct,
or a single translation unit. This causes problems with name
clashes. I first grappled with this problem in the original
design of C++ by defaulting all names to be local to a
translation unit and requiring an explicit extern declaration
to make them visible to other translation units. This idea
was neither sufficient to solve the problem nor sufficiently
compatible to be acceptable, so it failed.

When I devised the type-safe linkage mechanism [121], I
reconsidered the problem. I observed that a slight change to
the

extern "C" { /* ... */ }

syntax, semantics, and implementation technique would al-
low us to have

extern XXX { /* ... */ }

mean that names declared in XXX were in a separate scope
XXX and accessible from other scopes only when qualified
by XXX:: in exactly the same way static class members are
accessed from outside their class.

For various reasons, mostly related to lack of time, this
idea lay dormant until it resurfaced in the ANSI/ISO com-
mittee discussions early in 1991. First, Keith Rowe from Mi-
crosoft presented a proposal that suggested the notation

bundle XXX { /* ... */ };

as a mechanism for defining a named scope and an opera-
tor use for bringing all names from a bundle into another
scope. This led to a — not very vigorous — discussion
among a few members of the extensions group including
Steve Dovich, Dag Brück, Martin O’Riordan, and me. Even-
tually, Volker Bauche, Roland Hartinger, and Erwin Unruh

from Siemens refined the ideas discussed into a proposal that
didn’t use new keywords:

:: XXX :: { /* ... */ };

This led to a serious discussion in the extensions group.
In particular, Martin O’Riordan demonstrated that this ::
notation led to ambiguities with :: used for class members
and for global names.

By early 1993, I had — with the help of multi-megabyte
email exchanges and discussions at the standards meetings
— synthesized a coherent proposal. I recall technical con-
tributions on namespaces from Dag Brück, John Bruns,
Steve Dovich, Bill Gibbons, Philippe Gautron, Tony Hansen,
Peter Juhl, Andrew Koenig, Eric Krohn, Doug McIlroy,
Richard Minner, Martin O’Riordan, John “Max” Skaller,
Jerry Schwarz, Mark Terribile, Mike Vilot, and me. In ad-
dition, Mike Vilot argued for immediate development of the
ideas into a definite proposal so that the facilities would be
available for addressing the inevitable naming problems in
the ISO C++ library. In addition to various common C and
C++ techniques for limiting the damage of name clashes,
the facilities offered by Modula-2 and Ada were discussed.
Namespaces were voted into C++ at the Munich meeting in
July 1993. So, we can write:

namespace XXX {
// ...
int f(int);

}

int f(int);
int x = f(1); // call global f
int y = XXX::f(1); // call XXX’s f

At the San Jose meeting in November 1993, it was decided
to use namespaces to control names in the standard C and
C++ libraries.

The original namespace design included a few more fa-
cilities, such as namespace aliases to allow abbreviations for
long names, using declarations to bring individual names
into a namespace, using directives to make all names
from a namespace available with a single directive. Three
years later, argument-dependent lookup (ADL or “Koenig
lookup”) was added to make namespaces of argument type
names implicit.

The result was a facility that is useful and used but rarely
loved. Namespaces do what they are supposed to do, some-
times elegantly, sometimes clumsily, and sometimes they do
more than some people would prefer (especially argument-
dependent lookup during template instantiation). The fact
that the C++ standard library uses only a single namespace
for all of its major facilities is an indication of a failure to
establish namespaces as a primary tool of C++ program-
mers. Using sub-namespaces for the standard library would
have implied a standardization of parts of the library imple-
mentation (to say which facilities were in which namespaces

Evolving C++ 1991-2006 21 2007/5/25

and which parts depended on other parts). Some library ven-
dors strongly objected to such constraints on their traditional
freedom as implementers — traditionally the internal orga-
nization of C and C++ libraries have been essentially un-
constrained. Using sub-namespaces would also have been
a source of verbosity. Argument-dependent lookup would
have helped, but it was only introduced later in the standard-
ization process. Also, ADL suffers from a bad interaction
with templates that in some cases make it prefer a surpris-
ing template over an obvious non-template. Here "surpris-
ing" and "obvious" are polite renderings of user comments.

This has led to proposals for C++0x to strengthen name-
spaces, to restrict their use, and most interestingly a proposal
from David Vandevoorde from EDG to make some name-
spaces into modules [146] — that is, to provide separately
compiled namespaces that load as modules. Obviously, that
facility looks a bit like the equivalent features of Java and
C#.

5.1.2 Run-time type information

When designing C++, I had left out facilities for determining
the type of an object (Simula’s QUA and INSPECT similar to
Smalltalk’s isKindOf and isA). The reason was that I had
observed frequent and serious misuse to the great detriment
of program organization: people were using these facilities
to implement (slow and ugly) versions of a switch statement.

The original impetus for adding facilities for determining
the type of an object at run time to C++ came from Dmitry
Lenkov from Hewlett-Packard. Dmitry in turn built on ex-
perience from major C++ libraries such as Interviews [81],
the NIH library [50], and ET++ [152]. The RTTI mecha-
nisms provided by these libraries (and others) were mutu-
ally incompatible, so they became a barrier to the use of
more than one library. Also, all require considerable fore-
sight from base class designers. Consequently, a language-
supported mechanism was needed.

I got involved in the detailed design for such mechanisms
as the coauthor with Dmitry of the original proposal to the
committee and as the main person responsible for the refine-
ment of the proposal in the committee [119]. The proposal
was first presented to the committee at the London meeting
in July 1991 and accepted at the Portland, Oregon meeting
in March 1993.

The run-time type information mechanism consists of
three parts:

• An operator, dynamic_cast, for obtaining a pointer to
an object of a derived class given a pointer to a base
class of that object. The operator dynamic_cast delivers
that pointer only if the object pointed to really is of the
specified derived class; otherwise it returns 0.

• An operator, typeid, for identifying the exact type of an
object given a pointer to a base class.

• A structure, type_info, acting as a hook for further run-
time information associated with a type.

Assume that a library supplies class dialog_box and that
its interfaces are expressed in terms of dialog_boxes. I,
however, use both dialog_boxes and my own Sboxs:

class dialog_box : public window {
// library class known to ‘‘the system’’

public:
virtual int ask();
// ...

};

class Sbox : public dialog_box {
// can be used to communicate a string

public:
int ask();
virtual char* get_string();
// ...

};

So, when the system/library hands me a pointer to a
dialog_box, how can I know whether it is one of my Sboxs?
Note that I can’t modify the library to know my Sbox class.
Even if I could, I wouldn’t, because then I would have to
modify every new version of the library forever after. So,
when the system passes an object to my code, I sometimes
need to ask it if was “one of mine”. This question can be
asked directly using the dynamic_cast operator:

void my_fct(dialog_box* bp)
{

if (Sbox* sbp = dynamic_cast<Sbox*>(bp)) {
// use sbp

}
else {

// treat *pb as a ‘‘plain’’ dialog box
}

}

The dynamic_cast<T*>(p) converts p to the desired type
T* if *p really is a T or a class derived from T; other-
wise, the value of dynamic_cast<T*>(p) is 0. This use of
dynamic_cast is the essential operation of a GUI callback.
Thus, C++’s RTTI can be seen as the minimal facility for
supporting a GUI.

If you don’t want to test explicitly, you can use references
instead of pointers:

void my_fct(dialog_box& br)
{

Sbox& sbr = dynamic_cast<Sbox&>(br);
// use sbr

}

Now, if the dialog_box isn’t of the expected type, an excep-
tion is thrown. Error handling can then be elsewhere (§5.3).

Obviously, this run-time type information is minimal.
This has led to requests for the maximal facility: a full

Evolving C++ 1991-2006 22 2007/5/25

meta-data facility (reflection). So far, this has been deemed
unsuitable for a programming language that among other
things is supposed to leave its applications with a minimal
memory footprint.

5.1.3 Declarations in conditions

Note the way the cast, the declaration, and the test were
combined in the “box example”:

if (Sbox* sbp = dynamic_cast<Sbox*>(bp)) {
// use sbp

}

This makes a neat logical entity that minimizes the chance
of forgetting to test, minimizes the chance of forgetting to
initialize, and limits the scope of the variable to its minimum.
For example, the scope of dbp is the if-statement.

The facility is called “declaration in condition” and mir-
rors the “declaration as for-statement initializer”, and “dec-
laration as statement”. The whole idea of allowing decla-
rations everywhere was inspired by the elegant statements-
as-expressions definition of Algol68 [154]. I was therefore
most amazed when Charles Lindsey explained to me at the
HOPL-II conference that Algol68 for technical reasons had
not allowed declarations in conditions.

5.1.4 Booleans

Some extensions really are minor, but the discussions about
them in the C++ community are not. Consider one of the
most common enumerations:

enum bool { false, true };

Every major program has that one or one of its cousins:

#define bool char
#define Bool int
typedef unsigned int BOOL;
typedef enum { F, T } Boolean;
const true = 1;
#define TRUE 1
#define False (!True)

The variations are apparently endless. Worse, most varia-
tions imply slight variations in semantics, and most clash
with other variations when used together.

Naturally, this problem has been well known for years.
Dag Brück (representing Ericsson and Sweden) and Andrew
Koenig (AT&T) decided to do something about it: “The idea
of a Boolean data type in C++ is a religious issue. Some peo-
ple, particularly those coming from Pascal or Algol, consider
it absurd that C should lack such a type, let alone C++. Oth-
ers, particularly those coming from C, consider it absurd that
anyone would bother to add such a type to C++”

Naturally, the first idea was to define an enum. However,
Dag Brück and Sean Corfield (UK) examined hundreds of
thousands of lines of C++ and found that most Boolean types
were used in ways that required implicit conversion of bool
to and from int. C++ does not provide implicit conversion

of ints to enumerations, so defining a standard bool as an
enumeration would break too much existing code. So why
bother with a Boolean type?

• The Boolean data type is a fact of life whether it is a part
of a C++ standard or not.

• The many clashing definitions make it hard to use any
Boolean type conveniently and safely.

• Many people want to overload based on a Boolean type.

Somewhat to my surprise, the committee accepted this ar-
gument, so bool is now a distinct integral type in C++ with
literals true and false. Non-zero values can be implicitly
converted to true, and true can be implicitly converted to
1. Zero can be implicitly converted to false, and false can
be implicitly converted to 0. This ensures a high degree of
compatibility.

Over the years, bool proved popular. Unexpectedly, I
found it useful in teaching C++ to people without previous
programming experience. After bool’s success in C++, the
C standards committee decided to also add it to C. Unfortu-
nately, they decided to do so in a different and incompatible
way, so in C99 [64], bool is a macro for the keyword _Bool
defined in the header <stdbool.h> together with macros
true and false.

5.2 The Export Controversy

From the earliest designs, templates were intended to allow
a template to be used after specifying just a declaration in a
translation unit [117, 35]. For example:

template<class In, class T>
In find(In, In, const T&); // no function body

vector<int>::iterator p =
find(vi.begin(), vi.end(),42);

It is then the job of the compiler and linker to find and use
the definition of the find template (D&E §15.10.4). That’s
the way it is for other language constructs, such as functions,
but for templates that’s easily said but extremely hard to do.

The first implementation of templates, Cfront 3.0 (Octo-
ber 1991), implemented this, but in a way that was very ex-
pensive in both compile time and link time. However, when
Taumetric and Borland implemented templates, they intro-
duced the “include everything” model: Just place all tem-
plate definitions in header files and the compiler plus linker
will eliminate the multiple definitions you get when you in-
clude a file multiple times in separately compiled transla-
tion units. The First Borland compiler with “rudimentary
template support” shipped November 20, 1991, quickly fol-
lowed by version 3.1 and the much more robust version 4.0
in November 1993 [27]. Microsoft, Sun, and others followed
along with (mutually incompatible) variations of the “in-
clude everything” approach. Obviously, this approach vio-
lates the usual separation between an implementation (using
definitions) and an interface (presenting only declarations)

Evolving C++ 1991-2006 23 2007/5/25

and makes definitions vulnerable to macros, unintentional
overload resolution, etc. Consider a slightly contrived exam-
ple:

// printer.h:
template<class Destination>
class Printer {

locale loc;
Destination des;

public:
template<class T> void out(const T& x)

{ print(des,x,loc); }
// ...

};

We might use Printer in two translation units like this:

//user1.c:
typedef int locale; // represent locale by int
#define print(a,b,c) a(c)<<x
#include "printer.h"
// ...

and this

//user2.c:
#include<locale> // use standard locale
using namespace std;
#include "printer.h"
// ...

This is obviously illegal because differences in the contexts
in which printer.h are seen in user1.c and user2.c lead
to inconsistent definitions of Printer. However, such errors
are hard for a compiler to detect. Unfortunately, the prob-
ability of this kind of error is far higher in C++ than in C
and even higher in C++ using templates than in C++ that
doesn’t use templates. The reason is that when we use tem-
plates there is so much more text in header files for typedefs,
overloads, and macros to interfere with. This leads to defen-
sive programming practices (such as naming all local names
in template definitions in a cryptic style unlikely to clash,
e.g., _L2) and a desire to reduce the amount of code in the
header files through separate compilation.

In 1996, a vigorous debate erupted in the committee over
whether we should not just accept the “include everything”
model for template definitions, but actually outlaw the orig-
inal model of separation of template declarations and defi-
nitions into separate translation units. The arguments of the
two sides were basically

• Separate translation of templates is too hard (if not im-
possible) and such a burden should not be imposed on
implementers

• Separate translation of templates is necessary for proper
code organization (according to data-hiding principles)

Many subsidiary arguments supported both sides. Mike Ball
(Sun) and John Spicer (EDG) led the “ban separate compila-
tion of templates” group and Dag Bruck (Ericcson and Swe-
den) usually spoke for the “preserve separate compilation of

templates” group. I was on the side that insisted on sepa-
rate compilation of templates. As ever in really nasty discus-
sions, both sides were mostly correct on their key points. In
the end, people from SGI — notably John Wilkinson — pro-
posed a new model that was accepted as a compromise. The
compromise was named after the keyword used to indicate
that a template could be separately translated: export.

The separate compilation of templates issue festers to this
day: The “export” feature remains disabled even in some
compilers that do support it because enabling it would break
ABIs. As late as 2003, Herb Sutter (representing Microsoft)
and Tom Plum (of Plum Hall) proposed a change to the
standard so that an implementation that didn’t implement
separate compilation of templates would still be conform-
ing; that is, export would be an optional language feature.
The reason given was again implementation complexity plus
the fact that even five years after the standard was ratified
only one implementation existed. That motion was defeated
by an 80% majority, partly because an implementation of
export now existed. Independently of the technical argu-
ments, many committee members considered it unfair to
deem a feature optional after some, but not all, implementers
had spent significant time and effort implementing it.

The real heroes of this sad tale are the implementers of
the EDG compiler: Steve Adamczyk, John Spicer, and David
Vandevoorde. They strongly opposed separate compilation
of templates, finally voted for the standard as the best com-
promise attainable, and then proceeded to spend more than
a year implementing what they had opposed. That’s pro-
fessionalism! The implementation was every bit as difficult
as its opponents had predicted, but it worked and provided
some (though not all) of the benefits that its proponents had
promised. Unfortunately, some of the restrictions on sepa-
rately compiled templates that proved essential for the com-
promise ended up not providing their expected benefits and
complicated the implementation. As ever, political compro-
mises on technical issues led to “warts”.

I suspect that one major component of a better solution
to the separate compilation of templates is concepts (§8.3.3)
and another is David Vandevoorde’s modules [146].

5.3 Exception Safety

During the effort to specify the STL we encountered a cu-
rious phenomenon: We didn’t quite know how to talk about
the interaction between templates and exceptions. Quite a
few people were placing blame for this problem on tem-
plates and others began to consider exceptions fundamen-
tally flawed (e.g., [20]) or at least fundamentally flawed in
the absence of automatic garbage collection. However, when
a group of “library people” (notably Nathan Myers, Greg
Colvin, and Dave Abrahams) looked into this problem, they
found that we basically had a language feature — excep-
tions — that we didn’t know how to use well. The prob-
lem was in the interaction between resources and exceptions
(or more generally, the interaction between invariants and

Evolving C++ 1991-2006 24 2007/5/25

exceptions). If throwing an exception renders resources in-
accessible there is no hope of recovering gracefully. I had
of course considered this when I designed the exception-
handling mechanisms and come up with the rules for excep-
tions thrown from constructors (correctly handling partially
constructed composite objects) and the “resource acquisition
is initialization” technique (§5.3.1). However, that was only
a good start and an essential foundation. What we needed
was a conceptual framework — a more systematic way of
thinking about resource management. Together with many
other people, notably Matt Austern, such a framework was
developed.

The key was the three guarantees[1] that Dave Abrahams
had formulated in early 1997:

• The basic guarantee: that the invariants of the component
are preserved, and no resources are leaked.

• The strong guarantee: that the operation has either com-
pleted successfully or thrown an exception, leaving the
program state exactly as it was before the operation
started.

• The no-throw guarantee: that the operation will not throw
an exception.

Note that the strong guarantee basically is the database
“commit or rollback” rule. Using these fundamental con-
cepts, the library working group described the standard li-
brary and implementers produced efficient and robust im-
plementations. The standard library provides the basic guar-
antee for all operations with the caveat that we may not exit a
destructor by throwing an exception. In addition, the library
provides the strong guarantee and the no-throw guarantee for
key operations. I found this result important enough to add
an appendix to TC++PL [124], yielding [126]. For details
of the standard library exception guarantees and program-
ming techniques for using exceptions, see Appendix E of
TC++PL.

The first implementations of the STL using these con-
cepts to achieve exception safety were Matt Austern’s SGI
STL and Boris Fomitchev’s STLPort [42] augmented with
Dave Abrahams’ exception-safe implementations of stan-
dard containers and algorithms. They appeared in the spring
of 1997.

I think the key lesson here is that it is not sufficient just
to know how a language feature behaves. To write good
software, we must have a clearly articulated design strategy
for problems that require the use of the feature.

5.3.1 Resource management

Exceptions are typically — and correctly — seen as a con-
trol structure: a throw transfers control to some catch-
clause. However, sequencing of operations is only part of
the picture: error handling using exceptions is mostly about
resource management and invariants. This view is actually
built into the C++ class and exception primitives in a way

that provides a necessary foundation for the guarantees and
the standard library design.

When an exception is thrown, every constructed object in
the path from the throw to the catch is destroyed. The de-
structors for partially constructed objects (and unconstructed
objects) are not invoked. Without those two rules, exception
handling would be unmanageable (in the absence of other
support). I (clumsily) named the basic technique “resource
acquisition is initialization” — commonly abbreviated to
“RAII”. The classical example [118] is

// naive and unsafe code:
void use_file(const char* fn)
{

FILE* f = fopen(fn,"w"); // open file fn
// use f
fclose(f); // close file fn

}

This looks plausible. However, if something goes wrong
after the call of fopen and before the call of fclose, an
exception may cause use_file to be exited without calling
fclose. Please note that exactly the same problem can occur
in languages that do not support exception handling. For
example, a call of the standard C library function longjmp
would have the same bad effects. Even a misguided return
among the code using f would cause the program to leak
a file handle. If we want to support writing fault-tolerant
systems, we must solve this problem.

The general solution is to represent a resource (here the
file handle) as an object of some class. The class’ constructor
acquires the resource and the class’ destructor gives it back.
For example, we can define a class File_ptr that acts like a
FILE*:

class File_ptr {
FILE* p;

public:
File_ptr(const char* n, const char* a)
{

p = fopen(n,a);
if (p==0) throw Failed_to_open(n);

}
~File_ptr() { fclose(p); }
// copy, etc.
operator FILE*() { return p; }

};

We can construct a File_ptr given the arguments required
for fopen. The File_ptr will be destroyed at the end of
its scope and its destructor closes the file. Our program now
shrinks to this minimum

void use_file(const char* fn)
{

File_ptr f(fn,"r"); // open file fn
// use f

} // file fn implicitly closed

Evolving C++ 1991-2006 25 2007/5/25

The destructor will be called independently of whether
the function is exited normally or because an exception is
thrown.

The general form of the problem looks like this:

void use()
{

// acquire resource 1
// ...
// acquire resource n

// use resources

// release resource n
// ...
// release resource 1

}

This applies to any “resource” where a resource is anything
you acquire and have to release (hand back) for a system
to work correctly. Examples include files, locks, memory,
iostream states, and network connections. Please note that
automatic garbage collection is not a substitute for this: the
point in time of the release of a resource is often important
logically and/or performance-wise.

This is a systematic approach to resource management
with the important property that correct code is shorter and
less complex than faulty and primitive approaches. The pro-
grammer does not have to remember to do anything to re-
lease a resource. This contrasts with the older and ever-
popular finally approach where a programmer provides a
try-block with code to release the resource. The C++ vari-
ant of that solution looks like this:

void use_file(const char* fn)
{

FILE* f = fopen(fn,"r"); // open file fn
try {

// use f
}
catch (...) { // catch all

fclose(f); // close file fn
throw; // re-throw

}
fclose(f); // close file fn

}

The problem with this solution is that it is verbose, tedious,
and potentially expensive. It can be made less verbose and
tedious by providing a finally clause in languages such as
Java, C#, and earlier languages [92]. However, shortening
such code doesn’t address the fundamental problem that the
programmer has to remember to write release code for each
acquisition of a resource rather just once for each resource,
as in the RAII approach. The introduction of exceptions into
the ARM and their presentation as a conference paper [79]
was delayed for about half a year until I found “resource
acquisition is initialization” as a systematic and less error-
prone alternative to the finally approach.

Note that the RAII technique — like other powerful C++
idioms, such as smart pointers — rests on the use of destruc-
tors. Destructors were among the very first features intro-
duced into C with Classes in 1980 (§2.1). Their introduction
was explicitly motivated by concerns about resource man-
agement: constructors acquire resources and initialize; de-
structors are the inverse operations: they release resources
and clean up. Because release and cleanup must be guaran-
teed, destructors are implicitly called for objects allocated on
the stack (and for statically allocated variables). Thus, the
roots of modern C++ resource management lie in the first
version of C with Classes and ultimately in my earlier work
on operating systems [121].

5.4 Automatic Garbage Collection

Sometime in 1995, it dawned on me that a majority of
the committee was of the opinion that plugging a garbage
collector into a C++ program was not standard-conforming
because the collector would inevitably perform some action
that violated a standard rule. Worse, they were obviously
right about the broken rules. For example:

void f()
{

int* p = new int[100];
// fill *p with valuable data
file << p; // write the pointer to a file
p = 0; // remove the pointer to the ints
// work on something else for a week
file >> p;
if (p[37] == 5) { // now use the ints

// ...
}

}

My opinion — as expressed orally and in print — was
roughly: “such programs deserve to be broken” and “it is
perfectly good C++ to use a conservative garbage collector”.
However, that wasn’t what the draft standard said. A garbage
collector would undoubtedly have recycled that memory be-
fore we read the pointer back from the file and started using
the integer array again. However, in standard C and standard
C++, there is absolutely nothing that allows a piece of mem-
ory to be recycled without some explicit programmer action.

To fix this problem, I made a proposal to explicitly allow
“optional automatic garbage collection” [123]. This would
bring C++ back to what I had thought I had defined it to
be and make the garbage collectors already in actual use
[11, 47] standard conforming. Explicitly mentioning this in
the standard would also encourage use of GC where appro-
priate. Unfortunately, I seriously underestimated the dislike
of garbage collection in a large section of the committee and
also mishandled the proposal.

My fatal mistake with the GC proposal was to get thor-
oughly confused about the meaning of “optional”. Did “op-
tional” mean that an implementation didn’t have to provide
a garbage collector? Did it mean that the programmer could

Evolving C++ 1991-2006 26 2007/5/25

decide whether the garbage collector was turned on or not?
Was the choice made at compile time or run time? What
should happen if I required the garbage collector to be ac-
tivated and the implementation didn’t supply one? Can I ask
if the garbage collector is running? How? How can I make
sure that the garbage collector isn’t running during a critical
operation? By the time a confused discussion of such ques-
tions had broken out and different people had found conflict-
ing answers attractive, the proposal was effectively dead.

Realistically, garbage collection wouldn’t have passed in
1995, even if I hadn’t gotten confused. Parts of the commit-
tee

• strongly distrusted GC for performance reasons

• disliked GC because it was seen as a C incompatibility

• didn’t feel they understood the implications of accepting
GC (we didn’t)

• didn’t want to build a garbage collector

• didn’t want to pay for a garbage collector (in terms of
money, space, or time)

• wanted alternative styles of GC

• didn’t want to spend precious committee time on GC

Basically, it was too late in the standards process to introduce
something that major. To get anything involving garbage
collection accepted, I should have started a year earlier.

My proposal for garbage collection reflected the then ma-
jor use of garbage collection in C++ — that is, conservative
collectors that don’t make assumptions about which memory
locations contain pointers and never move objects around
in memory [11]. Alternative approaches included creating a
type-safe subset of C++ so that it is possible to know exactly
where every pointer is, using smart pointers [34] and provid-
ing a separate operator (gcnew or new(gc)) for allocating
objects on a “garbage-collected heap”. All three approaches
are feasible, provide distinct benefits, and have proponents.
This further complicates any effort to standardize garbage
collection for C++.

A common question over the years has been: Why don’t
you add GC to C++? Often, the implication (or follow-up
comment) is that the C++ committee must be a bunch of ig-
norant dinosaurs not to have done so already. First, I observe
that in my considered opinion, C++ would have been still-
born had it relied on garbage collection when it was first de-
signed. The overheads of garbage collection at the time, on
the hardware available, precluded the use of garbage collec-
tion in the hardware-near and performance-critical areas that
were C++’s bread and butter. There were garbage-collected
languages then, such as Lisp and Smalltalk, and people were
reasonably happy with those for the applications for which
they were suitable. It was not my aim to replace those lan-
guages in their established application areas. The aim of C++
was to make object-oriented and data-abstraction techniques
affordable in areas where these techniques at the time were

“known” to be impractical. The core areas of C++ usage in-
volved tasks, such as device drivers, high-performance com-
putation, and hard-real-time tasks, where garbage collection
was (and is) either infeasible or not of much use.

Once C++ was established without garbage collection
and with a set of language features that made garbage col-
lection difficult (pointers, casts, unions, etc.), it was hard
to retrofit it without doing major damage. Also, C++ pro-
vides features that make garbage collection unnecessary in
many areas (scoped objects, destructors, facilities for defin-
ing containers and smart pointers, etc.). That makes the case
for garbage collection less compelling.

So, why would I like to see garbage collection supported
in C++? The practical reason is that many people write soft-
ware that uses the free store in an undisciplined manner. In
a program with hundreds of thousands of lines of code with
news and deletes all over the place, I see no hope for avoid-
ing memory leaks and access through invalid pointers. My
main advice to people who are starting a project is simply:
“don’t do that!”. It is fairly easy to write correct and effi-
cient C++ code that avoids those problems through the use
of containers (STL or others; §4.1), resource handles (§5.3.1,
and (if needed) smart pointers (§6.2). However, many of us
have to deal with older code that does deal with memory in
an undisciplined way, and for such code plugging in a con-
servative garbage collector is often the best option. I expect
C++0x to require every C++ implementation to be shipped
with a garbage collector that, somehow, can be either active
or not.

The other reason that I suspect a garbage collector will
eventually become necessary is that I don’t see how to
achieve perfect type safety without one — at least not with-
out pervasive testing of pointer validity or damaging compat-
ibility (e.g. by using two-word non-local pointers). And im-
proving type safety (e.g., “eliminate every implicit type vio-
lation” [121]) has always been a fundamental long-term aim
of C++. Obviously, this is a very different argument from
the usual “when you have a garbage collector, programming
is easy because you don’t have to think about deallocation”.
To contrast, my view can be summarized as “C++ is such
a good garbage-collected language because it creates so lit-
tle garbage that needs to be collected”. Much of the thinking
about C++ has been focused on resources in general (such as
locks, file handles, thread handles, and free store memory).
As noted in §5.3, this focus has left traces in the language it-
self, in the standard library, and in programming techniques.
For large systems, for embedded systems, and for safety-
critical systems a systematic treatment of resources seems
to me much more promising than a focus on garbage collec-
tion.

5.5 What Wasn’t Done

Choosing what to work on is probably more significant than
how that work is done. If someone — in this case the C++
standards committee — decides to work on the wrong prob-

Evolving C++ 1991-2006 27 2007/5/25

lem, the quality of the work done is largely irrelevant. Given
the limited time and resources, the committee could cope
with only a few topics and choose to work hard on those few
rather than take on more topics. By and large, I think that the
committee chose well and the proof of that is that C++98 is a
significantly better language than ARM C++. Naturally, we
could have done better still, but even in retrospect it is hard
to know how. The decisions made at the time were taken
with as much information (about problems, resources, possi-
ble solutions, commercial realities, etc.) as we had available
then and who are we to second guess today?

Some questions are obvious, though:

• Why didn’t we add support for concurrency?

• Why didn’t we provide a much more useful library?

• Why didn’t we provide a GUI?

All three questions were seriously considered and in the
first two cases settled by explicit vote. The votes were close
to unanimous. Given that we had decided not to pursue
concurrency or to provide a significantly larger library, the
question about a GUI library was moot.

Many of us — probably most of the committee members
— would have liked some sort of concurrency support. Con-
currency is fundamental and important. Among other sug-
gestions, we even had a pretty solid proposal for concur-
rency support in the form of micro-C++ from the University
of Toronto [18]. Some of us, notably Dag Brück relying on
data from Ericssson, looked at the issue and presented the
case for not dealing with concurrency in the committee:

• We found the set of alternative ways of supporting con-
currency large and bewildering.

• Different application areas apparently had different needs
and definitely had different traditions.

• The experience with Ada’s direct language support for
concurrency was discouraging.

• Much (though of course not all) could be done with
libraries.

• The committee lacked sufficient experience to do a solid
design.

• We didn’t want a set of primitives that favored one ap-
proach to concurrency over others.

• We estimated that the work — if feasible at all — would
take years given our scarce resources.

• We wouldn’t be able to decide what other ideas for im-
provements to drop to make room for the concurrency
work.

My estimate at the time was that “concurrency is as big
a topic as all of the other extensions we are considering
put together”. I do not recall hearing what I in retrospect
think would have been “the killer argument”: Any sufficient
concurrency support will involve the operating system; since

C++ is a systems programming language, we need to be
able to map the C++ concurrency facilities to the primitives
offered. But for each platform the owners insist that C++
programmers can use every facility offered. In addition, as
a fundamental part of a multi-language environment, C++
cannot rely on a concurrency model that is dramatically
different from what other languages support. The resulting
design problem is so constrained that it has no solution.

The reason the lack of concurrency support didn’t hurt the
C++ community more than it did is that much of what people
actually do with concurrency is pretty mundane and can be
done through library support and/or minor (non-standard)
language extensions. The various threads libraries (§8.6) and
MPI [94] [49] offer examples.

Today, the tradeoffs appear to be different: The continu-
ing increase in gate counts paired with the lack of increase of
hardware clock speeds is a strong incentive to exploit low-
level concurrency. In addition, the growth of multiprocessors
and clusters requires other styles of concurrency support and
the growth of wide-area networking and the web makes yet
other styles of concurrent systems essential. The challenge
of supporting concurrency is more urgent than ever and the
major players in the C++ world seem far more open to the
need for changes to accommodate it. The work on C++0x
reflects that (§8.2).

The answer to “Why didn’t we provide a much more use-
ful library?” is simpler: We didn’t have the resources (time
and people) to do significantly more than we did. Even the
STL caused a year’s delay and gaining consensus on other
components, such as iostreams, strained the committee.
The obvious shortcut — adopting a commercial foundation
library — was considered. In 1992, Texas Instruments of-
fered their very nice library for consideration and within an
hour five representatives of major corporations made it per-
fectly clear that if this offer was seriously considered they
would propose their own corporate foundation libraries. This
wasn’t a way that the committee could go. Another com-
mittee with a less consensus-based culture might have made
progress by choosing one commercial library over half-a-
dozen others in major use, but not this C++ committee.

It should also be remembered that in 1994, many already
considered the C++ standard library monstrously large. Java
had not yet changed programmers’ perspective of what they
could expect “for free” from a language. Instead, many in the
C++ community used the tiny C standard library as the mea-
sure of size. Some national bodies (notably the Netherlands
and France) repeatedly expressed worry that C++ standard
library was seriously bloated. Like many in the committee,
I also hoped that the standard would help rather than try to
supplant the C++ libraries industry.

Given those general concerns about libraries, the answer
to “Why didn’t we provide a GUI?” is obvious: The com-
mittee couldn’t do it. Even before tackling the GUI-specific
design issues, the committee would have had to tackle con-

Evolving C++ 1991-2006 28 2007/5/25

currency and settle on a container design. In addition, many
of the members were simply blindsided. GUI was seen as
just another large and complex library that people — given
dynamic_cast (§5.1.2) — could write themselves (in par-
ticular, that was my view). They did. The problem today is
not that there is no C++ GUI library, but that there are on the
order of 25 such libraries in use (e.g., Gtkmm [161], FLTK
[156], SmartWin++ [159], MFC [158], WTL [160], wxWid-
gets (formerly wxWindows) [162], Qt [10]). The committee
could have worked on a GUI library, worked on library fa-
cilities that could be used as a basis for GUI libraries, or
worked on standard library interfaces to common GUI func-
tionality. The latter two approaches might have yielded im-
portant results, but those paths weren’t taken and I don’t
think that the committee then had the talents necessary for
success in that direction. Instead, the committee worked hard
on more elaborate interfaces to stream I/O. That was prob-
ably a dead end because the facilities for multiple character
sets and locale dependencies were not primarily useful in the
context of traditional data streams.

6. Standards Maintenance: 1997-2005
After a standard is passed, the ISO process can go into a
“maintenance mode” for up to five years. The C++ commit-
tee decided to do that because:

• the members were tired (after ten years’ work for some
members) and wanted to do something else,

• the community was way behind in understanding the new
features,

• many implemeters were way behind with the new fea-
tures, libraries, and support tools,

• no great new ideas were creating a feeling of urgency
among the members or in the community,

• for many members, resources (time and money) for stan-
dardization were low, and

• many members (including me) thought that the ISO pro-
cess required a “cooling-off period”.

In “maintenance mode,” the committee primarily responded
to defect reports. Most defects were resolved by clarifying
the text or resolving contradictions. Only very rarely were
new rules introduced and real innovation was avoided. Sta-
bility was the aim. In 2003, all these minor corrections were
published under the name “Technical Corrigendum 1”. At
the same time, members of the British national committee
took the opportunity to remedy a long-standing problem:
they convinced Wiley to publish a printed version of the
(revised) standard [66]. The initiative and much of the hard
work came from Francis Glassborow and Lois Goldthwaite
with technical support from the committee’s project editor,
Andrew Koenig, who produced the actual text.

Until the publication of the revised standard in 2003, the
only copies of the standard available to the public were a

very expensive (about $200) paper copy from ISO or a cheap
($18) pdf version from INCITS (formerly ANSI X3). The
pdf version was a complete novelty at the time. Standards
bodies are partially financed through the sales of standards,
so they are most reluctant to make them available free of
charge or cheaply. In addition, they don’t have retail sales
channels, so you can’t find a national or international stan-
dard in your local book store — except the C++ standard, of
course. Following the C++ initiative, the C standard is now
also available.

Much of the best standards work is invisible to the aver-
age programmer and appears quite esoteric and often boring
when presented. The reason is that a lot of effort is expended
in finding ways of expressing clearly and completely “what
everyone already knows, but just happens not to be spelled
out in the manual” and in resolving obscure issues that — at
least in theory — don’t affect most programmers. The main-
tenance is mostly such “boring and esoteric” issues. Further-
more, the committee necessarily focuses on issues where the
standard contradicts itself — or appears to do so. However,
these issues are essential to implementers trying to ensure
that a given language use is correctly handled. In turn, these
issues become essential to programmers because even the
most carefully written large program will deliberately or ac-
cidentally depend on some feature that would appear ob-
scure or esoteric to some. Unless implementers agree, the
programmer has a hard time achieving portability and easily
becomes the hostage of a single compiler purveyor — and
that would be contrary to my view of what C++ is supposed
to be.

To give an idea of the magnitude of this maintenance task
(which carries on indefinitely): Since the 1998 standard until
2006, the core and library working groups has each handled
on the order of 600 “defect reports”. Fortunately, not all
were real defects, but even determining that there really is
no problem, or that the problem is just lack of clarity in the
standard’s text, takes time and care.

Maintenance wasn’t all that the committee did from 1997
to 2003. There was a modest amount of planning for the
future (thinking about C++0x), but the main activities were
writing a technical report on performance issues [67] and
one on libraries [68].

6.1 The Performance TR

The performance technical report (“TR”) [67] was prompted
by a suggestion to standardize a subset of C++ for embed-
ded systems programming. The proposal, called Embedded
C++ [40] or simply EC++, originated from a consortium
of Japanese embedded systems tool developers (including
Toshiba, Hitachi, Fujitsu, and NEC) and had two main con-
cerns: removal of language features that potentially hurt per-
formance and removal of language features perceived to be
too complicated for programmers (and thus seen as poten-
tial productivity or correctness hazards). A less clearly stated

Evolving C++ 1991-2006 29 2007/5/25

aim was to define something that in the short term was easier
to implement than full standard C++.

The features banned in this (almost) subset included: mul-
tiple inheritance, templates, exceptions, run-time type infor-
mation (§5.1.2), new-style casts, and name spaces. From the
standard library, the STL and locales were banned and an al-
ternative version of iostreams provided. I considered the
proposal misguided and backwards looking. In particular,
the performance costs were largely imaginary, or worse. For
example, the use of templates has repeatedly been shown to
be key to both performance (time and space) and correctness
of embedded systems. However, there wasn’t much hard data
in this area in 1996 when EC++ was first proposed. Ironi-
cally, it appears that most of the few people who use EC++
today use it in the form of “Extended EC++” [36], which
is EC++ plus templates. Similarly, namespaces (§5.1.1) and
new style casts (§5) are features that are primarily there
to clarify code and can be used to ease maintenance and
verification of correctness. The best documented (and most
frequently quoted) overhead of “full C++” as compared to
EC++ was iostreams. The primary reason for that is that
the C++98 iostreams support locales whereas that older
iostreams do not. This is somewhat ironic because the lo-
cales were added to support languages different from En-
glish (most notably Japanese) and can be optimized away in
environments where they are not used (see [67]).

After serious consideration and discussion, the ISO com-
mittee decided to stick to the long-standing tradition of not
endorsing dialects — even dialects that are (almost) subsets.
Every dialect leads to a split in the user community, and so
does even a formally defined subset when its users start to
develop a separate culture of techniques, libraries, and tools.
Inevitably, myths about failings of the full language rela-
tive to the “subset” will start to emerge. Thus, I recommend
against the use of EC++ in favor of using what is appropriate
from (full) ISO Standard C++.

Obviously, the people who proposed EC++ were right in
wanting an efficient, well-implemented, and relatively easy-
to-use language. It was up to the committee to demonstrate
that ISO Standard C++ was that language. In particular, it
seemed a proper task for the committee to document the
utility of the features rejected by EC++ in the context of
performance-critical, resource-constrained, or safety-critical
tasks. It was therefore decided to write a technical report on
“performance”. Its executive summary reads:

‘The aim of this report is:

• to give the reader a model of time and space over-
heads implied by use of various C++ language and
library features,

• to debunk widespread myths about performance
problems,

• to present techniques for use of C++ in applica-
tions where performance matters, and

• to present techniques for implementing C++ Stan-
dard language and library facilities to yield effi-
cient code.

As far as run-time and space performance is con-
cerned, if you can afford to use C for an application,
you can afford to use C++ in a style that uses C++’s
facilities appropriately for that application.

Not every feature of C++ is efficient and predictable to the
extent that we need for some high-performance and embed-
ded applications. A feature is predictable if we can in ad-
vance easily and precisely determine the time needed for
each use. In the context of an embedded system, we must
consider if we can use

• free store (new and delete)

• run-time type identification (dynamic_cast and typeid)

• exceptions (throw and catch)

The time needed to perform one of these operations can
depend on the context of the code (e.g. how much stack un-
winding a throw must perform to reach its matching catch)
or on the state of the program (e.g. the sequence of news and
deletes before a new).

Implementations aimed at embedded or high perfor-
mance applications all have compiler options for disabling
run-time type identification and exceptions. Free store us-
age is easily avoided. All other C++ language features are
predictable and can be implemented optimally (according
to the zero-overhead principle; §2). Even exceptions can be
(and tend to be) efficient compared to alternatives [93] and
should be considered for all but the most stringent hard-real-
time systems. The TR discusses these issues and also defines
an interface to the lowest accessible levels of hardware (such
as registers). The performance TR was written by a working
group primarily consisting of people who cared about em-
bedded systems, including members of the EC++ technical
committee. I was active in the performance working group
and drafted significant portions of the TR, but the chairman
and editor was first Martin O’Riordan and later Lois Goldth-
waite. The acknowledgments list 28 people, including Jan
Kristofferson, Dietmar Kühl, Tom Plum, and Detlef Voll-
mann. In 2004, that TR was approved by unanimous vote.

In 2004, after the TR had been finalized, Mike Gibbs
from Lockheed-Martin Aero found an algorithm that allows
dynamic_cast to be implemented in constant time, and fast
[48]. This offers hope that dynamic_cast will eventually be
usable for hard-real-time programming.

The performance TR is one of the few places where the
immense amount of C++ usage in embedded systems sur-
faces in publicly accessible writing. This usage ranges from
high-end systems such as found in telecommunications sys-
tems to really low-level systems where complete and di-
rect access to specific hardware features is essential (§7).
To serve the latter, the performance TR contains a “hard-

Evolving C++ 1991-2006 30 2007/5/25

ware addressing interface” together with guidelines for its
usage. This interface is primarily the work of Jan Kristof-
ferson (representing Ramtex International and Denmark)
and Detlef Vollmann (representing Vollmann Engineering
GmbH and Switzerland). To give a flavor, here is code copy-
ing a register buffer specified by a port called PortA2_T:

unsigned char mybuf[10];
register_buffer<PortA2_T, Platform> p2;
for (int i = 0; i != 10; ++i)
{

mybuf[i] = p2[i];
}

Essentially the same operation can be done as a block read:

register_access<PortA3_T, Platform> p3;
UCharBuf myBlock;
myBlock = p3;

Note the use of templates and the use of integers as template
arguments; it’s essential for a library that needs to main-
tain optimal performance in time and space. This comes as
a surprise to many who have been regaled with stories of
memory bloat caused by templates. Templates are usually
implemented by generating a copy of the code used for each
specialization; that is, for each combination of template ar-
guments. Thus, obviously, if your code generated by a tem-
plate takes up a lot of memory, you can use a lot of memory.
However, many modern templates are written based on the
observation that an inline function may shrink to something
that’s as small as the function preamble or smaller still. That
way you can simultaneously save both time and space. In
addition to good inlining, there are two more bases for good
performance from template code: dead code elimination and
avoidance of spurious pointers.

The standard requires that no code is generated for a
member function of a class template unless that mem-
ber function is called for a specific set of template argu-
ments. This automatically eliminates what could have be-
come “dead code”. For example:

template<class T> class X {
public:

void f() { /* ... */ }
void g() { /* ... */ }
// ...

};

int main()
{

X<int> xi;
xi.f();
X<double> xd;
xd.g();
return 0;

}

For this program, the compiler must generate code for
X<int>::f() and X<double>::g() but may not generate

code for X<int>::g() and X<double>::f(). This rule was
added to the standard in 1993, at my insistence, specifically
to reduce code bloat, as observed in early uses of templates.
I have seen this used in embedded systems in the form of
the rule “all classes must be templates, even if only a single
instantiation is used”. That way, dead code is automatically
eliminated.

The other simple rule to follow to get good memory per-
formance from templates is: “don’t use pointers if you don’t
need them”. This rule preserves complete type information
and allows the optimizer to perform really well (especially
when inline functions are used). This implies that function
templates that take simple objects (such as function objects)
as arguments should do so by value rather than by reference.
Note that pointers to functions and virtual functions break
this rule, causing problems for optimizers.

It follows that to get massive code bloat, say megabytes,
what you need is to

1. use large function templates (so that the code generated
is large)

2. use lots of pointers to objects, virtual functions, and
pointers to functions (to neuter the optimizer)

3. use “feature rich” hierarchies (to generate a lot of poten-
tially dead code)

4. use a poor compiler and a poor optimizer

I designed templates specifically to make it easy for the pro-
grammer to avoid (1) and (2). Based on experience, the stan-
dard deals with (3), except when you violate (1) or (2). In the
early 1990s, (4) became a problem. Alex Stepanov named it
“the abstraction penalty” problem. He defined “the abstrac-
tion penalty” as the ratio of runtime between a templated
operation (say, find on a vector<int> and the trivial non-
templated equivalent (say a loop over an array of int). An
implementation that does all of the easy and obvious opti-
mizations gets a ratio of 1. Poor compilers had an abstrac-
tion penalty of 3, though even then good implementations
did significantly better. In October 1995, to encourage im-
plementers to do better, Alex wrote the “abstraction penalty
benchmark”, which simply measured the abstraction penalty
[102]. Compiler and optimizer writers didn’t like their im-
plementations to be obviously poor, so today ratios of 1.02
or so are common.

The other — and equally important — aspect of C++’s
support for embedded systems programming is simply that
its model of computation and memory is that of real-world
hardware: the built-in types map directly to memory and reg-
isters, the built-in operations map directly to machine opera-
tions, and the compositionmechanisms for data structures do
not impose spurious indirections or memory overhead [131].
In this, C++ equals C. See also §2.

The views of C++ as a close-to-machine language with
abstraction facilities that can be used to express predica-
ble type-safe low-level facilities has been turned into a

Evolving C++ 1991-2006 31 2007/5/25

coding standard for safety-critical hard-real-time code by
Lockheed-Martin Aero [157]. I helped draft that standard.
Generally, C and assembly language programmers under-
stand the direct mapping of language facilities to hardware,
but often not the the need for abstraction mechanisms and
strong type checking. Conversely, programmers brought up
with higher-level “object-oriented” languages often fail to
see the need for closeness to hardware and expect some
unspecified technology to deliver their desired abstractions
without unacceptable overheads.

6.2 The Library TR

When we finished the standard in 1997, we were fully aware
that the set of standard libraries was simply the set that we
had considered the most urgently needed and also ready to
ship. Several much-wanted libraries, such as hash tables,
regular expression matching, directory manipulation, and
threads, were missing. Work on such libraries started im-
mediately in the Libraries Working Group chaired by Matt
Austern (originally working at SGI with Alex Stepanov, then
at AT&T Labs with me, and currently at Google). In 2001,
the committee started work on a technical report on libraries.
In 2004 that TR [68] specifying libraries that people consid-
ered most urgently needed was approved by unanimous vote.

Despite the immense importance of the standard library
and its extensions, I will only briefly list the new libraries
here:

• Polymorphic function object wrapper

• Tuple types

• Mathematical special functions

• Type traits

• Regular expressions

• Enhanced member pointer adaptor

• General-purpose smart pointers

• Extensible random number facility

• Reference wrapper

• Uniform method for computing function-object return
types

• Enhanced binder

• Hash tables

Prototypes or industrial-strength implementations of each of
these existed at the time of the vote; they are expected to ship
with every new C++ implementation from 2006 onwards.
Many of these new library facilities are obviously “techni-
cal”; that is, they exist primarily to support library builders.
In particular, they exist to support builders of standard li-
brary facilities in the tradition of the STL. Here, I will just
emphasize three libraries that are of direct interest to large
numbers of application builders:

• Regular expressions

• General-purpose smart pointers

• Hash tables

Regular expression matching is one of the backbones of
scripting languages and of much text processing. Finally,
C++ has a standard library for that. The central class
is regex, providing regular expression matching of pat-
terns compatible with ECMAscript (formerly JavaScript or
Jscript) and with other popular notations.

The main “smart pointer” is a reference-counted pointer,
shared_ptr, intended for code where shared ownership is
needed. When the last shared_ptr to an object is destroyed,
the object pointed to is deleted. Smart pointers are pop-
ular, but not universally so and concerns about their per-
formance and likely overuse kept smart_ptr’s “ancestor”,
counted_ptr, out of C++98. Smart pointers are not the
panacea they are sometimes presented to be. In particular,
they can be far more expensive to use than ordinary point-
ers, destructors for objects “owned” by a set of shared_ptrs
will run at unpredictable times, and if a lot of objects are
deleted at once because the last shared_ptr to them is
deleted you can incur “garbage-collection delays” exactly as
if you were running a general collector. The costs primarily
relate to free-store allocation of use-count objects and espe-
cially to locking during access to the use counts in threaded
systems (“lock-free” implementations appear to help here).
If it is garbage collection you want, you might be better off
simply using one of the available garbage collectors [11, 47]
or waiting for C++0x (§5.4).

No such worries affected hash tables; they would have
been in C++98 had we had the time to do a proper de-
tailed design and specification job. There was no doubt
that a hash_map was needed as an alternative to map for
large tables where the key was a character string and we
could design a good hash function. In 1995, Javier Bar-
reirro, Robert Fraley and David Musser tried to get a pro-
posal ready in time for the standard and their work be-
came the basis for many of the later hash_maps [8]. The
committee didn’t have the time, though, and consequently
the Library TR’s unordered_map (and unordered_set) are
the result of about eight years of experiment and industrial
use. A new name, “unordered_map”, was chosen because
now there are half a dozen incompatible hash_maps in use.
The unordered_map is the result of a consensus among the
hash_map implementers and their key users in the commit-
tee. An unordered_map is “unordered” in the sense that an
iteration over its elements are not guaranteed to be in any
particular order: a hash function doesn’t define an ordering
in the way a map’s < does.

The most common reaction to these extensions among
developers is “that was about time; why did it take you so
long?” and “I want much more right now”. That’s under-
standable (I too want much more right now — I just know
that I can’t get it), but such statements reflect a lack of un-
derstanding what an ISO committee is and can do. The com-

Evolving C++ 1991-2006 32 2007/5/25

mittee is run by volunteers and requires both a consensus
and an unusual degree of precision in our specifications (see
D&E §6.2). The committee doesn’t have the millions of dol-
lars that commercial vendors can and do spend on “free”,
“standard” libraries for their customers.

7. C++ in Real-World Use
Discussions about programming languages typically focus
on language features: which does the language have? how
efficient are they? More enlightened discussions focus on
more difficult questions: how is the language used? how
can it be used? who can use it? For example, in an early
OOPSLA keynote, Kristen Nygaard (of Simula and OOP
fame) observed: “if we build languages that require a PhD
from MIT to use, we have failed”. In industrial contexts,
the first — and often only — questions are: Who uses the
language? What for? Who supports it? What are the alter-
natives? This section presents C++ and its history from the
perspective of its use.

Where is C++ used? Given the number of users (§1),
it is obviously used in a huge number of places, but since
most of the use is commercial it is difficult to document.
This is one of the many areas where the lack of a central
organization for C++ hurts the C++ community — nobody
systematically gathers information about its use and nobody
has anywhere near complete information. To give an idea
of the range of application areas, here are a few examples
where C++ is used for crucial components of major systems
and applications:

• Adobe — Acrobat, Photoshop, Illustrator, ...

• Amadeus — airline reservations

• Amazon — e-commerce

• Apple — iPod interface, applications, device drivers,
finder, ...

• AT&T — 1-800 service, provisioning, recovery after net-
work failure, ...

• Games — Doom3, StarCraft, Halo, ...

• Google — search engines, Google Earth, ...

• IBM — K42 (very high-end operating system), AS/400,
...

• Intel — chip design and manufacturing, ...

• KLA-Tencor — semiconductor manufacturing

• Lockheed-Martin Aero — airplane control (F16, JSF), ...

• Maeslant Barrier — Dutch surge barrier control

• MAN B&W — marine diesel engine monitoring and fuel
injection control

• Maya — professional 3D animation

• Microsoft — Windows XP, Office, Internet explorer, Vi-
sual Studio, .Net, C# compiler, SQL, Money, ...

• Mozilla Firefox — browser

• NASA/JPL — Mars Rover scene analysis and au-
tonomous driving, ...

• Southwest Airlines — customer web site, flight reserva-
tions, flight status, frequent flyer program, ...

• Sun — compilers, OpenOffice, HotSpot Java Virtual Ma-
chine, ...

• Symbian — OS for hand-held devices (especially cellular
phones)

• Vodaphone — mobile phone infrastructure (including
billing and provisioning)

For more examples, see [137]. Some of the most widely
used and most profitable software products ever are on this
list. Whatever C++’s theoretical importance and impact, it
certainly met its most critical design aim: it became an
immensely useful practical tool. It brought object-oriented
programming and more recently also generic programming
into the mainstream. In terms of numbers of applications
and the range of application areas, C++ is used beyond any
individual’s range of expertise. That vindicates my emphasis
on generality in D&E [121] (Chapter 4).

It is a most unfortunate fact that applications are not
documented in a way that reaches the consciousness of re-
searchers, teachers, students, and other application builders.
There is a huge amount of experience “out there” that isn’t
documented or made accessible. This inevitably warps peo-
ple’s sense of reality — typically in the direction of what is
new (or perceived as new) and described in trade press ar-
ticles, academic papers, and textbooks. Much of the visible
information is very open to fads and commercial manipula-
tion. This leads to much “reinvention of the wheel”, subop-
timal practice, and myths.

One common myth is that “most C++ code is just C code
compiled with a C++ compiler”. There is nothing wrong
with such code — after all, the C++ compiler will find more
bugs than a C compiler — and such code is not uncommon.
However, from seeing a lot of commercial C++ code and
talking with innumerable developers and from talking with
developers, I know that for many major applications, such
as the ones mentioned here, the use of C++ is far more
“adventurous”. It is common for developers to mention use
of major locally designed class hierarchies, STL use, and use
of “ideas from STL” in local code. See also §7.2.

Can we classify the application areas in which C++ is
used? Here is one way of looking at it:

• Applications with systems components

• Banking and financial (funds transfer, financial model-
ing, customer interaction, teller machines, ...)

• Classical systems programming (compilers, operating
systems, editors, database systems, ...)

Evolving C++ 1991-2006 33 2007/5/25

• Conventional small business applications (inventory sys-
tems, customer service, ...)

• Embedded systems (instruments, cameras, cell phones,
disc controllers, airplanes, rice cookers, medical systems,
...)

• Games

• GUI — iPod, CDE desktop, KDE desktop, Windows, ...

• Graphics

• Hardware design and verification [87]

• Low-level system components (device drivers, network
layers, ...)

• Scientific and numeric computation (physics, engineer-
ing, simulations, data analysis, ...)

• Servers (web servers, large application backbones, billing
systems, ...)

• Symbolic manipulation (geometric modeling, vision,
speech recognition, ...)

• Telecommunication systems (phones, networking, moni-
toring, billing, operations systems, ...)

Again, this is more a list than a classification. The world of
programming resists useful classification. However, looking
at these lists, one thing should be obvious: C++ cannot be
ideal for all of that. In fact, from the earliest days of C++,
I have maintained that a general-purpose language can at
most be second best in a well-defined application area and
that C++ is “a general-purpose programming language with
a bias towards systems programming”.

7.1 Applications Programming vs. Systems
Programming

Consider an apparent paradox: C++ has a bias towards sys-
tems programming but “most programmers” write applica-
tions. Obviously millions of programmers are writing appli-
cations and many of those write their applications in C++.
Why? Why don’t they write them in an applications pro-
gramming language? For some definition of “applications
programming language”, many do. We might define an “ap-
plications programming language” as one in which we can’t
directly access hardware and that provides direct and spe-
cialized support for an important applications concept (such
as data base access, user interaction, or numerical computa-
tion). Then, we can deem most languages “applications lan-
guages”: Excel, SQL, RPG, COBOL, Fortran, Java, C#, Perl,
Python, etc. For good and bad, C++ is used as a general-
purpose programming language in many areas where a more
specialized (safer, easier to use, easier to optimize, etc.) lan-
guage would seem applicable.

The reason is not just inertia or ignorance. I don’t claim
that C++ is anywhere near perfect (that would be absurd)
nor that it can’t be improved (we are working on C++0x,

after all and see §9.4). However, C++ does have a niche — a
very large niche — where other current languages fall short:

• applications with a significant systems programming
component; often with resource constraints

• applications with components that fall into different ap-
plication areas so that no single specialized applications
language could support all

Application languages gain their advantages through spe-
cialization, through added conveniences, and through elimi-
nating difficult to use or potentially dangerous features. Of-
ten, there is a run-time or space cost. Often, simplifications
are based on strong assumptions about the execution envi-
ronment. If you happen to need something fundamental that
was deemed unnecessary in the design (such as direct ac-
cess to memory or fully general abstraction mechanisms) or
don’t need the “added conveniences” (and can’t afford the
overhead they impose), C++ becomes a candidate. The basic
conjecture on which C++ is built is that many applications
have components for which that is the case: “Most of us do
unusual things some of the time”.

The positive way of stating this is that general mecha-
nisms beat special-purpose features for the majority of appli-
cations that does not completely fit into a particular classifi-
cation, have to collaborate with other applications, or signif-
icantly evolve from their original narrow niche. This is one
reason that every language seems to grow general-purpose
features, whatever its original aims were and whatever its
stated philosophy is.

If it was easy and cheap to switch back and forth among
applications languages and general-purpose languages, we’d
have more of a choice. However, that is rarely the case, espe-
cially where performance or machine-level access is needed.
In particular, using C++ you can (but don’t have to) break
some fundamental assumption on which an application lan-
guage is built. The practical result is that if you need a sys-
tems programming or performance-critical facility of C++
somewhere in an application, it becomes convenient to use
C++ for a large part of the application — and then C++’s
higher-level (abstraction) facilities come to the rescue. C++
provides hardly any high-level features that are directly ap-
plicable in an application. What it offers are mechanisms for
defining such facilities as libraries.

Please note that from a historical point of view this analy-
sis need not be correct or the only possible explanation of the
facts. Many prefer alternative ways of looking at the prob-
lem. Successful languages and companies have been built on
alternative views. However, it is a fact that C++ was designed
based on this view and that this view guided the evolution
of C++; for example, see Chapter 9 of [121]. I consider it
the reason that C++ initially succeeded in the mainstream
and the reason that its use continued to grow steadily during
the time period covered by this paper, despite the continuing

Evolving C++ 1991-2006 34 2007/5/25

presence of well-designed and better-financed alternatives in
the marketplace. See also §9.4.

7.2 Programming Styles

C++ supports several programming styles or, as they are
sometimes somewhat pretentiously called, “programming
paradigms”. Despite that, C++ is often referred to as “an
object-oriented programming language”. This is only true
for some really warped definition of “object-oriented” and I
never say just “C++ is an object-oriented language” [122].
Instead, I prefer “C++ supports object-oriented program-
ming and other programming styles” or “C++ is a multi-
paradigm programming language”. Programming style mat-
ters. Consequently, the way people refer to a language mat-
ters because it sets expectations and influences what people
see as ideals.

C++ has C (C89) as an “almost subset” and supports
the styles of programming commonly used for C [127]. Ar-
guably, C++ supports those styles better than C does by
providing more type checking and more notational support.
Consequently, a lot of C++ code has been written in the style
of C or — more commonly— in the style of C with a number
of classes and class hierarchies thrown in without affecting
the overall design. Such code is basically procedural, using
classes to provide a richer set of types. That’s sometimes re-
ferred to as “C with Classes style”. That style can be signif-
icantly better (for understanding, debugging, maintenance,
etc.) than pure C. However, it is less interesting from a his-
torical perspective than code that also uses the C++ facili-
ties to express more advanced programming techniques, and
very often less effective than such alternatives. The fraction
of C++ code written purely in “C style” appears to have been
decreasing over the last 15 years (or more).

The abstract data type and object-oriented styles of C++
usage have been discussed often enough not to require ex-
planation here (e.g., see [126]). They are the backbone of
many C++ applications. However, there are limits to their
utility. For example, object-oriented programming can lead
to overly rigid hierarchies and overreliance on virtual func-
tions. Also, a virtual function call is fundamentally efficient
for cases where you need to select an action at run time, but it
is still an indirect function call and thus expensive compared
to an individual machine instruction. This has led to generic
programming becoming the norm for C++ where high per-
formance is essential (§6.1).

7.2.1 Generic programming

Sometimes, generic programming in C++ is defined as sim-
ply “using templates”. That’s at best an oversimplification.
A better description from a programming language feature
point of view is “parametric polymorphism” [107] plus over-
loading, which is selecting actions and constructing types
based on parameters. A template is basically a compile-
time mechanism for generating definitions (of classes and

functions) based on type arguments, integer arguments, etc.
[144].

Before templates, generic programming in C++ was done
using macros [108], void*, and casts, or abstract classes.
Naturally, some of that still persists in current use and occa-
sionally these techniques have advantages (especially when
combined with templatized interfaces). However, the current
dominant form of generic programming relies on class tem-
plates for defining types and function templates for defining
operations (algorithms).

Being based on parameterization, generic programming
is inherently more regular than object-oriented program-
ming. One major conclusion from the years of use of major
generic libraries, such as the STL, is that the current support
for generic programming in C++ is insufficient. C++0x is
taking care of at least part of that problem (§8).

Following Stepanov (§4.1.8), we can define generic pro-
gramming without mentioning language features: Lift algo-
rithms and data structures from concrete examples to their
most general and abstract form. This typically implies repre-
senting the algorithms and their access to data as templates,
as shown in the descripton of the STL (§4.1).

7.2.2 Template metaprogramming

The C++ template instantiation mechanism is (when com-
piler limits are ignored, as they usually can be) Turing com-
plete (e.g., see [150]). In the design of the template mech-
anism, I had aimed at full generality and flexibility. That
generality was dramatically illustrated by Erwin Unruh in
the early days of the standardization of templates. At an
extensions working group meeting in 1994, he presented a
program that calculated prime numbers at compile time (us-
ing error messages as the output mechanism) [143] and ap-
peared surprised that I (and others) thought that marvelous
rather than scary. Template instantiation is actually a small
compile-time functional programming language. As early as
1995, Todd Veldhuizen showed how to define a compile-
time if-statement using templates and how to use such if-
statements (and switch-statements) to select among alterna-
tive data structures and algorithms [148]. Here is a compile-
time if-statement with a simple use:

template<bool b, class X, class Y>
struct if_ {

typedef X type; // use X if b is true
};

template<class X, class Y>
struct if_<false,X,Y> {

typedef Y type; // use Y if b is false
};

void f()
{

if_<sizeof(Foobar)<40, Foo, Bar>::type xy;

Evolving C++ 1991-2006 35 2007/5/25

// ...
}

If the size of type Foobar is less than 40, the type of the
variable xy is Foo; otherwise it is Bar. The second definition
of if_ is a partial specialization used when the template
arguments match the <false,X,Y> pattern specified. It’s
really quite simple, but very ingenious and I remember being
amazed when Jeremy Siek first showed it to me. In a variety
of guises, it has proven useful for producing portable high-
performance libraries (e.g., most of the Boost libraries [16]
rely on it).

Todd Veldhuizen also contributed the technique of ex-
pression templates [147], initially as part of the implementa-
tion of his high-performance numeric library Blitz++ [149].
The key idea is to achieve compile-time resolution and de-
layed evaluation by having an operator return a function ob-
ject containing the arguments and operation to be (eventu-
ally) evaluated. The < operator generating a Less_than ob-
ject in §4.1.4 is a trivial example. David Vandevoorde inde-
pendently discovered this technique.

These techniques and others that exploit the computa-
tional power of template instantiation provide the foundation
for techniques based on the idea of generating source code
that exactly matches the needs of a given situation. It can
lead to horrors of obscurity and long compile times, but also
to elegant and very efficient solutions to hard problems; see
[3, 2, 31]. Basically, template instantiation relies on over-
loading and specialization to provide a reasonably complete
functional compile-time programming language.

There is no universally agreed-upon definition of the
distinction between generic programming and template
metaprogramming. However, generic programming tends
to emphasize that each template argument type must have
an enumerated well-specified set of properties; that is, it
must be able to define a concept for each argument (§4.1.8,
§8.3.3). Template metaprogramming doesn’t always do that.
For example, as in the if_ example, template definitions can
be chosen based on very limited aspects of an argument type,
such as its size. Thus, the two styles of programming are
not completely distinct. Template metaprogramming blends
into generic programming as more and more requirements
are placed on arguments. Often, the two styles are used in
combination. For example, template metaprogramming can
be used to select template definitions used in a generic part
of a program.

When the focus of template use is very strongly on com-
position and selection among alternatives, the style of pro-
gramming is sometimes called “generative programming”
[31].

7.2.3 Multi-paradigm programming

It is important for programmers that the various program-
ming styles supported by C++ are part of a single language.
Often, the best code requires the use of more than one of the

four basic “paradigms”. For example, we can write the clas-
sical “draw all shapes in a container” example from SIM-
ULA BEGIN [9] like this:

void draw_all(vector<Shape*>& v)
{

for_each(v.begin(), v.end(), // sequence
mem_fun(&Shape::draw)); // operation

}

Here, we use object-oriented programming to get the run-
time polymorphism from the Shape class hierarchy. We
use generic programming for the parameterized (standard
library) container vector and the parameterized (standard
library) algorithm for_each. We use ordinary procedural
programming for the two functions draw_all and mem_fun.
Finally, the result of the call of mem_fun is a function ob-
ject, a class that is not part of a hierarchy and has no virtual
functions, so that can be classified as abstract data type pro-
gramming. Note that vector, for_each, begin, end, and
mem_fun are templates, each of which will generate the most
appropriate definition for its actual use.

We can generalize that to any sequence defined by a
pair of ForwardIterators, rather than just vectors and
improve type checking using C++0x concepts (§8.3.3):

template<ForwardIterator For>
void draw_all(For first, For last)

requires SameType<For::value_type,Shape*>
{

for_each(first, last, mem_fun(&Shape::draw));
}

I consider it a challenge to properly characterize multi-
paradigm programming so that it can be easy enough to use
for most mainstream programmers. This will involve finding
a more descriptive name for it. Maybe it could even benefit
from added language support, but that would be a task for
C++1x.

7.3 Libraries, Toolkits, and Frameworks

So, what do we do when we hit an area in which the C++
language is obviously inadequate? The standard answer is:
Build a library that supports the application concepts. C++
isn’t an application language; it is a language with facilities
supporting the design and implementation of elegant and ef-
ficient libraries. Much of the talk about object-oriented pro-
gramming and generic programming comes down to build-
ing and using libraries. In addition to the standard library
(§4) and the components from the library TR (§6.2), exam-
ples of widely used C++ libraries include

• ACE [95] — distributed computing

• Anti-Grain Geometry — 2D graphics

• Borland Builder (GUI builder)

• Blitz++[149] — vectors “The library that thinks it is a
compiler”

Evolving C++ 1991-2006 36 2007/5/25

• Boost[16] — foundation libraries building on the STL,
graph algorithms, regular expression matching, thread-
ing, ...

• CGAL[23] — computational geometry

• Maya — 3D animation

• MacApp and PowerPlant — Apple foundation frame-
works

• MFC — Microsoft Windows foundation framework

• Money++ — banking

• RogueWave library (pre-STL foundation library)

• STAPL[4], POOMA[86] — parallel computation

• Qt [10], FLTK [156], gtkmm [161], wxWidgets [162] —
GUI libraries and builders

• TAO [95], MICO, omniORB — CORBA ORBs

• VTK [155] — visualization

In this context, we use the word “toolkit” to describe a
library supported by programming tools. In this sense, VTK
is a toolkit because it contains tools for generating interfaces
in Java and Python and Qt and FLTK are toolkits because
they provide GUI builders. The combination of libraries
and tools is an important alternative to dialects and special-
purpose languages [133, 151].

A library (toolkit, framework) can support a huge user
community. Such user communities can be larger than the
user communities of many programming languages and a li-
brary can completely dominate the world-view of their users.
For example, Qt [10] is a commercial product with about
7,500 paying customers in 2006 plus about 150,000 users
of its open-source version [141]. Two Norwegian program-
mers, Eirik Chambe-Eng and Haavard Nord, started what be-
came Qt in 1991-92 and the first commercial release was in
1995. It is the basis of the popular desktop KDE (for Linux,
Solaris, and FreeBSD) and well known commercial prod-
ucts, such as Adobe Photoshop Elements, Google Earth, and
Skype (Voice over IP service).

Unfortunately for C++’s reputation, a good library can-
not be seen; it just does its job invisibly to its users. This
often leads people to underestimate the use of C++. How-
ever, “there are of course the Windows Foundation Classes
(MFC), MacApp, and PowerPlant — most Mac and Win-
dows commercial software is built with one of these frame-
works” [85].

In addition to these general and domain-specific libraries,
there are many much more specialized libraries. These have
their function limited to a specific organization or applica-
tion. That is, they apply libraries as an application design
philosophy: “first extend the language by a library, then
write the application in the resulting extended language”.
The “string library” (part of a larger system called “Pan-
ther”) used by Celera Genomics as the base for their work to
sequence the human genome [70] is a spectacular example

of this approach. Panther is just one of many C++ libraries
and applications in the general area of biology and biological
engineering.

7.4 ABIs and Environments

Using libraries on a large scale isn’t without problems. C++
supports source-level compatibility (but provides only weak
link-time compatibility guarantees). That’s fine if

• you have (all) the source

• your code compiles with your compiler

• the various parts of your source code are compatible (e.g.,
with respect to resource usage and error handling)

• your code is all in C++

For a large system, typically none of these conditions hold.
In other words, linking is a can of worms. The root of
this problem is the fundamental C++ design decision: Use
existing linkers (D&E §4.5).

It is not guaranteed that two C translation units that match
according to the language definition will link correctly when
compiled with different compilers. However, for every plat-
form, agreement has been reached for an ABI (Application
Binary Interface) so that the register usage, calling conven-
tions, and object layout match for all compilers so that C
programs will correctly link. C++ compilers use these con-
ventions for function call and simple structure layout. How-
ever, traditionally C++ compiler vendors have resisted link-
age standards for layout of class hierarchies, virtual function
calls, and standard library components. The result is that
to be sure that a legal C++ program actually works, every
part (including all libraries) has to be compiled by the same
compiler. On some platforms, notably Sun’s and also Ita-
nium (IA64) [60], C++ ABI standards exist but historically
the rule “use a single compiler or communicate exclusively
through C functions and structs” is the only really viable
rule.

Sticking with one compiler can ensure link compatibility
on a platform, but it can also be a valuable tool in providing
portability across many platforms. By sticking to a single
implementer, you gain “bug compatibility” and can target all
platforms supported by that vendor. For Microsoft platforms,
Microsoft C++ provides that opportunity; for a huge range
of platforms, GNU C++ is portable; and for a diverse set of
platforms, users get a pleasant surprise when they notice that
many of their local implementations use an EDG (Edison
Design Group) front-end making their source code portable.
This only (sic!) leaves the problems of version skew. During
this time period every C++ compiler went through a series of
upgrades, partly to increase standard conformance, to adjust
to platform ABIs, and to improve performance, debugging,
integration with IDEs, etc.

Link compatibility with C caused a lot of problems, but
also yielded significant advantages. Sean Parent (Adobe)
observes: “one reason I see for C++’s success is that it

Evolving C++ 1991-2006 37 2007/5/25

is ‘close enough’ to C that platform vendors are able to
provide a single C interface (such as the Win32 API or the
Mac Carbon API) which is C++ compatible. Many libraries
provide a C interface which is C++ compatible because the
effort to do so is low — where providing an interface to a
language such as Eiffel or Java would be a significant effort.
This goes beyond just keeping the linking model the same as
C but to the actual language compatibility”.

Obviously, people have tried many solutions to the linker
problem. The platform ABIs are one solution. CORBA is a
platform- and language-independent (or almost so) solution
that has found widespread use. However, it seems that C++
and Java are the only languages heavily used with CORBA.
COM was Microsoft’s platform-dependent and language-
independent solution (or almost so). One of the origins of
Java was a perceived need to gain platform independence
and compiler independence; the JVM solved that problem
by eliminating language independence and completely spec-
ifying linkage. The Microsoft CLI (Common Language In-
frastructure) solves the problem in a language-independent
manner (sort of) by requiring all languages to support a Java-
like linkage, metadata, and execution model. Basically all of
these solutions provide platform independence by becoming
a platform: To use a new machine or operating system, you
port a JVM, an ORB, etc.

The C++ standard doesn’t directly address the problem
of platform incompatibilities. Using C++, platform indepen-
dence is provided through platform-specific code (typically
relying on conditional compilation — #ifdef). This is often
messy and ad hoc, but a high degree of platform indepen-
dence can be provided by localizing dependencies in the im-
plementation of a relatively simple platform layer — maybe
just a single header file [16]. In any case, to implement the
platform-independent services effectively, you need a lan-
guage that can take advantage of the peculiarities of the vari-
ous hardware and operating systems environments. More of-
ten than not, that language is C++.

Java, C#, and many other languages rely on metadata
(that is, data that defines types and services associated with
them) and provide services that depend on such metadata
(such as marshalling of objects for transfer to other comput-
ers). Again, C++ takes a minimalist view. The only “meta-
data” available is the RTTI (§5.1.2), which provides just the
name of the class and the list of its base classes. When RTTI
was discussed, some of us dreamed of tools that would pro-
vide more data for systems that needed it, but such tools did
not become common, general-purpose, or standard.

7.5 Tools and Research

Since the late 1980s, C++ developers have been supported
by a host of analysis tools, development tools, and devel-
opment environments available in the C++ world. Examples
are:

• Visual Studio (IDE; Microsoft)

• KDE (Desktop Environment; Free Software)

• Xcode (IDE; Apple)

• lint++ (static analysis tool; Gimpel Software)

• Vtune (multi-level performance tuning; Intel)

• Shark (performance optimization; Apple)

• PreFAST (static source code analysis; Microsoft)

• Klocwork (static code analysis; Klocwork)

• LDRA (testing; LDRA Ltd.)

• QA.C++ (static analysis; Programming Research)

• Purify (memory leak finder; IBM Rational)

• Great Circle (garbage collector and memory usage ana-
lyzer; Geodesic, later Symantec)

However, tools and environments have always been a rela-
tive weakness of C++. The root of that problem is the dif-
ficulty of parsing C++. The grammar is not LR(N) for any
N. That’s obviously absurd. The problem arose because C++
was based directly on C (I borrowed a YACC-based C parser
from Steve Johnson), which was “known” not to be express-
ible as a LR(1) grammar until Tom Pennello discovered how
to write one in 1985. Unfortunately, by then I had defined
C++ in such a way that Pennello’s techniques could not be
applied to C++ and there was already too much code depen-
dent on the non-LR grammar to change C++. Another aspect
of the parsing problem is the macros in the C preprocessor.
They ensure that what the programmer sees when looking at
a line of code can — and often does — dramatically differ
from what the compiler sees when parsing and type checking
that same line of code. Finally, the builder of advanced tools
must also face the complexities of name lookup, template
instantiation, and overload resolution.

In combination, these complexities have confounded
many attempts to build tools and programming environments
for C++. The result was that far too few software develop-
ment and source code analysis tools have become widely
used. Also, the tools that were built tended to be expensive.
This led to relatively fewer academic experiments than are
conducted with languages that were easier to analyze. Un-
fortunately, many take the attitude that “if it isn’t standard,
it doesn’t exist” or alternatively “if it costs money, it doesn’t
exist”. This has led to lack of knowledge of and underuse of
existing tools, leading to much frustration and waste of time.

Indirectly, this parsing problem has caused weaknesses
in areas that rely on run-time information, such as GUI-
builders. Since the language doesn’t require it, compilers
generally don’t produce any form of metadata (beyond the
minimum required by RTTI; §5.1.2). My view (as stated in
the original RTTI papers and in D&E) was that tools could
be used to produce the type information needed by a specific
application or application area. Unfortunately, the parsing
problem then gets in the way. The tool-to-generate-metadata
approach has been successfully used for database access

Evolving C++ 1991-2006 38 2007/5/25

systems and GUI, but cost and complexity have kept this
approach from becoming more widely used. In particular,
academic research again suffered because a typical student
(or professor) doesn’t have the time for serious infrastructure
building.

A focus on performance also plays a part in lowering the
number and range of tools. Like C, C++ is designed to en-
sure minimal run-time and space overheads. For example,
the standard library vector is not by default range checked
because you can build an optimal range-checked vector on
top of an unchecked vector, but you cannot build an opti-
mally fast vector on top of a range-checked one (at least not
portably). However, many tools rely on additional actions
(such as range-checking array access or validating pointers)
or additional data (such as meta-data describing the layout
of a data structure). A subculture of strong concern about
performance came into the C++ community with much else
from C. Often that has been a good thing, but it did have
a limiting effect on tool building by emphasizing minimal-
ism even where there were no serious performance issues. In
particular, there is no reason why a C++ compiler couldn’t
supply superb type information to tool builders [134].

Finally, C++ was a victim of its own success. Researchers
had to compete with corporations that (sometimes correctly)
thought that there was money to be made in the kind of tools
researchers would like to build. There was also a curious
problem with performance: C++ was too efficient for any
really significant gains to come easily from research. This
led many researchers to migrate to languages with glaring
inefficiencies for them to eliminate. Elimination of virtual
function calls is an example: You can gain much better
improvements for just about any object-oriented language
than for C++. The reason is that C++ virtual function calls
are very fast and that colloquial C++ already uses non-virtual
functions for time-critical operations. Another example is
garbage collection. Here the problem was that colloquial
C++ programs don’t generate much garbage and that the
basic operations are fast. That makes the fixed overhead of a
garbage collector looks far less impressive when expressed
as a percentage of run time than it does for a language with
less efficient basic operations and more garbage. Again, the
net effect was to leave C++ poorer in terms of research and
tools.

7.6 C/C++ Compatibility

C is C++’s closest relative and a high degree of C compatibil-
ity has always been a design aim for C++. In the early years,
the primary reasons for compatibility were to share infras-
tructure and to guarantee completeness (§2.2). Later, com-
patibility remained important because of the huge overlap
in applications areas and programmer communities. Many
little changes were made to C++ during the ’80s and ’90s
to bring C++ closer to ISO C [62] (C89). However, during
1995-2004,C also evolved.Unfortunately,C99 [64] is in sig-
nificant ways less compatible with C++ than C89 [62] and

harder to coexist with. See [127] for a detailed discussion
of the C/C++ relationship. Here is a diagram of the relation-
ships among the various generations of C and C++:

C99
1998 C++98

1989 ARM C++

C89
1985 Early C++

1980 C with Classes

Classic C

1978 K&R C

B

1967 Simula BCPL

		�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

���
�
�

���
�
�

��

��										

��

��

��

�� ��

��

��

��

“Classic C” is what most people think of as K&R C, but
C as defined in [76] lacks structure copy and enumerations.
ARM C++ is C++ as defined by the ARM [35] and the basis
for most pre-standard C++. The basic observation is that by
now C (i.e., C89 or C99) and C++ (i.e., C++98) are siblings
(with “Classic C” as their common ancestor), rather than the
more conventional view that C++ is a dialect of C that some-
how failed to be compatible. This is an important issue be-
cause people commonly proclaim the right of each language
to evolve separately, yet just about everybody expects ISO
C++ to adopt the features adopted by ISO C — despite the
separate evolution of C and a tendency of the C committee to
adopt features that are similar to but incompatible with what
C++ already offers. Examples selected from a long list [127]
are bool, inline functions, and complex numbers.

7.7 Java and Sun

I prefer not to compare C++ to other programming lan-
guages. For example, in the “Notes to the Reader” section
of D&E [121], I write:

Several reviewers asked me to compare C++ to other
languages. This I have decided against doing. ... Lan-
guage comparisons are rarely meaningful and even
less often fair. A good comparison of major program-
ming languages requires more effort than most people

Evolving C++ 1991-2006 39 2007/5/25

are willing to spend, experience in a wide range of
application areas, a rigid maintenance of a detached
and impartial point of view, and a sense of fairness. I
do not have the time, and as the designer of C++, my
impartiality would never be fully credible. ... Worse,
when one language is significantly better known than
others, a subtle shift in perspective occurs: Flaws in
the well-known language are deemed minor and sim-
ple workarounds are presented, whereas similar flaws
in other languages are deemed fundamental. Often,
the workarounds commonly used in the less-well-
known languages are simply unknown to the people
doing the comparison or deemed unsatisfactory be-
cause they would be unworkable in the more famil-
iar language. ... Thus, I restrict my comments about
languages other than C++ to generalities and to very
specific comments.

However, many claims about the C++/Java relationship have
been made and the presence of Java in the marketplace has
affected the C++ community. Consequently, a few comments
are unavoidable even though a proper language comparison
is far beyond the scope of this paper and even though Java
has left no traces in the C++ definition.

Why not? From the earliest days of Java, the C++ com-
mittee has always included people with significant Java ex-
perience: users, implementers, tool builders, and JVM im-
plementers. I think at a fundamental level Java and C++ are
too different for easy transfer of ideas. In particular,

• C++ relies on direct access to hardware resources to
achieve many of its goals whereas Java relies on a virtual
machine to keep it away from the hardware.

• C++ is deliberately frugal with run-time support whereas
Java relies on a significant amount of metadata

• C++ emphasizes interoperability with code written in
other languages and sharing of system tools (such as
linkers) whereas Java aims for simplicity by isolating
Java code from other code.

The “genes” of C++ and Java are quite dissimilar. The syn-
tactic similarities between Java and C++ have often been de-
ceptive. As an analogy, I note that it is far easier for En-
glish to adopt “structural elements” from closely related lan-
guages, such as French or German, than from more different
languages, such as Japanese or Thai.

Java burst onto the programming scene with an unprece-
dented amount of corporate backing and marketing (much
aimed at non-programmers). According to key Sun people
(such as Bill Joy), Java was an improved and simplified C++.
“What Bjarne would have designed if he hadn’t had to be
compatible with C” was — and amazingly still is — a fre-
quently heard statement. Java is not that; for example, in
D&E §9.2.2, I outlined fundamental design criteria for C++:

What would be a better language than C++ for the
things C++ is meant for? Consider the first-order de-
cisions:

• Use of static type checking and Simula-like
classes.

• Clean separation between language and environ-
ment.

• C source compatibility (“as close as possible”).

• C link and layout compatibility (“genuine local
variables”).

• No reliance on garbage collection.

I still consider static type checking essential for good
design and run-time efficiency. Were I to design a new
language for the kind of work done in C++ today, I
would again follow the Simula model of type check-
ing and inheritance, not the Smalltalk or Lisp models.
As I have said many times, ‘Had I wanted an imitation
Smalltalk, I would have built a much better imitation.
Smalltalk is the best Smalltalk around. If you want
Smalltalk, use it’.

I think I could express that more clearly today, but the
essence would be the same; these criteria are what define
C++ as a systems programming language and what I would
be unwilling to give up. In the light of Java, that section
seems more relevant today than when I wrote it in 1993 (pre-
Java). Having the built-in data types and operators mapped
directly to hardware facilities and being able to exploit es-
sentially every machine resource is implicit in “C compati-
bility”.

C++ does not meet Java’s design criteria; it wasn’t meant
to. Similarly, Java doesn’t meet C++’s design criteria. For
example, consider a couple of language-technical criteria:

• Provide as good support for user-defined types as for
built-in types

• Leave no room for a lower-level language below C++
(except assembler)

Many of the differences can be ascribed to the aim of keep-
ing C++ a systems programming language with the ability to
deal with hardware and systems at the lowest level and with
the least overhead. Java’s stated aims seem more directed
towards becoming an applications language (for some defi-
nition of “application”).

Unfortunately, the Java proponents and their marketing
machines did not limit themselves to praising the virtues
of Java, but stooped to bogus comparisons (e.g., [51]) and
to name calling of languages seen as competitors (most
notably C and C++). As late as 2001, I heard Bill Joy claim
(orally with a slide to back it up in a supposedly technical
presentation) that “reliable code cannot be written in C/C++
because they don’t have exceptions” (see §5, §5.3). I see Java
as a Sun commercial weapon aimed at Microsoft that missed

Evolving C++ 1991-2006 40 2007/5/25

and hit an innocent bystander: the C++ community. It hurt
many smaller language communities even more; consider
Smalltalk, Lisp, Eiffel, etc.

Despite many promises, Java didn’t replace C++ (“Java
will completely kill C++ within two years” was a graphic
expression I repeatedly heard in 1996). In fact, the C++ com-
munity has trebled in size since the first appearance of Java.
The Java hype did, however, harm the C++ community by
diverting energy and funding away from much-needed tools,
library and techniques work. Another problem was that Java
encouraged a limited “pure object-oriented” view of pro-
gramming with a heavy emphasis on run-time resolution and
a de-emphasis of the static type system (only in 2005 did
Java introduce “generics”). This led many C++ programmers
to write unnecessarily inelegant, unsafe, and poorly perform-
ing code in imitation. This problem gets especially serious
when the limited view infects education and creates a fear of
the unfamiliar in students.

As I predicted [136] when I first heard the boasts about
Java’s simplicity and performance, Java rapidly accreted
new features — in some cases paralleling C++’s earlier
growth. New languages are always claimed to be “simple”
and to become useful in a wider range of real-world applica-
tions they increase in size and complexity. Neither Java nor
C++ was (or is) immune to that effect. Obviously, Java has
made great strides in performance — given its initial slow-
ness it couldn’t fail to — but the Java object model inhibits
performance where abstraction is seriously used (§4.1.1,
§4.1.4). Basically, C++ and Java are far more different in
aims, language structure, and implementation model than
most people seem to think. One way of viewing Java is as
a somewhat restricted version of Smalltalk’s run-time model
hidden behind a C++-like syntax and statically type-checked
interfaces.

My guess is that Java’s real strength compared to C++
is the binary compatibility gained from Sun having de
facto control of the linker as expressed through the defini-
tion of the Java virtual machine. This gives Java the link-
compatibility that has eluded the C++ community because
of the decision to use the basic system linkers and the lack
of agreement among C++ vendors on key platforms (§7.4).

In the early 1990s, Sun developed a nice C++ compiler
based on Mike Ball and Steve Clamage’s Taumetric com-
piler. With the release of Java and Sun’s loudly proclaimed
pro-Java policy where C++ code was referred to (in advertis-
ing “literature” and elsewhere) as “legacy code” that needed
rewriting and as “contamination”, the C++ group suffered
some lean years. However, Sun never wavered in its sup-
port of the C++ standards efforts and Mike, Steve and oth-
ers made significant contributions. Technical people have to
live with technical realities — such as the fact that many Sun
customers and many Sun projects rely on C++ (in total or in
part). In particular, Sun’s Java implementation, HotSpot, is a
C++ program.

7.8 Microsoft and .Net

Microsoft is currently the 800-pound gorilla of software de-
velopment and it has had a somewhat varied relationship
with C++. Their first attempt at an object-oriented C in the
late 1980s wasn’t C++ and I have the impression that a cer-
tain ambivalence about standard conformance lingers. Mi-
crosoft is better known for setting de facto standards than for
strictly sticking to formal ones. However, they did produce
a C++ compiler fairly early. Its main designer was Martin
O’Riordan, who came from the Irish company Glockenspiel
where he had been a Cfront expert and produced and main-
tained many ports. He once amused himself and his friends
by producing a Cfront that spoke its error messages through
a voice synthesizer in (what he believed to be) a thick Dan-
ish accent. To this day there are ex-Glockenspiel Irishmen
on the Microsoft C++ team.

Unfortunately, that first release didn’t support templates
or exceptions. Eventually, those key features were supported
and supported well, but that took years. The first Microsoft
compiler to provide a close-to-complete set of ISO C++ fea-
tures was VC++ 6.0, released in July 1998; its predecessor,
VC++ 5.0 from February 1997, already had many of the key
features. Before that, some Microsoft managers used highly
visible platforms, such as conference keynotes, for some
defensive bashing of these features (as provided only by
their competitors, notably Borland) as “expensive and use-
less”. Worse, internal Microsoft projects (which set widely
followed standards) couldn’t use templates and exceptions
because their compiler didn’t support those features. This
established bad programming practices and did long-term
harm.

Apart from that, Microsoft was a responsible and atten-
tive member of the community. Microsoft sent and sends
members to the committee meetings and by now — some-
what belatedly — provides an excellent C++ compiler with
good standard conformance.

To effectively use the .Net framework, which Microsoft
presents as the future of Windows, a language has to support
a Java-like set of facilities. This implies support for a large
number of language features including a massive metadata
mechanism and inheritance — complete with covariant ar-
rays (§4.1.1). In particular, a language used to produce com-
ponents for consumption by other languages must produce
complete metadata and a language that wants to consume
components produced by other languages must be able to ac-
cept the metadata they produce. The Microsoft C++ dialect
that supports all that, ISO C++ plus “The CLI extensions
to ISO C++”, colloquially referred to as C++/CLI [41], will
obviously play a major role in the future of the C++ world.
Interestingly, C++ with the C++/CLI extensions is the only
language that provides access to every feature of .Net. Basi-
cally, C++/CLI is a massive set of extensions to ISO C++ and
provides a degree of integration with Windows that makes it
unlikely that a program that relies on C++/CLI features in

Evolving C++ 1991-2006 41 2007/5/25

any significant way will be portable beyond the Microsoft
platforms that provide the massive infrastructure on which
C++/CLI depends. As ever, systems interfaces can be en-
capsulated, and must be encapsulated to preserve portabil-
ity. In addition to ISO C++, C++/CLI provides its own loop
construct, overloading mechanisms (indexers), “properties”,
event mechanism, garbage-collected heap, a different class
object initialization semantics, a new form of references, a
new form of pointers, generics, a new set of standard con-
tainers (the .Net ones), and more.

In the early years of .Net (around 2000 onwards), Mi-
crosoft provided a dialect called “managed C++” [24]. It
was generally considered “pretty lame” (if essential to some
Microsoft users) and appears to have been mostly a stop-
gap measure — without any clear indication what the future
might bring for its users. It has now been superseded by the
much more comprehensive and carefully designed C++/CLI.

One of my major goals in working in the standards com-
mittee was to prevent C++ from fracturing into dialects.
Clearly, in the case of C++/CLI, I and the committee failed.
C++/CLI has been standardized by ECMA [41] as a bind-
ing to C++. However, Microsoft’s main products, and those
of their major customers, are and will remain in C++. This
ensures good compiler and tool support for C++ — that
is ISO C++ — under Windows for the foreseeable fu-
ture. People who care about portability can program around
the Microsoft extensions to ensure platform independence
(§7.4). By default the Microsoft compiler warns about use
of C++/CLI extensions.

The members of the C++ standards committee were
happy to see C++/CLI as an ECMA standard. However, an
attempt to promote that standard to an ISO standard caused a
flood of dissent. Some national standards bodies — notably
the UK’s C++ Panel — publicly expressed serious concern
[142]. This caused people at Microsoft to better document
their design rationale [140] and to be more careful about not
confusing ISO C++ and C++/CLI in Microsoft documenta-
tion.

7.9 Dialects

Obviously, not everyone who thought C++ to be basically a
good idea wanted to go though the long and often frustrat-
ing ISO standards process to get their ideas into the main-
stream. Similarly, some people consider compatibility over-
rated or even a very bad idea. In either case, people felt they
could make faster progress and/or better by simply defining
and implementing their own dialect. Some hoped that their
dialect would eventually become part of the mainstream;
others thought that life outside the mainstream was good
enough for their purposes, and a few genuinely aimed at pro-
ducing a short-lived language for experimental purposes.

There have been too many C++ dialects (many dozens)
for me to mention more than a tiny fraction. This is not
ill will — though I am no great fan of dialects because
they fracture the user community [127, 133] — but a re-

flection that they have had very little impact outside limited
communities. So far, no major language feature has been
brought into the mainstream of C++ from a dialect. How-
ever, C++0x will get something that looks like C++/CLI’s
properly scoped enums [138], a C++/CLI-like for-statement
[84], and the keyword nullptr [139] (which curiously
enough was suggested by me for C++/CLI).

Concurrency seems to be an extremely popular area of
language extension. Here are a few C++ dialects supporting
some form of concurrency with language features:

• Concurrent C++[46]

• micro C++[18]

• ABC++ [83]

• Charm++ [75]

• POOMA [86]

• C++// [21]

Basically, every trend and fad in the computer science world
spawned a couple of C++ dialects, such as Aspect C++
[100], R++ [82], Compositional C++ [25], Objective C++
[90], Open C++ [26], and dozens more. The main problem
with these dialects is their number. Dialects tend to split up
a sub-user community to the point where none reach a large
enough user community to afford a sustainable infrastructure
[133].

Another kind of dialect appears when a vendor adds some
(typically minor) “neat features” to their compiler to help
their users with some specific tasks (e.g. OS access and
optimization). These become barriers to portability even if
they are often beloved by some users. They are also appre-
ciated by some managers and platform fanatics as a lock-
in mechanism. Examples exist for essentially every imple-
mentation supplier; for example Borland (Delphi-style prop-
erties),GNU (variable and type attributes), and Microsoft
(C++/CLI; §7.8). Such dialect features are nasty when they
appear in header files, setting off a competitive scramble
among vendors keen on being able to cope with their com-
petitors’ code. They also significantly complicate compiler,
library, and tool building.

It is not obvious when a dialect becomes a completely
separate language and many languages borrowed heavily
from C++ (with or without acknowledgments) without aim-
ing for any degree of compatibility. A recent example is
the “D” language (the currently most recent language with
that popular name): “D was conceived in December 1999 by
Walter Bright as a reengineering of C and C++” [17].

Even Java started out (very briefly) as a C++ dialect
[164], but its designers soon decided that maintaining com-
patibility with C++ would be too constraining for their
needs. Since their aims included 100% portability of Java
code and a restriction of code styles to a version of object-
oriented programming, they were almost certainly correct in

Evolving C++ 1991-2006 42 2007/5/25

that. Achieving any degree of useful compatibility is very
hard, as the C/C++ experience shows.

8. C++0x
From late 1997 until 2002, the standards committee deliber-
ately avoided serious discussion of language extension. This
allowed compiler, tool, and library implementers to catch up
and users to absorb the programming techniques supported
by Standard C++. I first used the term “C++0x” in 2000 and
started a discussion of “directions for C++0x” through pre-
sentations in the committee and elsewhere from 2001 on-
wards. By 2003, the committee again considered language
extensions. The “extensions working group” was reconsti-
tuted as the “evolution working group”. The name change
(suggested by Tom Plum) is meant to reflect a greater em-
phasis on the integration of language features and standard
library facilities. As ever, I am the chairman of that working
group, hoping to help ensure a continuity of vision for C++
and a coherence of the final result. Similarly, the committee
membership shows continuous participation of a large num-
ber of people and organizations. Fortunately, there are also
many new faces bringing new interests and new expertise to
the committee.

Obviously, C++0x is still work in progress, but years of
work are behind us and and many votes have been taken.
These votes are important in that they represent the response
of an experienced part of the C++ community to the prob-
lems with C++98 and the current challenges facing C++ pro-
grammers. The committee intended to be cautious and con-
servative about changes to the language itself, and strongly
emphasize compatibility. The stated aim was to channel the
major effort into an expansion of the standard library. In
the standard library, the aim was to be aggressive and op-
portunistic. It is proving difficult to deliver on that aim,
though. As usual, the committee just doesn’t have sufficient
resources. Also, people seem to get more excited over lan-
guage extensions and are willing to spend more time lobby-
ing for and against those.

The rate of progress is roughly proportional to the number
of meetings. Since the completion of the 1998 standard,
there has been two meetings a year, supplemented by a
large amount of web traffic. As the deadlines for C++0x
approach, these large meetings are being supplemented by
several “extra” meetings focused on pressing topics, such as
concepts (§8.3.3) and concurrency (§5.5).

8.1 Technical Challenges

What technical challenges faced the C++ community at the
time when C++0x was beginning to be conceived? At a high
level an answer could be:

• GUI-based application building

• Distributed computing (especially the web)

• Security

The big question is how to translate that into language fea-
tures, libraries (ISO standard or not), programming envi-
ronment, and tools. In 2000-2002, I tried unsuccessfully to
get the standards committee’s attention on the topic of dis-
tributed computing and Microsoft representatives regularly
try to raise the topic of security. However, the committee
simply doesn’t think like that. To make progress, issues have
to be expressed as concrete proposals for change, such as
to add a (specific) language feature to support callbacks or
to replace the notoriously unsafe C standard library func-
tion gets() with a (specific) alternative. Also, the C++ tra-
dition is to approach challenges obliquely though improved
abstraction mechanisms and libraries rather than providing a
solution for a specific problem.

After I had given a couple of talks on principles and direc-
tions, the first concrete action in the committee was a brain-
storming session at the 2001 meeting in Redmond, Washing-
ton. Here we made a “wish list” for features for C++0x. The
first suggestion was for a portable way of expressing align-
ment constraints (by P. J. Plauger supported by several other
members). Despite my strongly expressed urge to focus on
libraries, about 90 out of about 100 suggestions were for lan-
guage features. The saving grace was that many of those
were for features that would ease the design, implementa-
tion, and use of more elegant, more portable, and efficient li-
braries. This brainstorming provided the seeds of maintained
“wish lists” for C++0x language features and standard li-
brary facilities [136].

From many discussions and presentations, I have come
with a brief summary of general aims and design rules for
C++0x that appear to be widely accepted. Aims:

• Make C++ a better language for systems programming
and library building — rather than providing specialized
facilities for a particular sub-community (e.g. numeric
computation or Windows-style application development)

• Make C++ easier to teach and learn — through increased
uniformity, stronger guarantees, and facilities supportive
of novices (there will always be more novices than ex-
perts)

Rules of thumb:

• Provide stability and compatibility

• Prefer libraries to language extensions

• Make only changes that change the way people think

• Prefer generality to specialization

• Support both experts and novices

• Increase type safety

• Improve performance and ability to work directly with
hardware

• Fit into the real world

Evolving C++ 1991-2006 43 2007/5/25

These lists have been useful as a framework for rationales for
proposed extensions. Dozens of committee technical papers
have used them. However, they provide only a weak set of di-
rections and are only a weak counterweight to a widespread
tendency to focus on details. The GUI and distributed com-
puting challenges are not directly represented here, but fea-
ture prominently under “libraries” and “work directly with
hardware” (§8.6).

8.2 Suggested Language Extensions

To give a flavor of the committee work around 2005, con-
sider a (short!) incomplete list of proposed extensions:

1. decltype and auto — type deduction from expressions
(§8.3.2)

2. Template aliases — a way of binding some but not
all template parameters and naming the resulting partial
template specialization

3. Extern templates — a way of suppressing implicit instan-
tiation in a translation unit

4. Move semantics (rvalue references) — a general mecha-
nism for eliminating redundant copying of values

5. Static assertions (static_assert)

6. long long and many other C99 features

7. >> (without a space) to terminate two template special-
izations

8. Unicode data types

9. Variadic templates (§8.3.1)

10. Concepts — a type system for C++ types and integer
values (§8.3.3)

11. Generalized constant expressions [39]

12. Initializer lists as expressions (§8.3.1)

13. Scoped and strongly typed enumerations [138]

14. Control of alignment

15. nullptr — Null pointer constant [139]

16. A for-statement for ranges

17. Delegating constructors

18. Inherited constuctors

19. Atomic operations

20. Thread-local storage

21. Defaulting and inhibiting common operations

22. Lambda functions

23. Programmer-controlled garbage collection [12] (§5.4)

24. In-class member initializers

25. Allow local classes as template parameters

26. Modules

27. Dynamic library support

28. Integer sub-ranges

29. Multi-methods

30. Class namespaces

31. Continuations

32. Contract programming — direct support for precondi-
tions, postconditions, and more

33. User-defined operator. (dot)

34. switch on string

35. Simple compile-time reflection

36. #nomacro — a kind of scope to protect code from unin-
tended macro expansion

37. GUI support (e.g., slots and signals)

38. Reflection (i.e., data structures describing types for run-
time use)

39. concurrency primitives in the language (not in a library)

As ever, there are far more proposals than the committee
could handle or the language could absorb. As ever, even
accepting all the good proposals is infeasible. As ever, there
seems to be as many people claiming that the committee is
spoiling the language by gratuitous complicated features as
there are people who complain that the committee is killing
the language by refusing to accept essential features. If you
take away consistent overstatement of arguments, both sides
have a fair degree of reason behind them. The balancing act
facing the committee is distinctly nontrivial.

As of October 2006, Items 1-7 have been approved.
Based on the state of proposals and preliminary working
group votes, my guess is that items 10-21 will also be ac-
cepted. Beyond that, it’s hard to guess. Proosals 22-25 are
being developed aiming for votes in July 2007 and proposal
26 (modules) has been postponed to a technical report.

Most of these are being worked upon under one or more
of the “rules of thumb” listed above. That list is less than
half of the suggestions that the committee has received in
a form that compels it to (at least briefly) consider them.
My collection of suggestions from emails and meetings with
users is several times that size. At my urging, the committee
at the spring 2005 meeting in Lillehammer, Norway decided
(by vote) to stop accepting new proposals. In October of
2006, this vote was followed up by a vote to submit a draft
standard in late 2007 so as to make C++0x into C++09.
However, even with the stream of new proposals stemmed,
it is obvious that making a coherent whole of a selection of
features will be a practical challenge as well as a technical
one.

To give an idea of the magnitude of the technical chal-
lenge, consider that a paper on part of the concepts prob-
lem was accepted for the premier academic conference in the
field, POPL, in 2006 [38] and other papers analyzing prob-

Evolving C++ 1991-2006 44 2007/5/25

lems related to concepts were presented at OOPSLA [44, 52]
and PLDI [74]. I personally consider the technical problems
related to the support of concurrency (including the memory
model) harder still — and essential. The C++0x facilities for
dealing with concurrency are briefly discussed in §8.6.

The practical challenge is to provide correct and consis-
tent detailed specifications of all these features (and stan-
dard library facilities). This involves producing and checking
hundreds of pages of highly technical standards text. More
often than not, implementation and experimentation are part
of the effort to ensure that a feature is properly specified and
interacts well with other features in the language and the
standard library. The standard specifies not just an imple-
mentation (like a vendor’s documentation), but a whole set
of possible implementations (different vendors will provide
different implementations of a feature, each with the same
semantics, but with different engineering tradeoffs). This im-
plies an element of risk in accepting any new feature — even
in accepting a feature that has already been implemented and
used. Committee members differ in their perception of risk,
in their views of what risks are worth taking, and in their
views of how risk is best handled. Naturally, this is a source
of many difficult discussions.

All proposals and all the meeting minutes of the com-
mittee are available on the committee’s website [69]. That’s
more than 2000 documents — some long. A few of the pre-
1995 papers are not yet (August 2006) available online be-
cause the committee relied on paper until about 1994.

8.3 Support for Generic Programming

For the language itself, we see an emphasis on features to
support generic programming because generic programming
is the area where use of C++ has progressed the furthest
relative to the support offered by the language.

The overall aim of the language extensions supporting
generic programming is to provide greater uniformity of
facilities so as to make it possible to express a larger class
of problems directly in a generic form. The potentially most
significant extensions of this kind are:

• general initializer lists (§8.3.1)

• auto (§8.3.2)

• concepts (§8.3.3)

Of these proposals, only auto has been formally voted in.
The others are mature proposals and initial “straw votes”
have been taken in their support.

8.3.1 General initializer lists

“Provide as good support for user-defined types as for built-
in types” is prominent among the language-technical design
principles of C++ (§2). C++98 left a major violation of that
principle untouched: C++98 provides notational support for
initializing a (built-in) array with a list of values, but there is
no such support for a (user-defined) vector. For example,

we can easily define an array initialized to the three ints 1,
2, and 3:

int a[] = { 1,2,3 };

Defining an equivalent vector is awkward and may require
the introduction of an array:

// one way:
vector v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);

// another way
int a[] = { 1,2,3 };
vector v2(a,a+sizeof(a)/sizeof(int));

In C++0x, this problem will be remedied by allowing a
user to define a “sequence constructor” for a type to define
what initialization with an initializer list means. By adding a
sequence constructor to vector, we would allow:

vector<int> v = { 1,2,3 };

Because the semantics of initialization defines the seman-
tics of argument passing, this will also allow:

int f(const vector<int>&);
// ...
int x = f({ 1,2,3 });
int y = f({ 3,4,5,6,7,8, 9, 10 });

That is, C++0x gets a type-safe mechanism for variable-
length homogeneous argument lists [135].

In addition, C++0x will support type-safe variadic tem-
plate arguments [54] [55]. For example:

template<class ... T> void print(const T& ...);
// ...
string name = "World"’
print("Hello, ",name,’!’);
int x = 7;
print("x = ",x);

At the cost of generating a unique instantiation (from a
single template function) for each call with a given set
of argument types, variadic templates allow arbitrary non-
homogenous argument lists to be handled. This is especially
useful for tuple types and similar abstractions that inherently
deal with heterogeneous lists.

I was the main proponent of the homogenous initializer
list mechanism. Doug Gregor and Jaakko Järvi designed
the variadic template mechanism, which was developed to
simplify the implementation of libraries, such as Jakko Järvi
and Gary Powell’s lambda library [72] and the tuple library
[71].

8.3.2 Auto

C++0x will support the notion of a variable being given
a type deduced from the type of its initializer [73]. For

Evolving C++ 1991-2006 45 2007/5/25

example, we could write the verbose example from §4.1.3
like this:

auto q = find(vi.begin(),vi.end(),7); // ok

Here, we deduce the type of q to be the return type of
the value returned by find, which in turn is the type of
vi.begin(); that is, vector<int>::iterator. I first im-
plemented that use of auto in 1982, but was forced to back
it out of “C with Classes” because of a C compatibility prob-
lem. In K&R C [76] (and later in C89 and ARM C++), we
can omit the type in a declaration. For example:

static x; // means static int x
auto y; // means stack allocated int y

After a proposal by Dag Bruc̈k, both C99 and C++98 banned
this “implicit int”. Since there is now no legal code for
“auto q” to be incompatible with, we allowed it. That in-
compatibility was always more theoretical than real (reviews
of huge amounts of code confirm that), but using the (un-
used) keyword auto saved us from introducting a new key-
word. The obvious choice (from many languages, including
BCPL) is let, but every short meaningful word has already
been used in many programs and long and cryptic keywords
are widely disliked.

If the committee — as planned — accepts overloading
based on concepts (§8.3.3) and adjusts the standard library
to take advantage, we can even write:

auto q = find(vi,7); // ok

in addition to the more general, but wordier:

auto q = find(vi.begin(),vi.end(),7); // ok

Unsurprisingly, given its exceptionally long history, I was
the main designer of the auto mechanism. As with every
C++0x proposal, many people contributed, notably Gabriel
Dos Reis, Jaakko Järvi, and Walter Brown.

8.3.3 Concepts

The D&E [121] discussion of templates contains three whole
pages (§15.4) on constraints on template arguments. Clearly,
I felt the need for a better solution — and so did many others.
The error messages that come from slight errors in the use
of a template, such as a standard library algorithm, can be
spectacularly long and unhelpful. The problem is that the
template code’s expectations of its template arguments are
implicit. Consider again find_if:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{

while (first!=last && !pred(*first))
++first;

return first;
}

Here, we make a lot of assumptions about the In and Pred
types. From the code, we see that In must somehow sup-
port !=, *, and ++ with suitable semantics and that we must

be able to copy In objects as arguments and return values.
Similarly, we see that we can call a Pred with an argument
of whichever type * returns from an In and apply ! to the
result to get something that can be treated as a bool. How-
ever, that’s all implicit in the code. Note that a lot of the
flexibility of this style of generic programming comes from
implicit conversions used to make template argument types
meet those requirements. The standard library carefully doc-
uments these requirements for input iterators (our In) and
predicates (our Pred), but compilers don’t read manuals. Try
this error and see what your compiler says:

find_if(1,5,3.14); // errors

On 2000-vintage C++ compilers, the resulting error mes-
sages were uniformly spectacularly bad.

Constraints classes A partial, but often quite effective,
solution based on my old idea of letting a constructor check
assumptions about template arguments (D&E §15.4.2) is
now finding widespread use. For example:

template<class T> struct Forward_iterator {
static void constraints(T a) {

++a; a++; // can increment
T b = a; b = a; // can copy
*b = *a; // can dereference

// and copy result
}

Forward_iterator()
{ void (*p)(T) = constraints; }

};

This defines a class that will compile if and only if T is
a forward iterator [128]. However, a Forward_iterator
object doesn’t really do anything, so that a compiler can
(and all do) trivially optimize away such objects. We can
use Forward_iterator in a definition like this:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)

{
Forward_iterator<In>(); // check
while (first!=last && !pred(*first))

++first;
return first;

}

Alex Stepanov and Jeremy Siek did a lot to develop and
popularize such techniques. One place where they are used
prominently is in the Boost library [16]. The difference in
the quality of error messages can be spectacular. However, it
is not easy to write constraints classes that consistently give
good error messages on all compilers.

Concepts as a language feature Constraints classes are
at best a partial solution. In particular, the type checking is
done in the template definition. For proper separation of con-
cerns, checking should rely only on information presented in
a declaration. That way, we would obey the usual rules for

Evolving C++ 1991-2006 46 2007/5/25

interfaces and could start considering the possibility of gen-
uine separate compilation of templates.

So, let’s tell the compiler what we expect from a template
argument:

template<ForwardIterator In, Predicate Pred>
In find_if(In first, In last, Pred pred);

Assuming that we can express what a ForwardIterator
and a Predicate are, the compiler can now check a call
of find_if in isolation from its definition. What we are do-
ing here is to build a type system for template arguments. In
the context of modern C++, such “types of types” are called
concepts (see §4.1.8). There are various ways of specifying
such concepts; for now, think of them as a kind of constraints
classes with direct language support and a nicer syntax. A
concept says what facilities a type must provide, but nothing
about how it provides those facilities. The use of a concept
as the type of a template argument (e.g. <ForwardIterator
In>) is very close to a mathematical specification “for all
types In such that an In can be incremented, dereferenced,
and copied”, just as the original <class T> is the mathemat-
ical “for all types T”.

Given only that declaration (and not the definition) of
find_if, we can write

int x = find_if(1,2,Less_than<int>(7));

This call will fail because int doesn’t support unary *
(dereference). In other words, the call will fail to compile
because an int isn’t a ForwardIterator. Importantly, that
makes it easy for a compiler to report the error in the lan-
guage of the user and at the point in the compilation where
the call is first seen.

Unfortunately, knowing that the iterator arguments are
ForwardIterators and that the predicate argument is a
Predicate isn’t enough to guarantee successful compila-
tion of a call of find_if. The two argument types interact.
In particular, the predicate takes an argument that is an it-
erator dereferenced by *: pred(*first). Our aim is com-
plete checking of a template in isolation from the calls and
complete checking of each call without looking at the tem-
plate definition. So, “concepts” must be made sufficiently
expressive to deal with such interactions among template ar-
guments. One way is to parameterize the concepts in parallel
to the way the templates themselves are parameterized. For
example:

template<Value_type T,
ForwardIterator<T> In, // sequence of Ts
Predicate<bool,T> Pred> // takes a T;

// returns a bool
In find_if(In first, In last, Pred pred);

Here, we require that the ForwardIterator must point
to elements of a type T, which is the same type as the
Predicate’s argument type. However, that leads to overly
rigid interactions among template argument types and very
complex patterns and redundant of parameterization [74].

The current concept proposal [129, 130, 132, 97, 53] focuses
on expressing relationships among arguments directly:

template<ForwardIterator In, // a sequence
Predicate Pred> // returns a bool

requires Callable<Pred,In::value_type>
In find_if(In first, In last, Pred pred);

Here, we require that the In must be a ForwardIterator
with a value_type that is acceptable as an argument to Pred
which must be a Predicate.

A concept is a compile-time predicate on a set of types
and integer values. The concepts of a single type argument
provide a type system for C++ types (both built-in and user-
defined types) [132].

Specifying template’s requirements on its argument using
concepts also allows the compiler to catch errors in the tem-
plate definition itself. Consider this plausible pre-concept
definition:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{

while(first!=last && !pred(*first))
first = first+1;

return first;
}

Test this with a vector or an array, and it will work.
However, we specified that find_if should work for a
ForwardIterator. That is, find_if should be usable for
the kind of iterator that we can supply for a list or an in-
put stream. Such iterators cannot simply move N elements
forward (by saying p=p+N) — not even for N==1. We should
have said ++first, which is not just simpler, but correct. Ex-
perience shows that this kind of error is very hard to catch,
but concepts make it trivial for the compiler to detect it:

template<ForwardIterator In, Predicate Pred>
requires Callable<Pred,In::value_type>

In find_if(In first, In last, Pred pred)
{

while(first!=last && !pred(*first))
first = first+1;

return first;
}

The + operator simply isn’t among the operators specified
for a ForwardIterator. The compiler has no problems
detecting that and reporting it succinctly.

One important effect of giving the compiler informa-
tion about template arguments is that overloading based on
the properties of argument types becomes easy. Consider
again find_if. Programmers often complain about having
to specify the beginning and the end of a sequence when all
they want to do is to find something in a container. On the
other hand, for generality, we need to be able to express al-
gorithms in terms of sequences delimited by iterators. The
obvious solution is to provide both versions:

Evolving C++ 1991-2006 47 2007/5/25

template<ForwardIterator In, Predicate Pred>
requires Callable<Pred,In::value_type>

In find_if(In first, In last, Pred pred);

template<Container C, Predicate Pred>
requires Callable<Pred,C::value_type>

In find_if(C& c, Pred pred);

Given that, we can handle examples like the one in §8.3.2 as
well as examples that rely on more subtle differences in the
argument types.

This is not the place to present the details of the concept
design. However, as presented above, the design appears to
have a fatal rigidity: The expression of required properties of
a type is often in terms of required member types. However,
built-in types do not have members. For example, how can
an int* be a ForwardIterator when a ForwardIterator
as used above is supposed to have a member value_type?
In general, how can we write algorithms with precise and
detailed requirements on argument types and expect that au-
thors of types will define their types with the required prop-
erties? We can’t. Nor can we expect programmers to alter old
types whenever they find a new use for them. Real-world
types are often defined in ignorance of their full range of
uses. Therefore, they often fail to meet the detailed require-
ments even when they possess all the fundamental properties
needed by a user. In particular, int* was defined 30 years
ago without any thought of C++ or the STL notion of an it-
erator. The solution to such problems is to (non-intrusively)
map the properties of a type into the requirements of a con-
cept. In particular, we need to say “when we use a pointer
as a forward iterator we should consider the type of the ob-
ject pointed to its value_type”. In the C++0x syntax, that
is expressed like this:

template<class T>
concept_map ForwardIterator<T*> {

typedef T value_type;
}

A concept_map provides a map from a type (or a set of
types; here, T*) to a concept (here, ForwardIterator) so
that users of the concept for an argument will see not the
actual type, but the mapped type. Now, if we use int* as
a ForwardIterator that ForwardIterator’s value_type
will be int. In addition to providing the appearance of mem-
bers, a concept_map can be used to provide new names for
functions, and even to provide new operations on objects of
a type.

Alex Stepanov was probably the first to call for “con-
cepts” as a C++ language feature [104] (in 2002) — I don’t
count the numerous vague and nonspecific wishes for “bet-
ter type checking of templates”. Initially, I was not keen on
the language approach because I feared it would lead in the
direction of rigid interfaces (inhibiting composition of sepa-
rately developed code and seriously hurting performance), as
in earlier ideas for language-supported “constrained gener-

icity”. In the summer of 2003, Gabriel Dos Reis and I an-
alyzed the problem, outlined the design ideals, and docu-
mented the basic approaches to a solution [129] [130]. So,
the current design avoids those ill effects (e.g., see [38]) and
there are now many people involved in the design of con-
cepts for C++0x, notably Doug Gregor, Jaakko Järvi, Gabriel
Dos Reis, Jeremy Siek, Andrew Lumsdaine and me. An ex-
perimental implementation of concepts has been written by
Doug Gregor, together with a version of the STL using con-
cepts [52].

I expect concepts to become central to all generic pro-
gramming in C++. They are already central to much design
using templates. However, existing code — not using con-
cepts — will of course continue to work.

8.4 Embarrassments

My other priority (together with better support for generic
programming) is better support for beginners. There is a re-
markable tendency for proposals to favor the expert users
who propose and evaluate them. Something simple that helps
only novices for a few months until they become experts
is often ignored. I think that’s a potentially fatal design
bias. Unless novices are sufficiently supported, only few will
become experts. Bootstrapping is most important! Further,
many — quite reasonably — don’t want to become experts;
they are and want to remain “occasional C++ users”. For
example, a physicist using C++ for physics calculations or
the control of experimental equipment is usually quite happy
being a physicist and has only limited time for learning pro-
gramming techniques. As computer scientists we might wish
for people to spend more time on programming techniques,
but rather than just hoping, we should work on removing un-
necessary barriers to adoption of good techniques. Naturally,
most of the changes needed to remove “embarrassments” are
trivial. However, their solution is typically constrained by
compatibility concerns and concerns for the uniformity of
language rules.

A very simple example is

vector<vector<double>> v;

In C++98, this is a syntax error because >> is a single lexical
token, rather than two >s each closing a template argument
list. A correct declaration of v would be:

vector< vector<double> > v;

I consider that an embarrassment. There are perfectly good
language-technical reasons for the current rule and the ex-
tensions working group twice rejected my suggestions that
this was a problem worth solving. However, such reasons
are language technical and of no interest to novices (of all
backgrounds — including experts in other languages). Not
accepting the first and most obvious declaration of v wastes
time for users and teachers. A simple solution of the “>>
problem” was proposed by David Vandevoorde [145] and
voted in at the 2005 Lillehammer meeting, and I expect

Evolving C++ 1991-2006 48 2007/5/25

many small “embarrassments” to be absent from C++0x.
However, my attempt together with Francis Glassborow
and others, to try to systematically eliminate the most fre-
quently occurring such “embarrassments” seems to be going
nowhere.

Another example of an “embarrassment” is that it is legal
to copy an object of a class with a user-defined destructor
using a default copy operation (constructor or assignment).
Requiring user-defined copy operations in that case would
eliminate a lot of nasty errors related to resource manage-
ment. For example, consider an oversimplified string class:

class String {
public:

String(char* pp); // constructor
~String() { delete[] pp; } // destructor
char& operator[](int i);

private:
int sz;
char* p;

};

void f(char* x)
{

String s1(x);
String s2 = s1;

}

After the construction of s2, s1.p and s2.p point to the
same memory. This memory (allocated by the constructor)
will be deleted twice by the destructor, probably with dis-
astrous results. This problem is obvious to the experienced
C++ programmer, who will provide proper copy operations
or prohibit copying. The problem has also been well docu-
mented from the earliest days of C++: The two obvious so-
lutions can be found in TC++PL1 and D&E. However, the
problem can seriously baffle a novice and undermine trust
in the language. Language solutions have been proposed by
Lois Goldtwaite, Francis Glassborow, Lawrence Crowl, and
I [30]; some version may make it into C++0x.

I chose this example to illustrate the constraints imposed
by compatibility. The problem could be eliminated by not
providing default copy of objects of a class with pointer
members; if people wanted to copy, they could supply a copy
operator. However, that would break an unbelievable amount
of code. In general, remedying long-standing problems is
harder than it looks, especially if C compatibility enters
into the picture. However, in this case, the existence of a
destructor is a strong indicator that default copying would be
wrong, so examples such as String could be reliably caught
by the compiler.

8.5 Standard libraries

For the C++0x standard library, the stated aim was to make a
much broader platform for systems programming. The June
2006 version “Standard Libraries Wish List” maintained by
Matt Austern lists 68 suggested libraries including

• Container-based algorithms

• Random access to files

• Safe STL (completely range checked)

• File system access

• Linear algebra (vectors, matrices, etc.)

• Date and time

• Graphics library

• Data compression

• Unicode file names

• Infinite-precision integer arithmetic

• Uniform use of std::string in the library

• Threads

• Sockets

• Comprehensive support for unicode

• XML parser and generator library

• Graphical user interface

• Graph algorithms

• Web services (SOAP and XML bindings)

• Database support

• Lexical analysis and parsing

There has been work on many of these libraries, but most
are postponed to post-C++0x library TRs. Sadly, this leaves
many widely desired and widely used library components
unstandardized. In addition, from observing people strug-
gling with C++98, I also had high hopes that the commit-
tee would take pity on the many new C++ programmers and
provide library facilities to support novices from a variety of
backgrounds (not just beginning programmers and refugees
from C). I have low expectations for the most frequently
requested addition to the standard library: a standard GUI
(Graphical User Interface; see §1 and §5.5).

The first new components of the C++0x standard library
are those from the library TR (§6.2). All but one of the
components were voted in at the spring 2006 meeting in
Berlin. The special mathematical functions were considered
too specialized for the vast majority of C++ programmers
and were spun off to become a separate ISO standard.

In addition to the more visible work on adding new li-
brary components, much work in the library working group
focuses on minor improvements to existing components,
based on experience, and on improved specification of ex-
isting components. The accumulative effect of these minor
improvements is significant.

The plan for 2007 includes going over the standard li-
brary to take advantage of new C++0x features. The first
and most obvious example is to add rvalue initializers [57]
(primarily the work of Howard Hinnant, Peter Dimov, and
Dave Abrahams) to significantly improve the performance

Evolving C++ 1991-2006 49 2007/5/25

of heavily used components, such as vector, that occasion-
ally have to move objects around. Assuming that concepts
(§8.3.3) make it into C++0x, their use will revolutionize the
specification of the STL part of the library (and other tem-
plated components). Similarly, the standard containers, such
as vector should be augmented with sequence construc-
tors to allow then to accept initializer lists (§8.3.1). Gener-
alized constant expressions (constexpr, primarily the work
of Gabriel Dos Reis and I [39]) will allow us to define simple
functions, such as the ones defining properties of types in the
numeric_limits and the bitset operators, so that they are
usable at compile time. The variadic template mechanism
(§8.3.1) dramatically simplifies interfaces to standard com-
punents, such as tuple, that can take a wide variety of tem-
plate arguments. This has significant implications on the us-
ability of these standard library components in performance-
critical areas.

Beyond that, only a threads library seems to have gath-
ered enough support to become part of C++0x. Other com-
ponents that are likely to become part of another library TR
(TR2) are:

• File system library — platform-independent file system
manipulation [32]

• Date and time library [45]

• Networking — sockets, TCP, UDP, multicast, iostreams
over TCP, and more [80]

• numeric_cast — checked conversions [22]

The initial work leading up to the proposals and likely votes
mentioned here has been the main effort of the library work-
ing group 2003-06. The networking library has been used
commercially for applications on multiple continents for
some time. At the outset, Matt Austern (initially AT&T,
later Apple) was the chair; now Howard Hinnant (initially
Metrowerks, later Apple) has that difficult job.

In addition, the C committee is adopting a steady stream
of technical reports, which must be considered and (despite
the official ISO policy that C and C++ are distinct languages)
will probably have to be adopted into the C++ library even
though they — being C-style — haven’t benefited from sup-
port from C++ language features (such as user-defined types,
overloading, and templates). Examples are decimal floating-
point and unicode built-in types with associated operations
and functions.

All in all, this is a massive amount of work for the couple
of dozen volunteers in the library working group, but it is
not quite the “ambitious and opportunistic” policy that I
had hoped for in 2001 (§8). However, people who scream
for more (such as me) should note that even what’s listed
above will roughly double the size of the standard library.
The process of library TRs is a hope for the future.

8.6 Concurrency

Concurrency cannot be perfectly supported by a library
alone. On the other hand, the committee still considers
language-based approaches to concurrency, such as is found
in Ada and Java, insufficiently flexible (§5.5). In particular,
C++0x must support current operating-system thread library
approaches, such as POSIX threads and Windows threads.

Consequently, the work on concurrency is done by an
ad hoc working group stradding the library-language divide.
The approach taken is to carefully specify a machine model
for C++ that takes into account modern hardware architec-
tures [14] and to provide minimal language primitives:

• thread local storage [29]

• atomic types and operations [13]

The rest is left to a threads library. The current threads library
draft is written by Howard Hinnant [58].

This “concurrency effort” is led by Hans Boehm
(Hewlett-Packard) and Lawrence Crowl (formerly Sun, cur-
rently Google). Naturally, compiler writers and hardware
vendors are most interested and supportive in this. For ex-
ample, Clark Nelson from Intel redesigned the notion of se-
quencing that C++ inherited from C to better fit C++ on
modern hardware [89]. The threads library will follow the
traditions of Posix threads [19], Windows threads [163], and
libraries based on those, such as boost::thread [16]. In par-
ticular, the C++0x threads library will not try to settle every
issue with threading; instead it will provide a portable set of
core facilities but leave some tricky issues system dependent.
This is necessary to maintain compatibility both with earlier
libraries and with the underlying operating systems. In addi-
tion to the typical thread library facilities (such as lock and
mutex), the library will provide thread pools and a version
of “futures” [56] as a higher-level and easier-to-use commu-
nications facility: A future can be described as a placeholder
for a value to be computed by another thread; synchroniza-
tion potentially happens when the future is read. Prototype
implementations exist and are being evaluated [58].

Unfortunately, I had to accept that my hopes of direct
support for distributed programming are beyond what we
can do for C++0x.

9. Retrospective
This retrospective looks back with the hope of extracting
lessons that might be useful in the future:

• Why did C++ succeed?

• How did the standards process serve the C++ commu-
nity?

• What were the influences on C++ and what has been its
impact?

• Is there a future for the ideals that underlie C++?

Evolving C++ 1991-2006 50 2007/5/25

9.1 Why Did C++ Succeed?

That’s a question thoughtful people ask me a few times every
year. Less thoughtful people volunteer imaginative answers
to it on the web and elsewhere most weeks. Thus, it is worth
while to both briefly answer the question and to contradict
the more popular myths. Longer versions of the answer can
be found in D&E [121], in my first HOPL paper [120], and
in sections of this paper (e.g., §1, §7, and §9.4). This section
is basically a summary.

C++ succeeded because

• Low-level access plus abstraction: The original con-
ception of C++, “C-like for systems programming plus
Simula-like for abstraction,” is a most powerful and use-
ful idea (§7.1, §9.4).

• A useful tool: To be useful a language has to be complete
and fit into the work environments of its users. It is
neither necessary nor sufficient to be the best in the world
at one or two things (§7.1).

• Timing: C++ was not the first language to support object-
oriented programming, but from day one it was available
as a useful tool for people to try for real-world problems.

• Non-proprietary: AT&T did not try to monopolize C++.
Early on, implementations were relatively cheap (e.g.,
$750 for educational institutions) and in 1989 all rights
to the language were transferred to the standard bod-
ies (ANSI and later ISO). I and others from Bell Labs
actively helped non-AT&T C++ implementers to get
started.

• Stable: A high degree (but not 100%) of C compatibility
was considered essential from day one. A higher degree
of compatibility (but still not 100%) with earlier imple-
mentations and definitions was maintained throughout.
The standards process was important here (§3.1, §6).

• Evolving: New ideas have been absorbed into C++
throughout (e.g., exceptions, templates, the STL). The
world evolves, and so must a living language. C++ didn’t
just follow fashion; occasionally, it led (e.g., generic pro-
gramming and the STL). The standards process was im-
portant here (§4.1, §5, §8).

Personally, I particularly like that the C++ design never
aimed as solving a clearly enumerated set of problems with a
clearly enumerated set of specific solutions: I’d never design
a tool that could only do what I wanted [116]. Developers
tend not to appreciate this open-endedness and emphasis on
abstraction until their needs change.

Despite frequent claims, the reason for C++’s success was
not:

• Just luck: I am amazed at how often I hear that claimed.
I fail to understand how people can imagine that I and
others involved with C++ could — by pure luck — re-
peatedly have provided services preferred by millions of

systems builders. Obviously an element of luck is needed
in any endeavor, but to believe that mere bumbling luck
can account for the use of C++ 1.0, C++ 2.0, ARM C++,
and C++98 is stretching probabilities quite a bit. Stay-
ing lucky for 25 years can’t be easy. No, I didn’t imagine
every use of templates or of the STL, but I aimed for gen-
erality (§4.1.2).

• AT&T’s marketing might: That’s funny! All other lan-
guages that have ever competed commercially with C++
were better financed. AT&T’s C++ marketing budget
for 1985-1988 (inclusive) was $5,000 (out of which we
only managed to spend $3,000; see D&E). At the first
OOPSLA, we couldn’t afford to bring a computer, we
had no flyers, and not a single marketer (we used a
chalkboard, a signup sheet for research papers, and re-
searchers). In later years, things got worse.

• It was first: Well, Ada, Eiffel, Objective C, Smalltalk
and various Lisp dialects were all available commer-
cially before C++. For many programmers,C, Pascal, and
Modula-2 were serious contenders.

• Just C compatibility: C compatibility helped — as it
should because it was a design aim. However, C++ was
never just C and it earned the hostility from many C
devotees early on for that. To meet C++’s design aims,
some incompatibilities were introduced. C later adopted
several C++ features, but the time lag ensured that C++
got more criticism than praise for that (§7.6). C++ was
never an “anointed successor to C”.

• It was cheap: In the early years, a C++ implementation
was relatively cheap for academic institutions, but about
as expensive as competitive languages for commercial
use (e.g., about $40,000 for a commercial source license).
Later, vendors (notably Sun and Microsoft) tended to
charge more for C++ than for their own proprietary lan-
guages and systems.

Obviously, the reasons for success are as complex and varied
as the individuals and organizations that adopted C++.

9.2 Effects of the Standards Process

Looking back on the ’90s and the first years of the 21st cen-
tury, what questions can we ask about C++ and the standards
committee’s stewardship of the language?

• Is C++98 better than ARM C++?

• What was the biggest mistake?

• What did C++ get right?

• Can C++ be improved? and if so, how?

• Can the ISO standards process be improved? and if so,
how?

Yes, C++98 is a better language (with a much better library)
than ARM C++ for the kinds of problems that C++ was de-
signed to address. Thus, the efforts of the committee must be

Evolving C++ 1991-2006 51 2007/5/25

deemed successful. In addition, the population of C++ pro-
grammers has grown by more than an order of magnitude
(from about 150,000 in 1990 to over 3 million in 2004; §1)
during the stewardship of the committee. Could the commit-
tee have done better? Undoubtedly, but exactly how is hard
to say. The exact conditions at the time where decisions are
made are hard to recall (to refresh your memory, see D&E
[121]).

So what was the biggest mistake? For the early years
of C++, the answer was easy (“not shipping a larger/better
foundation library with the early AT&T releases” [120]).
However, for the 1991-1998 period, nothing really stands out
— at least if we have to be realistic. If we don’t have to be
realistic, we can dream of great support for distributed sys-
tems programming, a major library including great GUI sup-
port (§5.5), standard platform ABIs, elimination of overe-
laborate design warts that exist only for backward compat-
ibility, etc. To get a serious candidate for regret, I think
we have to leave the technical domain of language features
and library facilities and consider social factors. The C++
community has no real center. Despite the major and sus-
tained efforts of its members, the ISO C++ committee is un-
known or incredibly remote to huge numbers of C++ users.
Other programming language communities have been bet-
ter at maintaining conferences, websites, collaborative de-
velopment forums, FAQs, distribution sites, journals, indus-
try consortiums, academic venues, teaching establishments,
accreditation bodies, etc. I have been involved in several at-
tempts to foster a more effective C++ community, but I must
conclude that neither I nor anyone else have been sufficiently
successful in this. The centrifugal forces in the C++ world
have been too strong: Each implementation, library, and tool
supplier has their own effort that usually does a good job for
their users, but also isolates those users. Conferences and
journals have fallen victim to economic problems and to a
curious (but pleasant) lack of dogmatism among the leading
people in the C++ community.

What did C++ get right? First of all, the ISO standard was
completed in reasonable time and was the result of a genuine
consensus. That’s the base of all current C++ use. The stan-
dard strengthened C++ as a multi-paradigm language with
uncompromising support for systems programming, includ-
ing embedded systems programming.

Secondly, generic programming was developed and ef-
fective ways of using the language facilities for generic pro-
gramming emerged. This not only involved work on tem-
plates (e.g., concepts) but also required a better understand-
ing of resource management (§5.3) and of generic pro-
gramming techniques. Bringing generic programming to the
mainstream will probably be the main long-term technical
contribution of C++ in this time period.

Can C++ be improved? and if so, how? Obviously, C++
can be improved technically, and I also think that it can
be improved in the context of its real-world use. The lat-

ter is much harder, of course, because that imposes Dra-
conian compatibility constraints and cultural requirements.
The C++0x effort is the major attempt in that direction (§8).
In the longer term (C++1x?), I hope for perfect type safety
and a general high-level model for concurrency.

The question about improving the standards process is
hard to answer. On the one hand, the ISO process is slow, bu-
reaucratic, democratic, consensus-driven, subject to objec-
tions from very small communities (sometimes a single per-
son), lacking of focus (“vision”), and cannot respond rapidly
to changes in the industry or academic fashions. On the other
hand, that process has been successful. I have sometimes
summed up my position by paraphrasingChurchill: “the ISO
standards process is the worst, except for all the rest”. What
the standards committee seems to lack is a “secretariat” of
a handful of technical people who could spend full time
examining needs, do comparative studies of solutions, ex-
periment with language and library features, and work out
detailed formulation of proposals. Unfortunately, long-time
service in such a “secretariat” could easily be career death
for a first-rate academic or industrial researcher. On the other
hand, such a secretariat staffed by second-raters would lead
to massive disaster. Maybe a secretariat of technical peo-
ple serving for a couple of years supporting a fundamentally
democratic body such as the ISO C++ committee would be
a solution. That would require stable funding, though, and
standards organizations do not have spare cash.

Commercial vendors have accustomed users to massive
“standard libraries”. The ISO standards process — at least
as practiced by the C and C++ committees — has no way of
meeting user expectations of a many hundred thousands of
lines of free standard-library code. The Boost effort (§4.2) is
an attempt to address this. However, standard libraries have
to present a reasonably coherent view of computation and
storage. Developers of such libraries also have to spend a
huge amount of effort on important utility libraries of no
significant intellectual interest: just providing “what every-
body expects”. There are also a host of mundane specifica-
tion issues that even the commercial suppliers usually skimp
on — but a standard must address because it aims to sup-
port multiple implementations. A loosely connected group
of volunteers (working nights) is ill equipped to deal with
that. A multi-year mechanism for guidance is necessary for
coherence (and for integrating novel ideas) as well as ways
of getting “ordinary development work” done.

9.3 Influences and impact

We can look at C++ in many ways. One is to consider
influences:

1. What were the major influences on C++?

2. What languages, systems, and techniques were influ-
enced by C++?

Evolving C++ 1991-2006 52 2007/5/25

Recognizing the influences on the C++ language features
is relatively easy. Recognizing the influences on C++ pro-
gramming techniques, libraries, and tools is far harder be-
cause there is so much more going on in those areas and
the decisions are not channeled through the single point of
the standards committee. Recognizing C++’s influences on
other languages, libraries, tools, and techniques is almost
impossible. This task is made harder by a tendency of intel-
lectual and commercial rivalries to lead to a lack of empha-
sis on documenting sources and influences. The competition
for market share and mind share does not follow the ideal
rules of academic publishing. In particular, most major ideas
have multiple variants and sources, and people tend to refer
to sources that are not seen as competitors — and for many
new languages C++ is “the one to beat”.

9.3.1 Influences on C++

The major influences on early C++ were the programming
languages C and Simula. Along the way further influences
came from Algol68, BCPL, Clu, Ada, ML, and Modula-
2+ [121]. The language-technical borrowings tend to be ac-
companied by programming techniques related to those fea-
tures. Many of the design ideas and programming techniques
came from classical systems programming and from UNIX.
Simula contributed not just language features, but ideas of
programming technique relating to object-oriented program-
ming and data abstraction. My emphasis on strong static
type checking as a tool for design, early error detection, and
run-time performance (in that order) reflected in the design
of C++ came primarily from there. With generic program-
ming and the STL, mainstream C++ programming received
a solid dose of functional programming techniques and de-
sign ideas.

9.3.2 Impact of C++

C++’s main contribution was and is through the many sys-
tems built using it (§7 [137]). The primary purpose of a pro-
gramming language is to help build good systems. C++ has
become an essential ingredient in the infrastructure on which
our civilization relies (e.g. telecommunications systems, per-
sonal computers, entertainment, medicine, and electronic
commerce) and has been part of some of the most inspir-
ing achievements of this time period (e.g., the Mars Rovers
and the sequencing of the human genome).

C++ was preeminent in bringing object-oriented pro-
gramming into the mainstream. To do so, the C++ commu-
nity had to overcome two almost universal objections:

• Object-oriented programming is inherently inefficient

• Object-oriented programming is too complicated to be
used by “ordinary programmers”

C++’s particular variant of OO was (deliberately) derived
from Simula, rather than from Smalltalk or Lisp, and em-
phasized the role of static type checking and its associated
design techniques. Less well recognized is that C++ also

brought with it some non-OO data abstraction techniques
and an emphasis on statically typed interfaces to non-OO
facilities (e.g., proper type checking for plain old C func-
tions; §7.6). When that was recognized, it was often criti-
cized as “hybrid”, “transitory”, or “static”. I consider it a
valuable and often necessary complement to the view of
object-oriented programming focused on class hierarchies
and dynamic typing.

C++ brought generic programming into the mainstream.
This was a natural evolution of the early C++ emphasis on
statically typed interfaces and brought with it a number of
functional programming techniques “translated” from lists
and recursion to general sequences and iteration. Function
templates plus function objects often take the role of higher-
order functions. The STL was a crucial trendsetter. In addi-
tion, the use of templates and function objects led to an em-
phasis on static type safety in high-performance computing
(§7.3) that hitherto had been missing in real-world applica-
tions.

C++’s influence on specific language features is most
obvious in C, which has now “borrowed”:

• function prototypes

• const

• inline

• bool

• complex

• declarations as statements

• declarations in for-statement initializers

• // comments

Sadly, with the exception of the // comments (which I in
turn borrowed from BCPL), these features were introduced
into C in incompatible forms. So was void*, which was a
joint effort between Larry Rosler, Steve Johnson, and me at
Bell Labs in mid-1982 (see D&E [121]).

Generic programming, the STL, and templates have also
been very influential on the design of other languages. In the
1980s and 1990s templates and the programming techniques
associated with them were frequently scorned as “not object-
oriented”, too complicated, and too expensive; workarounds
were praised as “simple”. The comments had an interest-
ing similarity to the early community comments on object-
oriented programming and classes. However, by 2005, both
Java and C# have acquired “generics” and statically typed
containers. These generics look a lot like templates, but
Java’s are primarily syntactic sugar for abstract classes and
far more rigid than templates. Though still not as flexible
or efficient as templates, the C# 2.0 generics are better in-
tegrated into the type system and even (as templates always
did) offer a form of specialization.

C++’s success in real-world use also led to influences that
are less beneficial. The frequent use of the ugly and irregular

Evolving C++ 1991-2006 53 2007/5/25

C/C++ style of syntax in modern languages is not something
I’m proud of. It is, however, an excellent indicator of C++
influence — nobody would come up with such syntax from
first principles.

There is obvious C++ influence in Java, C#, and various
scripting languages. The influence on Ada95, COBOL, and
Fortran is less obvious, but definite. For example, having
an Ada version of the Booch components [15] that could
compare in code size and performance with the C++ version
was a commonly cited goal. C++ has even managed to in-
fluence the functional programming community (e.g. [59]).
However, I consider those influences less significant.

One of the key areas of influence has been on systems for
intercommunication and components, such as CORBA and
COM, both of which have a fundamental model of interfaces
derived from C++’s abstract classes.

9.4 Beyond C++

C++ will be the mainstay of much systems development
for years to come. After C++0x, I expect to see C++1x as
the language and its community adapt to new challenges.
However, where does C++ fit philosophically among current
languages; in other words, ignoring compatibility, what is
the essence of C++? C++ is an approximation to ideals, but
obviously not itself the ideal. What key properties, ideas,
and ideals might become the seeds of new languages and
programming techniques? C++ is

• a set of low-level language mechanisms (dealing directly
with hardware)

• combined with powerful compositional abstraction
mechanisms

• relying on a minimal run-time environment.

In this, it is close to unique and much of its strength comes
from this combination of features. C is by far the most suc-
cessful traditional systems programming language; the dom-
inant survivor of a large class of popular and useful lan-
guages. C is close to the machine in exactly the way C++
is (§2, §6.1), but C doesn’t provide significant abstraction
mechanisms. To contrast, most “modern languages” (such
as Java, C#, Python, Ruby, Haskell, and ML) provide ab-
straction mechanisms, but deliberately put barriers between
themselves and the machine. The most popular rely on a
virtual machine plus a huge run-time support system. This
is a great advantage when you are building an application
that requires the services offered, but a major limitation on
the range of application areas (§7.1). It also ensures that ev-
ery application is a part of a huge system, making it hard to
understand completely and impossible to make correct and
well performing in isolation.

In contrast, C++ and its standard library can be imple-
mented in itself (the few minor exceptions to this are the re-
sults of compatibility requirements and minor specification
mistakes). C++ is complete both as a mechanism for dealing

with hardware and for efficient abstraction from the close-
to-hardware levels of programming. Occasionally, optimal
use of a hardware feature requires a compiler intrinsic or an
inline assembler insert, but that does not break the funda-
mental model; in fact, it can be seen as an integral part of
that model. C++’s model of computation is that of hardware,
rather than a mathematical or ad hoc abstraction.

Can such a model be applied to future hardware, future
systems requirements, and future application requirements?
I consider it reasonably obvious that in the absence of com-
patibility requirements, a new language on this model can be
much smaller, simpler, more expressive, and more amenable
to tool use than C++, without loss of performance or restric-
tion of application domains. How much smaller? Say 10% of
the size of C++ in definition and similar in front-end com-
piler size. In the “Retrospective” chapter of D&E [121], I
expressed that idea as “Inside C++, there is a much smaller
and cleaner language struggling to get out”. Most of the sim-
plification would come from generalization — eliminating
the mess of special cases that makes C++ so hard to handle
— rather than restriction or moving work from compile time
to run time. But could a machine-near plus zero-overhead
abstraction language meet “modern requirements”? In par-
ticular, it must be

• completely type safe

• capable of effectively using concurrent hardware

This is not the place to give a technical argument, but I’m
confident that it could be done. Such a language would re-
quire a realistic (relative to real hardware) machine model
(including a memory model) and a simple object model. The
object model would be similar to C++’s: direct mapping of
basic types to machine objects and simple composition as
the basis for abstraction. This implies a form of pointers and
arrays to support a “sequence of objects” basic model (sim-
ilar to what the STL offers). Getting that type safe — that
is, eliminating the possibility of invalid pointer use, range
errors, etc. — with a minimum of run-time checks is a chal-
lenge, but there is plenty of research in software, hardware,
and static analysis to give cause for optimism. The model
would include true local variables (for user-defined types as
well as built-in ones), implying support for “resource acqui-
sition is initialization”-style resource management. It would
not be a “garbage collection for everything” model, even
though there undoubtedly would be a place for garbage col-
lection in most such languages.

What kind of programming would this sort of language
support? What kind of programming would it support bet-
ter than obvious and popular alternatives? This kind of lan-
guage would be a systems programming language suitable
for hard real-time applications, device drivers, embedded de-
vices, etc. I think the ideal systems programming language
belongs to this general model — you need machine-near fea-
tures, predictable performance, (type) safety, and powerful

Evolving C++ 1991-2006 54 2007/5/25

abstraction features. Secondly, this kind of language would
be ideal for all kinds of resource-constrained applications
and applications with large parts that fitted these two criteria.
This is a huge and growing class of applications. Obviously,
this argument is a variant of the analysis of C++’s strengths
from §7.1.

What would be different from current C++? Size, type
safety, and integral support for concurrency would be the
most obvious differences.More importantly, such a language
would be more amenable to reasoning and to tool use than
C++ and languages relying on lots of run-time support. Be-
yond that, there is ample scope for improvement over C++
in both design details and specification techniques. For ex-
ample, the integration between core language and standard
library features can be much smoother; the C++ ideal of
identical support for built-in and user-defined types could
be completely achieved so that a user couldn’t (without ex-
amining the implementation) tell which was which. It is also
obvious that essentially all of such a language could be de-
fined relative to an abstract machine (thus eliminating all in-
cidental “implementation defined” behavior) without com-
promising the close-to-machine ideal: machine architectures
have huge similarities in operations and memory models that
can be exploited.

The real-world challenge to be met is to specify and im-
plement correct systems (often under resource constraints
and often in the presence of the possibility of hardware fail-
ure). Our civilization critically depends on software and the
amount and complexity of that software is steadily increas-
ing. So far, we (the builders of large systems) have mostly
addressed that challenge by patch upon patch and incredi-
ble numbers of run-time tests. I don’t see that approach con-
tinuing to scale. For starters, apart from concurrent execu-
tion, our computers are not getting faster to compensate for
software bloat as they did for the last decades. The way to
deal that I’m most optimistic about is a more principled ap-
proach to software, relying on more mathematical reason-
ing, more declarative properties, and more static verification
of program properties. The STL is an example of a move in
that direction (constrained by the limitations of C++). Func-
tional languages are examples of moves in that direction
(constrained by a fundamental model of memory that dif-
fers from the hardware’s and underutilization of static prop-
erties). A more significant move in that direction requires
a language that supports specification of desired properties
and reasoning about them (concepts are a step in that direc-
tion). For this kind of reasoning, run-time resolution, run-
time tests, and multiple layers of run-time mapping from
code to hardware are at best wasteful and at worst serious ob-
stacles. The ultimate strength of a machine-near, type-safe,
and compositional abstraction model is that it provides the
fewest obstacles to reasoning.

10. Acknowledgments
Obviously, I owe the greatest debt to the members of the C++
standards committee who worked — and still work — on
the language and library features described here. Similarly,
I thank the compiler and tools builders who make C++ a
viable tool for an incredible range of real-world problems.

Thanks to Dave Abrahams, Matt Austern, Paul A. Bis-
tow, Steve Clamage, Greg Colvin, Gabriel Dos Reis, S. G.
Ganesh, Lois Goldthwaite, Kevlin Henney,Howard Hinnant,
Jaakko Järvi, Andy Koenig, Bronek Kozicki, Paul McJones,
Scott Meyers, Nathan Myers, W. M. (Mike) Miller, Sean
Parent, Tom Plum, PremAnand M. Rao, Jonathan Schilling,
Alexander Stepanov, Nicholas Stroustrup, James Widman,
and J. C. van Winkel for making constructive comments on
drafts of this paper.

Also thanks to the HOPL-III reviewers: Julia Lawall,
Mike Mahoney, Barbara Ryder, Herb Sutter, and Ben Zorn
who — among other things — caused a significant increase
in the introductory material, thus hopefully making this pa-
per more self-contained and more accessible to people who
are not C++ experts.

I am very grateful to Brian Kernighan and Doug McIlroy
for all the time they spent listening to and educating me on a
wide variety of language-related topics during the 1990s. A
special thanks to Al Aho of Columbia University for lending
me an office in which to write the first draft of this paper.

References
[1] David Abrahams: Exception-Safety in Generic Components.

M. Jazayeri, R. Loos, D. Musser (eds.): Generic Program-
ming, Proc. of a Dagstuhl Seminar. Lecture Notes on Com-
puter Science. Volume 1766. 2000. ISBN: 3-540-41090-2.

[2] David Abrahams and Aleksey Gurtovoy: C++ Template
Meta-programming Addison-Wesley. 2005. ISBN 0-321-
22725-5.

[3] Andrei Alexandrescu: Modern C++ Design. Addison-
Wesley. 2002. ISBN 0-201-70431.

[4] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith,
Gabriel Tanase, Nathan Thomas, Nancy Amato, Lawrence
Rauchwerger: STAPL: An Adaptive, Generic Parallel C++
Library. In Wkshp. on Lang. and Comp. for Par. Comp.
(LCPC), pp. 193-208, Cumberland Falls, Kentucky, Aug
2001.

[5] AT&T C++ translator release notes. Tools and Reusable
Components. 1989.

[6] M. Austern: Generic Programming and the STL: Using and
Extending the C++ Standard Template Library. Addison
Wesley. 1998. ISBN: 0-201-30956-4.

[7] John Backus: Can programming be liberated from the
von Neumann style?: a functional style and its algebra of
programs. Communications of the ACM 21, 8 (Aug. 1978).

[8] J. Barreiro, R. Fraley, and D. Musser: Hash Tables for
the Standard Template Library. Rensselaer Polytechnic
Institute and Hewlett Packard Laboratories. February, 1995.

Evolving C++ 1991-2006 55 2007/5/25

ftp://ftp.cs.rpi.edu/pub/stl/hashdoc.ps.Z

[9] Graham Birtwistle et al.: SIMULA BEGIN. Studentlitteratur.
Lund. Sweden. 1979. ISBN 91-44-06212-5.

[10] Jasmin Blanchette and Mark Summerfield: C++ GUI
Programming with Qt3. Prentice Hall. 2004. ISBN 0-13-
124072-2.

[11] Hans-J. Boehm: Space Efficient Conservative Garbage
Collection. Proc. ACM SIGPLAN ’93 Conference on
Programming Language Design and Implementation. ACM
SIGPLAN Notices. June 1993. http://www.hpl.hp.com/
personal/Hans_Boehm/gc/.

[12] Hans-J. Boehm and Michael Spertus: Transparent Garbage
Collection for C++. ISO SC22 WG21 TR NN1943==06-
0013.

[13] Hans-J. Boehm: An Atomic Operations Library for C++. ISO
SC22 WG21 TR N2047==06-0117.

[14] Hans-J. Boehm: A Less Formal Explanation of the Proposed
C++ Concurrency Memory Model. ISO SC22 WG21 TR
N2138==06-0208.

[15] Grady Booch: Software Components with Ada. Benjamin
Cummings. 1988. ISBN 0-8053-0610-2.

[16] The Boost collection of libraries. http://www.boost.org.

[17] Walter Bright: D Programming Language. http://www.
digitalmars.com/d/.

[18] Peter A. Buhr and Glen Ditchfield: Adding Concurrency to
a Programming Language. Proc. USENIX C++ Conference.
Portland, OR. August 1992.

[19] David Butenhof: Programming With Posix Threads. ISBN
0-201-63392-2. 1997.

[20] T. Cargill: Exception handling: A False Sense of Security.
The C++ Report, Volume 6, Number 9, November-December
1994.

[21] D. Caromel et al.: C++//. In Parallel programming in C++.
(Wilson and Lu, editors). MIT Press. 1996. ISBN 0-262-
73118-5.

[22] Fernando Cacciola: A proposal to add a general purpose
ranged-checked numeric_cast<> (Revision 1). ISO SC22
WG21 TR N1879==05-0139.

[23] CGAL: Computational Geometry Algorithm Library.
http://www.cgal.org/.

[24] Siva Challa and Artur Laksberg: Essential Guide to Managed
Extensions for C++. Apress. 2002. ISBN: 1893115283.

[25] K. M. Chandy and C. Kesselman: Compositional C++:
Compositional Parallel Programming. Technical Report.
California Institute of Technology. [Caltech CSTR: 1992.cs-
tr-92-13].

[26] Shigeru Chiba: A Metaobject Protocol for C++. Proc.
OOPSLA’95. http://www.csg.is.titech.ac.jp/
~chiba/openc++.html.

[27] Steve Clamage and David Vandevoorde. Personal communi-
cations. 2005.

[28] J. Coplien: Multi-paradigm Design for C++. Addison

Wesley. 1998. ISBN 0-201-82467-1.

[29] Lawrence Crowl: Thread-Local Storage. ISO SC22 WG21
TR N1966==06-0036.

[30] Lawrence Crowl: Defaulted and Deleted Functions. ISO
SC22 WG21 TR N2210==07-0070.

[31] Krzysztof Czarnecki and Ulrich W. Eisenecker: Generative
Programming — Methods, Tools, and Applications. Addison-
Wesley, June 2000. ISBN 0-201-30977-7.

[32] Beman Dawes: Filesystem Library Proposal for TR2 (Revi-
sion 2) . ISO SC22 WG21 TR N1934==06-0004.

[33] Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified
Data Processing on Large Clusters. OSDI’04: Sixth Sympo-
sium on Operating System Design and Implementation, San
Francisco, CA, December, 2004.

[34] D. Detlefs: Garbage collection and run-time typing as a C++
library. Proc. USENIX C++ conference. 1992.

[35] M. Ellis and B. Stroustrup: The Annotated C++ Reference
Manual (“The ARM”) Addison Wesley. 1989.

[36] Dinkumware: Dinkum Abridged Library http://www.
dinkumware.com/libdal.html.

[37] Gabriel Dos Reis and Bjarne Stroustrup: Formalizing C++.
TAMU CS TR. 2005.

[38] Gabriel Dos Reis and Bjarne Stroustrup: Specifying C++
Concepts. Proc. ACM POPL 2006.

[39] Gabriel Dos Reis and Bjarne Stroustrup: Generalized
Constant Expressions (Revision 3). ISO SC22 WG21 TR
N1980==06-0050.

[40] The Embedded C++ Technical Committee: The Language
Specification & Libraries Version. WP-AM-003. Oct 1999
(http://www.caravan.net/ec2plus/).

[41] Ecma International: ECMA-372 Standard: C++/CLI Lan-
guage Specification. http://www.ecma-international.
org/publications/standards/Ecma-372.htm. Decem-
ber 2005.

[42] Boris Fomitchev: The STLport Story. http://www.
stlport.org/doc/story.html.

[43] Eric Gamma, et al.: Design Patterns. Addison-Wesley. 1994.
ISBN 0-201-63361-2.

[44] R. Garcia, et al.: A comparative study of language support
for generic programming. ACM OOPSLA 2003.

[45] Jeff Garland: Proposal to Add Date-Time to the C++
Standard Library. ISO SC22 WG21 TR N1900=05-0160.

[46] N.H. Gehani and W.D. Roome: Concurrent C++: Concur-
rent Programming with Class(es). Software—Practice and
Experience, 18(12):1157—1177, December 1988.

[47] Geodesic: Great circle. Now offered by Veritas.

[48] M. Gibbs and B. Stroustrup: Fast dynamic casting.
Software—Practice&Experience. 2005.

[49] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine,
Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir:
MPI: The Complete Reference — 2nd Edition: Volume 2 —
The MPI-2 Extensions . The MIT Press. 1998.

Evolving C++ 1991-2006 56 2007/5/25

[50] Keith E. Gorlen: An Object-Oriented Class Library for C++
Programs. Proc. USENIX C++ Conference. Santa Fe, NM.
November 1987.

[51] J. Gosling and H. McGilton: The Java(tm) Language
Environment: A White Paper. http://java.sun.com/
docs/white/langenv/.

[52] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Gabriel Dos
Reis, Bjarne Stroustrup, and Andrew Lumsdaine: Concepts:
Linguistic Support for Generic Programming. Proc. of ACM
OOPSLA’06. October 2006.

[53] D. Gregor and B. Stroustrup: Concepts. ISO SC22 WG21 TR
N2042==06-0012.

[54] D. Gregor, J. Järvi, G. Powell: Variadic Templates (Revision
3). ISO SC22 WG21 TR N2080==06-0150.

[55] Douglas Gregor and Jaakko Järvi: Variadic Templates for
C++. Proc. 2007 ACM Symposium on Applied Computing.
March 2007.

[56] R. H. Halstead: MultiLisp: A Language for Concurrent
Symbolic Computation. TOPLAS. October 1985.

[57] H. Hinnant, D. Abrahams, and P. Dimov: A Proposal to Add
an Rvalue Reference to the C++ Language. ISO SC22 WG21
TR N1690==04-0130.

[58] Howard E. Hinnant: Multithreading API for C++0X - A
Layered Approach. ISO SC22 WG21 TR N2094==06-0164.

[59] J. Hughes and J. Sparud: Haskell++: An object-oriented
extension of Haskell. Proc. Haskell Workshop, 1995.

[60] IA64 C++ ABI. http://www.codesourcery.com/
cxx-abi.

[61] IDC report on programming language use. 2004.
http://www.idc.com.

[62] Standard for the C Programming Language. ISO/IEC 9899.
(“C89”).

[63] Standard for the C++ Programming Language. ISO/IEC
14882. (“C++98”).

[64] Standard for the C Programming Language. ISO/IEC
9899:1999. (“C99”).

[65] International Organization for Standards: The C Program-
ming Language. ISO/IEC 9899:2002. Wiley 2003. ISBN
0-470-84573-2.

[66] International Organization for Standards: The C++ Program-
ming Language ISO/IEC 14882:2003. Wiley 2003. ISBN
0-470-84674-7.

[67] Technical Report on C++ Performance. ISO/IEC PDTR
18015.

[68] Technical Report on C++ Standard Library Extensions.
ISO/IEC PDTR 19768.

[69] ISO SC22/WG21 website: http://www.open-std.org/
jtc1/sc22/wg21/.

[70] Sorin Istrail and 35 others: Whole-genome shotgun as-
sembly and comparison of human genome assemblies.
Proc. National Academy of Sciences. February, 2004.
http://www.pantherdb.org/.

[71] Jaakko Järvi: Proposal for adding tuple type into the standard
library. ISO SC22 WG21 TR N1382==02-0040.

[72] Jaakko Järvi, Gary Powell, and Andrew Lumsdaine: The
Lambda Library: Unnamed Functions in C++. Software-
Practice and Experience, 33:259-291, 2003.

[73] J. Järvi, B. Stroustrup and G. Dos Reis: Deducing the type of
a variable from its initializer expression. ISO SC22 WG21
TR N1894, Oct. 2005.

[74] Jaakko Järvi, Douglas Gregor, Jeremiah Willcock, Andrew
Lumsdaine, and Jeremy Siek: Algorithm specialization in
generic programming: challenges of constrained generics in
C++. Proc. PLDI 2006.

[75] L. V. Kale and S. Krishnan: CHARM++ in Parallel program-
ming in C++. (Wilson and Lu, editors). MIT Press. 1996.
ISBN 0-262-73118-5.

[76] Brian Kernighan and Dennis Richie: The C Programming
Language (“K&R”). Prentice Hall. 1978. ISBN 0-13-110163-
3.

[77] Brian Kernighan and Dennis Richie: The C Programming
Language (2nd edition) (“K&R2” or just “K&R”). Prentice
Hall. 1988. ISBN 0-13-110362-8.

[78] Brian Kernighan: Why Pascal isn’t my favorite programming
language. AT&T Bell Labs technical report No. 100. July
1981.

[79] Andrew Koenig and Bjarne Stroustrup: Exception Handling
for C++(revised). Proc. USENIX C++ Conference. San
Francisco, CA. April 1990. Also, Journal of Object-Oriented
Programming. July 1990.

[80] Christopher Kohlhoff: Networking Library Proposal for TR2.
ISO SC22 WG21 TR N2054==06-0124.

[81] Mark A. Linton and Paul R. Calder: The Design and Imple-
mentation of InterViews. Proc. USENIX C++ Conference.
Santa Fe, NM. November 1987.

[82] A. Mishra et al.: R++: Using Rules in Object-Oriented
Designs. Proc. OOPSLA-96. http://www.research.att.
com/sw/tools/r++/.

[83] W. G. O’Farrell et al.: ABC++ in Parallel Programming
in C++. (Wilson and Lu, editors). MIT Press. 1996. ISBN
0-262-73118-5.

[84] Thorsten Ottosen: Proposal for new for-loop. ISO SC22
WG21 TR N1796==05-0056.

[85] Sean Parent: personal communications. 2006.

[86] J. V. W. Reynolds et al.: POOMA in Parallel Programming
in C++. (Wilson and Lu, editors). MIT Press. 1996. ISBN
0-262-73118-5.

[87] Mike Mintz and Robert Ekendahl: Hardware Verification
with C++ — A Practitioner’s Handbook. Springe Verlag.
2006. ISBN 0-387-25543-5.

[88] Nathan C. Myers: Traits: a new and useful template tech-
nique. The C++ Report, June 1995.

[89] C. Nelson and H.-J. Boehm: Sequencing and the concurrency
memory model. ISO SC22 WG21 TR N2052==06-0122.

Evolving C++ 1991-2006 57 2007/5/25

[90] Mac OS X 10.1 November 2001 Developer Tools CD Release
Notes: Objective-C++. http://developer.apple.com/
releasenotes/Cocoa/Objective-C++.html

[91] Leonie V. Rose and Bjarne Stroustrup: Complex Arithmetic
in C++. Internal AT&T Bell Labs Technical Memorandum.
January 1984. Reprinted in AT&T C++ Translator Release
Notes. November 1985.

[92] P. Rovner, R. Levin, and J. Wick: On extending Modula-2 for
building large integrated systems. DEC research report #3.
1985.

[93] J. Schilling: Optimizing Away C++ Exception Handling
ACM SIGPLAN Notices. August 1998.

[94] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker,
and Jack Dongarra: MPI: The Complete Reference The MIT
Press. 1995. http://www-unix.mcs.anl.gov/mpi/.

[95] D. C. Schmidt and S. D. Huston: Network programming
using C++. Addison-Wesley Vol 1, 2001. Vol. 2, 2003. ISBN
0-201-60464-7 and ISBN 0-201-79525-6.

[96] Jeremy G. Siek and Andrew Lumsdaine: The Matrix Tem-
plate Library: A Generic Programming Approach to High
Performance Numerical Linear Algebra ISCOPE ’98.
http://www.osl.iu.edu/research/mtl.

[97] J. Siek et al.: Concepts for C++. ISO SC22 WG21 WG21-
N1758.

[98] Jeremy G. Siek and Walid Taha: A Semantic Analysis of C++
Templates. Proc. ECOOP 2006.

[99] Yannis Smargdakis: Functional programming with the FC++
library. ICFP’00.

[100] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban: As-
pectC++: an AOP Extension for C++. Software Developer’s
Journal. June 2005. http://www.aspectc.org/.

[101] A. A. Stepanov and D. R. Musser: The Ada Generic Library:
Linear List Processing Packages. Compass Series, Springer-
Verlag, 1989.

[102] A. A. Stepanov: Abstraction Penalty Benchmark, version 1.2
(KAI). SGI 1992. Reprinted as Appendix D.3 of [67].

[103] A. Stepanov and M. Lee: The Standard Template Library.
HP Labs TR HPL-94-34. August 1994.

[104] Alex Stepanov: Foreword to Siek, et al.: The Boost Graph
Library. Addison-Wesley 2002. ISBN 0-21-72914-8.

[105] Alex Stepanov: personal communications. 2004.

[106] Alex Stepanov: personal communications. 2006.

[107] Christopher Strachey: Fundamental Concepts in Program-
ming Languages. Lecture notes for the International Summer
School in Computer Programming, Copenhagen, August
1967.

[108] Bjarne Stroustrup: Classes: An Abstract Data Type Facility
for the C Language. Bell Laboratories Computer Science
Technical Report CSTR-84. April 1980. Revised, August
1981. Revised yet again and published as [109].

[109] Bjarne Stroustrup: Classes: An Abstract Data Type Facility
for the C Language. ACM SIGPLAN Notices. January 1982.

Revised version of [108].

[110] B. Stroustrup: Data abstraction in C. Bell Labs Technical
Journal. Vol 63. No 8 (Part 2), pp 1701-1732. October 1984.

[111] B. Stroustrup: A C++ Tutorial. Proc. 1984 National
Communications Forum. September, 1984.

[112] B. Stroustrup: The C++ Programming Language
(“TC++PL”). Addison-Wesley Longman. Reading, Mass.,
USA. 1986. ISBN 0-201-12078-X.

[113] Bjarne Stroustrup: What is Object-Oriented Programming?
Proc. 14th ASU Conference. August 1986. Revised version
in Proc. ECOOP’87, May 1987, Springer Verlag Lecture
Notes in Computer Science Vol 276. Revised version in IEEE
Software Magazine. May 1988.

[114] Bjarne Stroustrup: An overview of C++. ACM Sigplan
Notices, Special Issue. October, 1986

[115] B. Stroustrup and J. E. Shopiro: A Set of Classes for Co-
routine Style Programming. Proc. USENIX C++ Workshop.
November, 1987.

[116] Bjarne Stroustrup: quote from 1988 talk.

[117] Bjarne Stroustrup: Parameterized Types for C++. Proc.
USENIX C++ Conference, Denver, CO. October 1988. Also,
USENIX Computer Systems, Vol 2 No 1. Winter 1989.

[118] B. Stroustrup: The C++ Programming Language, 2nd
Edition (“TC++PL2” or just “TC++PL”). Addison-Wesley
Longman. Reading, Mass., USA. 1991. ISBN 0-201-53992-
6.

[119] Bjarne Stroustrup and Dmitri Lenkov: Run-Time Type
Identification for C++. The C++ Report. March 1992.
Revised version. Proc. USENIX C++ Conference. Portland,
OR. August 1992.

[120] B. Stroustrup: A History of C++: 1979-1991. Proc ACM
HOPL-II. March 1993. Also in Begin and Gibson (editors):
History of Programming Languages. Addison-Wesley. 1996.
ISBN 0-201-89502-1.

[121] B. Stroustrup: The Design and Evolution of C++. (“D&E”).
Addison-Wesley Longman. Reading Mass. USA. 1994. ISBN
0-201-54330-3.

[122] B. Stroustrup: Why C++ is not just an object-oriented
programming language. Proc. ACM OOPSLA 1995.

[123] B. Stroustrup: Proposal to Acknowledge that Garbage
Collection for C++ is Possible. WG21/N0932 X3J16/96-
0114.

[124] B. Stroustrup: The C++ Programming Language, 3rd
Edition (“TC++PL3” or just “TC++PL”). Addison-Wesley
Longman. Reading, Mass., USA. 1997. ISBN 0-201-88954-
4.

[125] B. Stroustrup: Learning Standard C++ as a New Language.
The C/C++ Users Journal. May 1999.

[126] B. Stroustrup: The C++ Programming Language, Special
Edition (“TC++PL”). Addison-Wesley, February 2000. ISBN
0-201-70073-5.

[127] B. Stroustrup: C and C++: Siblings, C and C++: A Case for
Compatibility, C and C++: Case Studies in Compatibility.

Evolving C++ 1991-2006 58 2007/5/25

The C/C++ Users Journal. July, August, and September 2002.

[128] B. Stroustrup: Why can’t I define constraints for my template
parameters?. http://www.research.att.com/~bs/bs_
faq2.html#constraints.

[129] B. Stroustrup and G. Dos Reis: Concepts — Design choices
for template argument checking. ISO SC22 WG21 TR
N1522. 2003.

[130] B. Stroustrup: Concept checking — A more abstract
complement to type checking. ISO SC22 WG21 TR N1510.
2003.

[131] B. Stroustrup: Abstraction and the C++ machine model.
Proc. ICESS’04. December 2004.

[132] B. Stroustrup, G. Dos Reis: A concept design (Rev. 1). ISO
SC22 WG21 TR N1782=05-0042.

[133] B. Stroustrup: A rationale for semantically enhanced library
languages. ACM LCSD05. October 2005.

[134] B. Stroustrup and G. Dos Reis: Supporting SELL for High-
Performance Computing. LCPC05. October 2005.

[135] Bjarne Stroustrup and Gabriel Dos Reis: Initializer lists. ISO
SC22 WG21 TR N1919=05-0179.

[136] B. Stroustrup: C++ pages. http://www.research.att.
com/~bs/C++.html.

[137] B. Stroustrup: C++ applications. http://www.research.
att.com/~bs/applications.html.

[138] H. Sutter, D. Miller, and B. Stroustrup: Strongly Typed
Enums (revison 2). ISO SC22 WG21 TR N2213==07-0073.

[139] H. Sutter and B. Stroustrup: A name for the null pointer:
nullptr (revision 2). ISO SC22 WG21 TR N1601==04-0041.

[140] Herb Sutter: A Design Rationale for C++/CLI, Version
1.1 — February 24, 2006 (later updated with minor ed-
itorial fixes). http://www.gotw.ca/publications/C+
+CLIRationale.pdf.

[141] Numbers supplied by Trolltech. January 2006.

[142] UK C++ panel: Objection to Fast-track Ballot ECMA-372
in JTC1 N8037. http://public.research.att.com/~bs/
uk-objections.pdf. January 2006.

[143] E. Unruh: Prime number computation. ISO SC22 WG21 TR
N462==94-0075.

[144] D. Vandevoorde and N. M. Josuttis: C++ Templates — The
Complete Guide. Addison-Wesley. 2003. ISBN 0-201-73884-
2.

[145] D. Vandevoorde: Right Angle Brackets (Revision 1). ISO
SC22 WG21 TR N1757==05-0017 .

[146] D. Vandevoorde: Modules in C++ (Version 3). ISO SC22
WG21 TR N1964==06-0034.

[147] Todd Veldhuizen: expression templates. C++ Report Maga-
zine, Vol 7 No. 4, May 1995.

[148] Todd Veldhuizen: Template metaprogramming. The C++
Report, Vol. 7 No. 5. June 1995.

[149] Todd Veldhuizen: Arrays in Blitz++. Proceedings of the
2nd International Scientific Computing in Object Oriented

Parallel Environments (ISCOPE’98). 1998.

[150] Todd Veldhuizen: C++ Templates are Turing Complete
2003.

[151] Todd L. Veldhuizen: Guaranteed Optimization for Domain-
Specific Programming. Dagstuhl Seminar of Domain-Specific
Program Generation. 2003.

[152] Andre Weinand et al.: ET++ — An Object-Oriented Appli-
cation Framework in C++. Proc. OOPSLA’88. September
1988.

[153] Gregory V. Wilson and Paul Lu: Parallel programming using
C++. Addison-Wesley. 1996.

[154] P.M. Woodward and S.G. Bond: Algol 68-R Users Guide.
Her Majesty’s Stationery Office, London. 1974. ISBN 0-11-
771600-6.

[155] The Visualization Toolkit, An Object-Oriented Approach
To 3D Graphics, 3rd edition, ISBN 1-930934-12-2. http:
//public.kitware.com/VTK.

[156] FLTK: Fast Light Toolkit. http://www.fltk.org/.

[157] Lockheed Martin Corporation: Joint Strike Fighter air
vehicle coding standards for the system development and
demonstration program. Document Number 2RDU00001
Rev C. December 2005. http://www.research.att.com/
~bs/JSF-AV-rules.pdf.

[158] Microsoft Foundation Classes.

[159] Smartwin++: An Open Source C++ GUI library. http:
//smartwin.sourceforge.net/.

[160] WTL: Windows Template Library —- A C++ library for
developing Windows applications and UI components.
http://wtl.sourceforge.net.

[161] gtkmm: C++ Interfaces for GTK+ and GNOME. http:
//www.gtkmm.org/

[162] wxWidgets: A cross platform GUI library. http://
wxwidgets.org/.

[163] Windows threads: Processes and Threads. http://
msdn.microsoft.com/library/en-us/dllproc/base/
processes_and_threads.asp.

[164] Wikipedia: Java (Sun) — Early history. http://en.
wikipedia.org/wiki/Java_(Sun).

Evolving C++ 1991-2006 59 2007/5/25

